首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap junctional communication (GJC) between contacting cells has been postulated to be involved in the regulation of cell proliferation. This suggestion stems from numerous studies showing modulation of GJC by agents that influence cellular proliferation. Platelet-derived growth factor (PDGF), a strong mitogen, inhibits GJC in many cell types. To understand the molecular nature of the signal transduction pathway responsible for the GJC blockade, T51B rat liver epithelial cells, which lack endogenous PDGF receptor (PDGFr), were infected with a retrovirus containing either wild-type full-length cDNA of human PDGFrβ (Kin+) or a mutant PDGFrβ lacking receptor tyrosine kinase activity (Kin). PDGF caused a complete but transient interruption of cell communication in Kin+ cells within 15–20 min of addition. This interruption of GJC was not associated with a gross destabilization of gap junction plaques but with the phosphorylation of connexin43 (Cx43), the only known gap junction protein expressed in these cells. These effects were not exhibited in either control T51B cells or in Kin cells, indicating a requirement of the receptor tyrosine kinase activity. Further examination revealed that the newly phosphorylated Cx43 then undergoes a rapid degradation utilizing the lysosomal pathway resulting in a decreased total Cx43 protein level. The re-establishment of GJC following PDGF treatment was dependent on protein synthesis. This report describes a suitable cell system which is currently being utilized for the characterization of the PDGF signaling pathway responsible for the inhibition of GJC. J. Cell. Physiol. 174:66–77, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
3.
Disruption of gap junctional communication (GJC) by various compounds, including growth factors and tumor promoters, is believed to be modulated by the phosphorylation of a gap junctional protein, connexin43 (Cx43). We have previously demonstrated a platelet-derived growth factor (PDGF)-induced blockade of GJC and phosphorylation of Cx43 in T51B rat liver epithelial cells expressing wild-type PDGF receptor beta (PDGFr beta). Both of these actions of PDGF required participation of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). Similar requirements of MAPK were suggested in the modulation of GJC by other agents, including epidermal growth factor (EGF) and lysophosphatidic acid (LPA). Since many of these agents activate additional protein kinases, our present study examined whether activation of MAPK was sufficient for Cx43 phosphorylation and GJC blockade. By utilizing a variety of MAPK activators, we now show that activation of MAPK is not always associated with either Cx43 phosphorylation or disruption of GJC, which suggests a requirement for additional factors. Furthermore, pretreatment with hydrogen peroxide (H2O2), a potent MAPK activator but inefficient GJC/Cx43 modulator, abrogated PDGF- or TPA-induced disruption of GJC. While a 5 min H2O2 pretreatment abolished both PDGF- and TPA-induced Cx43 phosphorylation and GJC blockade, a simultaneous H2O2 treatment interfered only with GJC closure but not with the phosphorylation of Cx43 induced by PDGF and TPA. This finding indicates that, in addition to the Cx43 phosphorylation step, inhibition of GJC requires interaction with other components. H2O2-mediated abrogation of PDGF/TPA signaling can be neutralized by the antioxidant N-acetylcysteine (NAC) or by the tyrosine kinase inhibitor genistein. Taken together, our results suggest that disruption of GJC is not solely mediated by either activated MAPK or Cx43 phosphorylation but requires the participation of additional kinases and regulatory components. This complex mode of regulation is perhaps essential for the proposed functional role of GJC.  相似文献   

4.
The Src tyrosine kinase phosphorylates Cas (Crk-associated substrate) to confer anchorage independence and invasive growth potential to transformed cells. Gap junctional communication is often lower between aggressive tumor cells compared with normal or benign precursors. The gap junction protein connexin43 (Cx43) is a tumor suppressor that can inhibit tumor cell growth. Src can phosphorylate Cx43 to block gap junctional communication between transformed cells. However, mechanisms by which this event actually closes intercellular channels have not been clearly defined. Here, we report that Src and Cas associate with each other at intercellular junctions. In addition, Cas is required for Src to reduce dye transfer and electrical coupling between cells expressing Cx43. Thus, Src utilizes Cas to inhibit gap junctional communication mediated by Cx43. This finding introduces a novel role of the Cas focal adhesion linker protein in the gap junction complex. This observation may help explain how gap junctional communication can be suppressed between malignant and metastatic tumor cells.  相似文献   

5.
Caveolin is a major structural component of caveolae and has been implicated in the regulation of the function of several caveolae-associated signaling molecules. Platelet-derived growth factor (PDGF) receptors and caveolin were colocalized in the same subcellular fraction after sucrose density gradient fractionation of fibroblasts. Additionally, we found that the PDGF receptors interacted with caveolin in NIH3T3 fibroblast cells. We then examined whether caveolin directly binds to PDGF receptors and inhibits kinase activity using a recombinant PDGF receptor overexpressed in insect cells and peptides derived from the scaffolding domain of caveolin subtypes. We found the peptide from caveolin-1 and -3, but not -2, inhibited the autophosphorylation of PDGF receptors in a dose-dependent manner. Similarly, caveolin-1 and -3 peptides directly bound to PDGF receptors. Mutational analysis using a series of truncated caveolin-3 peptides (20-, 17-, 14-, and 11-mer peptides) revealed that at least 17 amino acid residues of the peptide were required to inhibit and directly bind to PDGF receptors. Thus, our findings suggest that PDGF receptors directly interact with caveolin subtypes, leading to the inhibition of kinase activity. Caveolin may be another regulating factor of PDGF-mediated tyrosine kinase signaling.  相似文献   

6.
7.
AMP-activated protein kinase (AMPK) has been implicated in anti-proliferative actions in a range of cell systems. Recently, it was observed that Compound C, an inhibitor of AMPK, also reduced the cell viability in human diploid fibroblasts (HDFs). Compound C-induced growth arrest was associated with a decrease in the cell cycle regulatory proteins, such as proliferating cell nuclear antigen, phosphorylated pRB, cyclin-dependent protein kinases (Cdk 2 and 4), cyclins (D and E), and the Cdk inhibitors (p21, p16, and p27). Therefore, the present study examined the molecular mechanism of the antiproliferative effects of Compound C. Although Compound C inhibited serum-induced phosphorylation of Akt and its substrate, glycogen synthase kinase-3β, it did not affect the Akt activity in vitro. Compound C significantly inhibited the receptor tyrosine phosphorylation and the activity of downstream signaling molecules, such as p85 phosphoinositide 3-kinase, phospholipase C-γ1, and extracellular signal-regulated kinase 1/2, induced by platelet-derived growth factor (PDGF) but not by epidermal growth factor- and insulin-like growth factor. In vitro growth factor receptor tyrosine kinase activity profiling revealed the IC50 for PDGF receptor-β (PDGFRβ) to be 5.07 μM, whereas the IC50 for the epidermal growth factor receptor and insulin-like growth factor receptor was ≥ 100 μM. The inhibitory effect of Compound C on PDGFRβ and Akt was also observed in AMPKα12-knockout mouse embryonic fibroblasts, indicating that its inhibitory effect is independent of the AMPK activity. The inhibitory effect of Compound C on cell proliferation and PDGFRβ tyrosine phosphorylation was also demonstrated in various PDGFR-expressing cells, including MRC-5, BEAS-2B, rat aortic vascular smooth muscle cells, and A172 glioblastoma cells. These results indicate that Compound C can be used as a potential antiproliferative agent for PDGF- or PDGFR-associated diseases, such as cancer, atherosclerosis, and fibrosis.  相似文献   

8.
Transforming growth factor beta 1 (TGF-beta1) affects growth plate chondrocytes through Smad-mediated mechanisms and has been shown to increase protein kinase C (PKC). This study determined if PKC mediates the physiological response of rat costochondral growth zone (GC) chondrocytes to TGF-beta1; if the physiological response occurs via type II or type III TGF-beta receptors, and, if so, which receptor mediates the increase in PKC; and the signal transduction pathways involved. Treatment of confluent GC cells with TGF-beta1 stimulated [(3)H]thymidine and [(35)S]sulfate incorporation as well as alkaline phosphatase (ALPase) and PKC specific activities. Inhibition of PKC with chelerythrine, staurosporine, or H-7 caused a dose-dependent decrease in these parameters, indicating that PKC signaling was involved. TGF-beta1-dependent PKC and the physiological response of GC cells to TGF-beta1 was reversed by anti-type II TGF-beta receptor antibody and soluble type II TGF-beta receptor, showing that TGF-beta1 mediates these effects through the type II receptor. The increase in [3H]thymidine incorporation and ALPase specific activity were also regulated by protein kinase A (PKA) signaling, since the effects of TGF-beta1 were partially blocked by the PKA inhibitor H-8. The mechanism of TGF-beta1 activation of PKC is through phospholipase A(2) (PLA(2)) and not through phospholipase C (PLC). Arachidonic acid increased PKC in control cultures and was additive with TGF-beta1. Prostanoids are required, as indomethacin blocked the effect of TGF-beta1, and Cox-1, but not Cox-2, is involved. TGF-beta1 stimulates prostaglandin E(2) (PGE(2)) production and exogenous PGE(2) stimulates PKC, but not as much as TGF-beta1, suggesting that PGE(2) is not sufficient for all of the prostaglandin effect. In contrast, TGF-beta1 was not regulated by diacylglycerol; neither dioctanoylglycerol (DOG) nor inhibition of diacylglycerol kinase with R59022 had an effect. G-proteins mediate TGF-beta1 signaling at different levels in the cascade. TGF-beta1-dependent increases in PGE(2) levels and PKC were augmented by the G protein activator GTP gamma S, whereas inhibition of G-protein activity via GDP beta S, pertussis toxin, or cholera toxin blocked stimulation of PKC by TGF-beta1, indicating that both G(i) and G(s) are involved.Inhibition of PKA with H-8 partially blocked TGF-beta1-dependent PKC, suggesting that PKA inhibition on the physiological response was via PKA regulation of PKC signaling. This indicates that multiple interacting signaling pathways are involved: TGF-beta1 stimulates PLA(2) and prostaglandin release via the action of Cox-1 on arachidonic acid. PGE(2) activates the EP2 receptor, leading to G-protein-dependent activation of PKA. PKA signaling results in increased PKC activity and PKC signaling regulates proliferation, differentiation, and matrix synthesis.  相似文献   

9.
Human skin fibroblasts efficiently internalize the matrikine decorin by receptor-mediated endocytosis, however, very little is known about its intracellular trafficking routes up to lysosomal degradation. In an in vitro system measuring uptake and degradation of [(35)S]sulfate-labeled decorin, endocytosis was blocked by 46% when clathrin assembly/disassembly was inhibited using chlorpromazine. Pharmacological inhibition of EGF receptor signaling caused 34% reduction of decorin uptake, whereas inhibition of the IGF receptor had no effect. Using confocal immunofluorescence microscopy, we determined that only about 5-10% of internalized decorin colocalized with the EGFR. Thus, uptake depends on EGFR signaling rather than trafficking along the same pathway. Decorin passes through early endosomes towards trafficking to lysosomes, since more than 50% of decorin colocalized with EEA1. Moreover, inhibition of endosomal fusion by wortmannin caused a profound inhibition of decorin endocytosis. Overexpression of the clathrin-binding Hrs protein, which has previously been shown to inibit EGFR degradation blocked the degradation of decorin. Cholesterol depletion by filipin inhibited uptake of decorin by 34%, however, nearly no intracellular colocalization was found between decorin and caveolin-1. The combined use of filipin and chlorpromazine had an additive inhibitory effect on decorin endocytosis. Moreover, chlorpromazine diverted decorin from the chlorpromazine-sensitive pathway to an alternative uptake route. The CD44/hyaluronan pathway was excluded as an endocytic route for decorin. Our observations indicate that decorin is taken up by more than one endocytic pathway. Of note, lipid-raft-dependent EGFR signaling modulates decorin uptake, suggesting the presence of a potential feedback regulation mechanism for desensitization of signaling events mediated by decorin.  相似文献   

10.
Inhibition of growth factor signaling pathways by lovastatin   总被引:3,自引:0,他引:3  
Human fibroblasts treated with the antihypercholesterolaemic drug, lovastatin, displayed a diminished signaling response to epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). Supplementing the culture medium with mevalonic acid restored the signaling response. Not all growth factor signaling pathways were impaired, however, as platelet-derived growth factor (PDGF-BB) and basic fibroblast growth factor (bFGF) responses were refractory to lovastatin treatment. These results suggest the involvement of product(s) of mevalonate metabolism (e.g., prenylated proteins such as p21ras or G proteins) in the signal transduction of EGF, insulin and IGF-I. The inhibition of cell growth by lovastatin may be caused by the inability of the cell to enter the S phase of the cell cycle due to obstruction of the signaling of progression factors.  相似文献   

11.
12.
Platelet-derived growth factor (PDGF) exerts its stimulatory effects on cell growth and motility by binding to two related protein tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic SH2-domain containing signal transduction molecules. Thereby, a number of different signaling pathways are initiated leading to cell growth, actin reorganization migration and differentiation. Recent observations suggest that extensive cross-talk occurs between different signaling pathways, and that stimulatory signals are modulated by inhibitory signals arising in parallel.  相似文献   

13.
Dicumarol [3,3'-methylene-bis(4-hydroxycoumarin)] is a potent inhibitor of NAD(P)H:quinone oxidoreductase-1. Exposure of rat liver epithelial cells or of human skin fibroblasts to dicumarol resulted in a rapid and complete inhibition of connexin-43-dependent gap junctional intercellular communication (GJC). GJC was restored within 60min following removal of dicumarol. The concentration of dicumarol required for half maximal inhibition of GJC was 3muM, making dicumarol about 10-fold more effective in blocking GJC than 1-octanol and flufenamic acid, known inhibitors of GJC. Warfarin, a related coumarin derivative, also attenuated GJC, yet very high concentrations of 5-10mM were required. Dicumarol-induced downregulation of GJC was found not to be due to an interference with pathways enhancing the phosphorylation of connexin-43, such as epidermal growth factor receptor and extracellular signal-regulated kinase pathways. Rather, inhibition of GJC by dicumarol was paralleled by a reversible loss of a phosphorylated form ("P2") of connexin-43.  相似文献   

14.
15.
The distinct effects of cytokines on cellular growth and differentiation suggest that specific signaling pathways mediate these diverse biological activities. Fibroblast growth factors (FGFs) are well-established inhibitors of skeletal muscle differentiation and may operate via activation of specific signaling pathways distinct from recently identified mitogen signaling pathways. We examined whether platelet-derived growth factor (PDGF)-activated signaling pathways are sufficient to mediate FGF-dependent repression of myogenesis by introducing the PDGF beta receptor into a mouse skeletal muscle cell line. Addition of PDGF-BB to cells expressing the PDGF beta receptor activated the PDGF beta receptor tyrosine kinase, stimulated mitogen-activated protein (MAP) kinase, and increased the steady-state levels of junB and c-fos mRNAs. Despite the activation of these intracellular signaling molecules, PDGF beta receptor activation elicited no detectable effect on cell proliferation or differentiation. In contrast to PDGF-BB, addition of FGF-2 to myoblasts activated signaling pathways that resulted in DNA synthesis and repression of differentiation. Because of the low number of endogenous FGF receptors expressed, FGF-stimulated signaling events, including tyrosine phosphorylation and activation of MAP kinase, could be detected only in cells expressing higher levels of a transfected FGF receptor cDNA. As the PDGF beta receptor- and FGF receptor-stimulated signaling pathways yield different biological responses in these skeletal muscle cells, we hypothesize that FGF-mediated repression of skeletal muscle differentiation activates signaling pathways distinct from those activated by the PDGF beta receptor. Activation of PDGF beta receptor tyrosine kinase activity, stimulation of MAP kinase, and upregulation of immediate-early gene expression are not sufficient to repress skeletal muscle differentiation.  相似文献   

16.
Glands were the first type of tissues in which the permissive role of gap junctions in the cell-to-cell transfer of membrane-impermeant molecules was shown. During the 40 years that have followed this seminal finding, gap junctions have been documented in all types of multicellular secretory systems, whether of the exocrine, endocrine or pheromonal nature. Also, compelling evidence now indicates that gap junction-mediated coupling, and/or the connexin proteins per se, play significant regulatory roles in various aspects of gland functions, ranging from the biosynthesis, storage and release of a variety of secretory products, to the control of the growth and differentiation of secretory cells, and to the regulation of gland morphogenesis. This review summarizes this evidence in the light of recent reports.  相似文献   

17.
18.
Our previous studies have shown that steady shear stress causes a transient increase of platelet-derived growth factor (PDGF) A and B chain mRNA levels in human umbilical vein endothelial cells (HUVEC). In the present study, we elucidated the signaling pathway of shear stress in HUVEC by examining the roles of protein kineses, intracellular calcium, cyclooxygenase, and guanine nucleotide-binding proteins (G proteins) in the PDGF gene induction by shear. The protein kinase C inhibitors, H7 and staurosporine, strongly inhibited the shear-induced PDGF gene expression in HUVEC. In contrast, HA1004, a cAMP- and cGMP-dependent protein kinases inhibitor, was only slightly inhibitory. BAPTA/AM, an intracellular calcium chelator, partially (50%) inhibited the shear-induced PDGF gene expression. The cyclooxygenase inhibitors, ibuprofen and indomethacin, were slightly inhibitory. A 35-50% inhibition of shear-induced PDGF gene expression was found with GDP-beta-S, an inhibitor of G proteins. These results suggest that shear-induced PDGF gene expression in HUVEC is mainly mediated by protein kinase C activation and requires intracellular calcium. Furthermore, G proteins seem to be involved in this process, whereas prostaglandin synthesis via cyclooxygenase pathway is not. We propose a mechanism of shear-induced PDGF gene expression in HUVEC: Shear stress, either directly or indirectly (G protein-mediated), enhances the membrane phosphoinositide turnover via phospholipase C, producing diacylglycerol, an activator of protein kinase C. The activated protein kinase C then triggers the subsequent PDGF gene expression.  相似文献   

19.
Summary Cell-to-cell communication via gap junctions has played a fundamental role in the orderly development of multicellular organisms. Current methods for measuring this function apply mostly to homotypic cell populations. The newly introduced Fluorescence Activated Cell Sorting (FACS) method, albeit with some limitations, is simple, reliable, and quantitative in measuring the dye transfer via gap junctions in both homotypic and heterotypic cell populations. In the homotypic setting, the result in dye transfer from the FACS method is comparable to the scrape-loading and microinjection methods. Using this FACS method, we observed a decline of cell-to-cell communication in transformed and cancer cells. We also observed a differential degree of communication between two heterotypic cell populations depending on the direction of dye transfer.  相似文献   

20.
Extracellular signal-regulated kinases (ERK) 1 and 2 as well as ERK-5 were previously suggested to phosphorylate connexin-43 and to contribute to the modulation of gap junctional intercellular communication (GJC). Exposure of rat liver epithelial cells to epidermal growth factor (EGF) or the redox cycling and alkylating agent menadione resulted in phosphorylation of connexin-43 and loss in GJC, both of which were abrogated by pharmacological inhibitors of ERK-1/2 activation, if used in concentrations that selectively abrogate phosphorylation of ERK-1/2 but not of ERK-5. Thus, EGF- or menadione-induced loss of GJC is mediated by ERK-1/2 but not ERK-5 in rat liver epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号