首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vertebrates, a bone morphogenetic protein (BMP) signaling pathway patterns all ventral cell fates along the embryonic axis. BMP activity is positively regulated by Tolloid, a metalloprotease, that can eliminate the activity of the BMP antagonist Chordin. A tolloid mutant in zebrafish, mini fin (mfn), exhibits a specific loss of ventral tail tissues. Here, we investigate the spatial and temporal requirements for Tolloid (Mfn) in dorsoventral patterning of the tail. Through chimeric analyses, we found that Tolloid (Mfn) functions cell non-autonomously in the ventral-most vegetal cells of the gastrula or their derivatives. We generated a tolloid transgene under the control of the inducible hsp70 promoter and demonstrate that tolloid (mfn) is first required at the completion of gastrulation. Although tolloid is expressed during gastrulation and dorsally and ventrally within the tail bud, our results indicate that Tolloid (Mfn) acts specifically in the ventral tail bud during a approximately 4 h period extending from the completion of gastrulation to early somitogenesis stages to regulate BMP signaling. Examination of the temporal requirements of Chordin activity by overexpression of the hsp70-tolloid transgene indicates that Chordin is required both during and after gastrulation for proper patterning of the tail, contrasting Tld's requirement only during post-gastrula stages. We hypothesize that the gastrula role of Chordin in tail patterning is to generate the proper size domains of cells to enter the ventral and dorsal tail bud, whereas post-gastrula Chordin activity patterns the derivatives of the tail bud. Thus, fine modulation of BMP signaling levels through the negative and positive actions of Chordin and Tolloid, respectively, patterns tail tissues.  相似文献   

2.
We analyzed the interactions between mutations in antagonistic BMP pathway signaling components to examine the roles that the antagonists play in regulating BMP signaling activity. The dorsalized mutants swirl/bmp2b, snailhouse/bmp7, lost-a-fin/alk8, and mini fin/tolloid were each analyzed in double mutant combinations with the ventralized mutants chordino/chordin and ogon, whose molecular nature is not known. Similar to the BMP antagonist chordino, we found that the BMP ligand mutants swirl/bmp2b and snailhouse/bmp7 are also epistatic to the putative BMP pathway antagonist, ogon, excluding a class of intracellular antagonists as candidates for ogon. In ogon;mini fin double mutants, we observed a mutual suppression of the ogon and mini fin mutant phenotypes, frequently to a wild type phenotype. Thus, the Tolloid/Mini fin metalloprotease that normally cleaves and inhibits Chordin activity is dispensable, when Ogon antagonism is reduced. These results suggest that Ogon encodes a Tolloid and Chordin-independent antagonistic function. By analyzing genes whose expression is very sensitive to BMP signaling levels, we found that the absence of Ogon or Chordin antagonism did not increase the BMP activity remaining in swirl/bmp2b or hypomorphic snailhouse/bmp7 mutants. These results, together with other studies, suggest that additional molecules or mechanisms are essential in generating the presumptive gastrula BMP activity gradient that patterns the dorsal-ventral axis. Lastly we observed a striking increased penetrance of the swirl/bmp2b dominant dorsalized phenotype, when Chordin function is also absent. Loss of the BMP antagonist Chordin is expected to increase BMP signaling levels in a swirl heterozygote, but instead we observed an apparent decrease in BMP signaling levels and a loss of ventral tail tissue. As has been proposed for the fly orthologue of chordin, short gastrulation, our paradoxical results can be explained by a model whereby Chordin both antagonizes and promotes BMP activity.  相似文献   

3.
Bone morphogenetic protein (Bmp) signaling is crucial for the formation and patterning of zebrafish ventral and posterior mesoderm. Mutants defective in the Bmp pathway have expanded trunk muscle, abnormal tails and severely impaired development of ventral mesodermal derivatives such as vasculature, blood and pronephros. As Bmps continue to be expressed in the ventral and posterior mesoderm after gastrulation, it is likely that Bmp signaling continues to play an important developmental role during outgrowth of the posterior body. However, because Bmp signaling plays an essential role during the gastrula stages, it has not been possible with mutants or standard disruption techniques to determine the later functions of the Bmp pathway. To study the role of Bmp signaling in the ventral and posterior mesoderm during trunk and tail outgrowth, we generated a transgenic zebrafish line containing a heatshock-inducible dominant-negative Bmp receptor-GFP fusion. Our data show that Bmps are important for tail organizer formation and for patterning the ventral mesoderm during early gastrulation. However, from mid-gastrulation to the early somitogenesis stages, Bmp signaling is important for ventral tail fin development and for preventing secondary tail formation. We conclude that the role of Bmp signaling in the ventral and posterior mesoderm changes as gastrulation proceeds.  相似文献   

4.
5.
Drosophila metalloproteinase Tolloid (TLD) is responsible for cleaving the antagonist Short gastrulation (SOG), thereby regulating signaling by the bone morphogenetic protein (BMP) Decapentaplegic (DPP). In mice there are four TLD-related proteinases, two of which, BMP1 and mammalian Tolloid-like 1 (mTLL1), are responsible for cleaving the SOG orthologue Chordin, thereby regulating signaling by DPP orthologues BMP2 and 4. However, although TLD mutations markedly dorsalize Drosophila embryos, mice doubly homozygous null for BMP1 and mTLL1 genes are not dorsalized in early development. Only a single TLD-related proteinase has previously been reported for zebrafish, and mutation of the zebrafish TLD gene (mini fin) results only in mild dorsalization, manifested by loss of the most ventral cell types of the tail. Here we identify and map the zebrafish BMP1 gene bmp1. Knockdown of BMP1 expression results in a mild tail phenotype. However, simultaneous knockdown of mini fin and bmp1 results in severe dorsalization resembling the Swirl (swr) and Snailhouse (snh) phenotypes; caused by defects in major zebrafish ventralizing genes bmp2b and bmp7, respectively. We conclude that bmp1 and mfn gene products functionally overlap and are together responsible for a key portion of the Chordin processing activity necessary to formation of the zebrafish dorsoventral axis.  相似文献   

6.
Vertebrate Crossveinless-2 (CV2) is a secreted protein that can potentiate or antagonize BMP signaling. Through embryological and biochemical experiments we find that: (1) CV2 functions as a BMP4 feedback inhibitor in ventral regions of the Xenopus embryo; (2) CV2 complexes with Twisted gastrulation and BMP4; (3) CV2 is not a substrate for tolloid proteinases; (4) CV2 binds to purified Chordin protein with high affinity (K(D) in the 1 nM range); (5) CV2 binds even more strongly to Chordin proteolytic fragments resulting from Tolloid digestion or to full-length Chordin/BMP complexes; (6) CV2 depletion causes the Xenopus embryo to become hypersensitive to the anti-BMP effects of Chordin overexpression or tolloid inhibition. We propose that the CV2/Chordin interaction may help coordinate BMP diffusion to the ventral side of the embryo, ensuring that BMPs liberated from Chordin inhibition by tolloid proteolysis cause peak signaling levels.  相似文献   

7.
In vertebrates and invertebrates, the bone morphogenetic protein (BMP) signaling pathway patterns cell fates along the dorsoventral (DV) axis. In vertebrates, BMP signaling specifies ventral cell fates, whereas restriction of BMP signaling by extracellular antagonists allows specification of dorsal fates. In misexpression assays, the conserved extracellular factor Twisted gastrulation (Tsg) is reported to both promote and antagonize BMP signaling in DV patterning. To investigate the role of endogenous Tsg in early DV patterning, we performed morpholino (MO)-based knockdown studies of Tsg1 in zebrafish. We found that loss of tsg1 results in a moderately strong dorsalization of the embryonic axis, suggesting that Tsg1 promotes ventral fates. Knockdown of tsg1 combined with loss of function of the BMP agonist tolloid (mini fin) or heterozygosity for the ligand bmp2b (swirl) enhanced dorsalization, supporting a role for Tsg1 in specifying ventral cell fates as a BMP signaling agonist. Moreover, loss of tsg1 partially suppressed the ventralized phenotypes of mutants of the BMP antagonists Chordin or Sizzled (Ogon). Our results support a model in which zebrafish Tsg1 promotes BMP signaling, and thus ventral cell fates, during DV axial patterning.  相似文献   

8.
9.
To address the patterning function of the Bmp2, Bmp4 and Bmp7 growth factors, we designed antisense morpholino oligomers (MO) that block their activity in Xenopus laevis. Bmp4 knockdown was sufficient to rescue the ventralizing effects caused by loss of Chordin activity. Double Bmp4 and Bmp7 knockdown inhibited tail development. Triple Bmp2/Bmp4/Bmp7 depletion further compromised trunk development but did not eliminate dorsoventral patterning. Unexpectedly, we found that blocking Spemann organizer formation by UV treatment or beta-Catenin depletion caused BMP inhibition to have much more potent effects, abolishing all ventral development and resulting in embryos having radial central nervous system (CNS) structures. Surprisingly, dorsal signaling molecules such as Chordin, Noggin, Xnr6 and Cerberus were not re-expressed in these embryos. We conclude that BMP inhibition is sufficient for neural induction in vivo, and that in the absence of ventral BMPs, Spemann organizer signals are not required for brain formation.  相似文献   

10.
11.
In vertebrates, the embryonic dorsoventral asymmetry is regulated by the bone morphogenetic proteins (Bmp) activity gradient. In the present study, we have used dorsalized swirl (bmp2b) and ventralized chordino (chordin) zebrafish mutants to investigate the effects of dorsoventral signalling on endoderm patterning and on the differentiation and positioning of its derivatives. Alterations of dorsoventral Bmp signalling do not perturb the induction of endodermal precursors, as shown by normal amounts of cells expressing cas and sox17 in swirl and chordino gastrulae, but affect dramatically the expression pattern of her5, a regulator of endoderm anteroposterior patterning in zebrafish. In particular, increased levels of Bmp signalling in chordino gastrulae are associated with a markedly reduced her5 expression domain, that may be abolished by injecting bmp2b mRNA. Conversely, in swirl mutants, lacking Bmp2b, the her5 expression domain is expanded. Thus, a gradient of Bmp2b signalling defines the extension of the her5 expression domain at gastrulation and the allocation of anterior endodermal precursors. A balanced Bmp2b signalling is also required for the normal development of the pancreas, as shown by the sharp reduction of the pancreatic primordium in swirl embryos and its expansion in chordino mutants. In the latter, at 3 days post-fertilization, the increased Bmp signalling does not compromise the endocrine/exocrine pancreas compartmentalization, but the right/left positioning of the pancreas and liver is randomized. Our results suggest that by regulating the expression of her5, the Bmp2b/Chordin gradient directs the anteroposterior patterning of endoderm in zebrafish embryos.  相似文献   

12.
13.
Dorsal–ventral patterning of the vertebrate retina is essential for accurate topographic mapping of retinal ganglion cell (RGC) axons to visual processing centers. Bone morphogenetic protein (Bmp) growth factors regulate dorsal retinal identity in vertebrate models, but the developmental timing of this signaling and the relative roles of individual Bmps remain unclear. In this study, we investigate the functions of two zebrafish Bmps, Gdf6a and Bmp4, during initiation of dorsal retinal identity, and subsequently during lens differentiation. Knockdown of zebrafish Gdf6a blocks initiation of retinal Smad phosphorylation and dorsal marker expression, while knockdown of Bmp4 produces no discernable retinal phenotype. These data, combined with analyses of embryos ectopically expressing Bmps, demonstrate that Gdf6a is necessary and sufficient for initiation of dorsal retinal identity. We note a profound expansion of ventral retinal identity in gdf6a morphants, demonstrating that dorsal BMP signaling antagonizes ventral marker expression. Finally, we demonstrate a role for Gdf6a in non-neural ocular tissues. Knockdown of Gdf6a leads to defects in lens-specific gene expression, and when combined with Bmp signaling inhibitors, disrupts lens fiber cell differentiation. Taken together, these data indicate that Gdf6a initiates dorsal retinal patterning independent of Bmp4, and regulates lens differentiation.  相似文献   

14.
Sirenomelia or mermaid-like phenotype is one of the principal human congenital malformations that can be traced back to the stage of gastrulation. Sirenomelia is characterized by the fusion of the two hindlimbs into a single one. In the mouse, sirens have been observed in crosses between specific strains and as the consequence of mutations that increase retinoic acid levels. We report that the loss of bone morphogenetic protein 7 (Bmp7) in combination with a half dose or complete loss of twisted gastrulation (Tsg) causes sirenomelia in the mouse. Tsg is a Bmp- and chordin-binding protein that has multiple effects on Bmp metabolism in the extracellular space; Bmp7 is one of many Bmps and is shown here to bind to Tsg. In Xenopus, co-injection of Tsg and Bmp7 morpholino oligonucleotides (MO) has a synergistic effect, greatly inhibiting formation of ventral mesoderm and ventral fin tissue. In the mouse, molecular marker studies indicate that the sirenomelia phenotype is associated with a defect in the formation of ventroposterior mesoderm. These experiments demonstrate that dorsoventral patterning of the mouse posterior mesoderm is regulated by Bmp signaling, as is the case in other vertebrates. Sirens result from a fusion of the hindlimb buds caused by a defect in the formation of ventral mesoderm.  相似文献   

15.
The determination of the vertebrate dorsoventral body axis is regulated in the extracellular space by a system of interacting secreted molecules consisting of BMP, Chordin, Tolloid and Twisted Gastrulation (Tsg). Tsg is a BMP-binding protein that forms ternary complexes with BMP and Chordin. We investigated the function of Tsg in embryonic patterning by generating point mutations in its two conserved cysteine-rich domains. Surprisingly, Tsg proteins with mutations in the N-terminal domain were unable to bind BMP, yet ventralized the embryo very effectively, indicating strong pro-BMP activity. This hyperventralizing Tsg activity required an intact C-terminal domain and could block the anti-BMP activity of isolated BMP-binding modules of Chordin (CRs) in embryonic assays. This activity was specific for CR-containing proteins as it did not affect the dorsalizing effects of Noggin or dominant-negative BMP receptor. The ventralizing effects of the xTsg mutants were stronger than the effect of Chordin loss-of-function in Xenopus or zebrafish. The results suggest that xTsg interacts with additional CR-containing proteins that regulate dorsoventral development in embryos.  相似文献   

16.
Harland RM 《Cell》2008,134(5):718-719
In this issue, Inomata et al. (2008) report that the scaffold protein Olfactomedin 1 (ONT1) recruits the Tolloid proteases to their substrate Chordin, an antagonist of bone morphogenetic proteins (BMPs), during development of the frog embryo. Consequently, ONT1 expression in the organizer of the late gastrula stabilizes the gradient of BMP signaling that is essential for dorsoventral patterning.  相似文献   

17.
Signaling by bone morphogenetic proteins (Bmps) plays a pivotal role in developmental and pathological processes, and is regulated by a complex interplay with secreted Bmp binding factors, including Crossveinless 2 (Cvl2). Although structurally related to the Bmp antagonist Chordin, Crossveinless 2 has been described to be both a Bmp agonist and antagonist. Here, we present the first loss-of-function study of a vertebrate cvl2 homologue, showing that zebrafish cvl2 is required in a positive feedback loop to promote Bmp signaling during embryonic dorsoventral patterning. In vivo, Cvl2 protein undergoes proteolytic cleavage and this cleavage converts Cvl2 from an anti- to a pro-Bmp factor. Embryonic epistasis analyses and protein interaction assays indicate that the pro-Bmp function of Cvl2 is partly accomplished by competing with Chordin for binding to Bmps. Studies in cell culture and embryos further suggest that the anti-Bmp effect of uncleaved Cvl2 is due to its association with the extracellular matrix, which is not found for cleaved Cvl2. Our data identify Cvl2 as an essential pro-Bmp factor during zebrafish embryogenesis, emphasizing the functional diversity of Bmp binding CR-domain proteins. Differential proteolytic processing as a mode of regulation might account for anti-Bmp effects in other contexts.  相似文献   

18.
Twisted gastrulation (Tsg) is a secreted protein that regulates Bmp signaling in the extracellular space through its direct interaction with Bmp/Dpp and Chordin (Chd)/Short gastrulation (Sog). The ternary complex of Tsg/Chd/Bmp is cleaved by the metalloprotease Tolloid (Tld)/Xolloid (Xld). Studies in Drosophila, Xenopus and zebrafish suggest that Tsg can act both as an anti-Bmp and as a pro-Bmp. We have analyzed Tsg loss-of-function in the mouse. Tsg homozygous mutants are viable but of smaller size and display mild vertebral abnormalities and osteoporosis. We provide evidence that Tsg interacts genetically with Bmp4. When only one copy of Bmp4 is present, a requirement of Tsg for embryonic development is revealed. Tsg-/-;Bmp4+/- compound mutants die at birth and display holoprosencephaly, first branchial arch and eye defects. The results show that Tsg functions to promote Bmp4 signaling during mouse head development.  相似文献   

19.
BACKGROUND: Bone morphogenetic proteins (Bmps) are required for the specification of ventrolateral cell fates during embryonic dorsoventral patterning and for proper convergence and extension gastrulation movements, but the mechanisms underlying the latter role remained elusive. RESULTS: Via bead implantations, we show that the Bmp gradient determines the direction of lateral mesodermal cell migration during dorsal convergence in the zebrafish gastrula. This effect is independent of its role during dorsoventral patterning and of noncanonical Wnt signaling. However, it requires Bmp signal transduction through Alk8 and Smad5 to negatively regulate Ca(2+)/Cadherin-dependent cell-cell adhesiveness. In vivo, converging mesodermal cells form lamellipodia that attach to adjacent cells. Bmp signaling diminishes the Cadherin-dependent stability of such contact points, thereby abrogating subsequent cell displacement during lamellipodial retraction. CONCLUSIONS: We propose that the ventral-to-dorsal Bmp gradient has an instructive role to establish a reverse gradient of cell-cell adhesiveness, thereby defining different migratory zones and directing lamellipodia-driven cell migrations during dorsal convergence in lateral regions of the zebrafish gastrula.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号