首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
arc5 is a chloroplast division mutant of Arabidopsis thaliana. To identify the role of ARC5 in the chloroplast replication process we have followed the changes in arc5 chloroplasts during their perturbed division. ARC5 does not affect proplastid division but functions at a later stage in chloroplast development. Chloroplasts in developing mesophyll cells of arc5 leaves do not increase in number and all of the chloroplasts in mature leaf cells show a central constriction. Young arc5 chloroplasts are capable of initiating the division process but fail to complete daughter-plastid separation. Wild-type plastids increase in number to a mean of 121 after completing the division process, but in the mutant arc5 the approximately 13 plastids per cell are still centrally constricted but much enlarged. As the arc5 chloroplasts expand and elongate without dividing, the internal thylakoid membrane structure becomes flexed into an undulating ribbon. We conclude that the ARC5 gene is necessary for the completion of the last stage of chloroplast division when the narrow isthmus breaks, causing the separation of the daughter plastids.  相似文献   

2.
Using cultured cells of the hornwortAnthoceros punctatus, the change in the relative chloroplast DNA content in each stage of chloroplast division was investigated to clarify the relationship between the division cycle of a chloroplast and a cell nucleus. Samples of cultured cells were stained with 4′,6-diamidino-2-phenylindole (DAPI) and then observed with an epifluorescence microscope and a chromosome image analyzing system (CHIAS). A chloropiast in cultured cells duplicated DNA with an increase in size. When a chloroplast began to divide, it was constricted in the middle, taking a dumbbell shape, and then divided into two daughter chloroplasts. In cultured cells of this species, the pattern of quantitative change of chloroplast DNA, that is, the DNA replication pattern of chloroplasts, corresponded to that of cell nuclear DNA in mitosis.  相似文献   

3.
K. Naito  K. Ueda  H. Tsuji 《Protoplasma》1981,105(3-4):293-306
Summary Primary leaves of intact bean plants (Phaseolus vulgaris) were treated with benzyladenine (BA) at different stages of growth. Changes in the ultrastructure of chloroplasts and the contents of chlorophyll, carotenoid, and protein (soluble and insoluble) in leaves with different treatments were followed and compared. When BA was applied from an early stage, it increased the chloroplast size and the number of grana per chloroplast without any pronounced effect on the grana size. When BA treatment was stopped at the early stage, these effects remained for a while and then diminished. When BA treatment was begun at a late stage, such marked effects were not observed, suggesting that only young leaves could respond to BA in that manner. However, the late treatment efficiently prevented the process of the last stage of leaf senescence characterized by disintegration of thylakoids with concomitant increase in the plastoglobule size. Chlorophyll, carotenoid, and insoluble protein contents per leaf followed similar changes in chloroplast length and the number of grana per chloroplast section.  相似文献   

4.
Chloroplasts arose from a cyanobacterial endosymbiont and multiply by division, reminiscent of their free-living ancestor. However, chloroplasts can not divide by themselves, and the division is performed and controlled by proteins that are encoded by the host nucleus. The continuity of chloroplasts was originally established by synchronization of endosymbiotic cell division with host cell division, as seen in existent algae. In contrast, land plant cells contain multiple chloroplasts, the division of which is not synchronized, even in the same cell. Land plants have evolved cell and chloroplast differentiation systems in which the size and number of chloroplasts (or other types of plastids) change along with their respective cellular function by changes in the division rate. We recently reported that PLASTID DIVISION (PDV) proteins, land-plant specific components of the chloroplast division apparatus, determined the rate of chloroplast division. The level of PDV protein is regulated by the cell differentiation program based on cytokinin, and the increase or decrease of the PDV level gives rise to an increase or decrease in the chloroplast division rate. Thus, the integration of PDV proteins into the chloroplast division machinery enabled land plant cells to change chloroplast size and number in accord with the fate of cell differentiation.Key words: chloroplast division, cell cycle, cell differentiation, cytokinin, endosymbiosis, evolution  相似文献   

5.
Summary Some factors affecting the chloroplast replication were studied using the leaf cells of the mossPlagiomnium trichomanes. There was a significant positive correlation between chloroplast number per cell and cell volume in leaves of any developmental stage. However, when the detached leaves were cultured on nutrient agar, it was observed that the chloroplast replication occurred without cell enlargement regardless of the developmental stage of leaves. This implies that cell enlargement is not an essential factor for the chloroplast replication, but one of the environmental factors affecting it. Light is essential for the chloroplast replication which response to the light intensity. In the dark, there was little increase in chloroplast number per cell. With a light intensity of 50 lux, the increase rate of chloroplast number per cell was about half of that with 3,000 lux. Day length also affected significantly the chloroplast replication.  相似文献   

6.
J. R. Ellis  R. M. Leech 《Planta》1985,165(1):120-125
As part of an investigation into the control of chloroplast replication the number and size of chloroplasts in mesophyll cells was examined in relation to the size of the cells. In first leaves of Triticum aestivum L. and T. monococcum L. the number of chloroplasts in fully expanded mesophyll cells is positively correlated with the plan area of the cells. The linear relationship between chloroplast number per cell and cell plan area is also consistent over a fivefold range of cell size in isogenic diploid and tetraploid T. monococcum. In T. aestivum the chloroplast number per unit cell plan area varies among cells in relation to the size of the chloroplasts. Those cells containing chloroplasts with a relatively small face area have a correspondingly higher density of chloroplasts, and consequently, the total chloroplast area per unit cell plan area is very similar in all the cells. The results indicate that the proportion of the cell surface area covered by chloroplasts is precisely regulated, and that this is achieved during cell development by growth and replication of the chloroplasts.  相似文献   

7.
Spinach seeds (Spinacia oleracea L.) given massive doses of γ-irradiation (500 krad) germinate and form a seedling with two green cotyledons and a radicle, but develop no further. Irradiated cotyledons show no increase in cell number or total DNA over a 7-day period in the light, while in control cotyledons there is a small increase in cell number and large increases in total DNA and chloroplast number. The chloroplasts of irradiated cotyledons are delayed in their division, become greatly enlarged and contain large amounts of starch. The whole population of chloroplasts subsequently undergoes a wave of division. The daughter chloroplasts show normal thylakoid development, but have some abnormal structural features caused by the radiation stress. Information on the effect of X-irradiation, ultraviolet irradiation, and 5-fluorodeoxyuridine on chloroplast replication and on chloroplast and nuclear DNA synthesis was obtained from cultured spinach leaf discs. It appears that chloroplast replication is more resistant to ionizing radiation than cell division and can proceed in the absence of nuclear DNA synthesis and greatly reduced chloroplast DNA synthesis.  相似文献   

8.
The effect of benzyladenine (BA) on the diurnal changes in DNAand Chl contents per chloroplast and chloroplast replicationin primary leaves of bean plants (Phaseolus vulgaris L.) grownunder a 16 h light/8 h dark cycle was studied. Experiments weremade on primary leaves in the early expansion phase, where celldivision had been completed but chloroplasts were replicating.In untreated controls, chloroplast number, Chl content and freshweight per leaf showed daily periodic changes. Chl content perchloroplast increased in the light period every day, and freshweight per leaf increased most rapidly in the early dark period.Chloroplast number per leaf increased rapidly in the early darkperiod on day 9, though the increase began a little earlierand was less sharp on days 8 and 10. During these periods, DNAcontent per chloroplast was decreasing due to chloroplast divisionas chloroplast DNA (ctDNA) per leaf remained unchanged throughoutthe experimental period. BA induced increases in Chi contentper chloroplast, ctDNA content and fresh weight per leaf within6 h of its application, regardless of whether it was appliedat or 10 h after the beginning of the light period. Applicationof BA at 10 h in the light period shifted the start of chloroplastreplication by 6 h compared to that in untreated controls. However,when BA was applied at the beginning of illumination, the startof chloroplast replication showed the same relative change intime as above. 5-Fluorodeoxyuridine (5-FdU) promptly preventedBA-induced increase in Chl content and chloroplast number perleaf as well as ctDNA content per leaf.  相似文献   

9.
Changes in the number and size of chloroplasts in mesophyllcells were investigated in primary leaves of wheat from fullexpansion to yellowing under different growth conditions. Thenumber of chloroplasts per cell decreased slowly, although thedecrease was steady and statistically significant, until thelast stage of leaf senescence, when rapid degradation of chloroplaststook place. Rates of leaf senescence, or the decline in thenumber of chloroplasts, varied greatly among plants grown atdifferent seasons of the year, but about 20% of chloroplastsalways disappeared during the phase when steady loss of chloroplastsoccurred. The area of chloroplast disks also decreased graduallybut significantly, with a rapid decrease late in senescence.Thus, the total quantity of chloroplasts per mesophyll celldecreased substantially during leaf senescence. Yellowed leavescontained numerous structures that resemble oil drops but nochloroplasts. Decreases in rates of photosynthesis that occurduring senescence may, therefore, be largely due to decreasesin the quantity of chloroplasts. However, a better correlationwas found between the decrease in the maximum capacity for photosynthesisand the degradation of RuBP carboxylase. When plants had beengrown with a sufficient supply of nutrients, the number of chloroplastsdecreased steadily but at a reduced rate and the reduction inthe area of chloroplast disks was strongly suppressed. Thus,the quantitative decrease in chloroplasts in senescing leavesappears to be regulated by the requirements for nutrients (nitrogen)of other part of the plant. 3Present address: Department of Biology, Faculty of Science,Toho University, Miyama, Funabashi, Chiba, 274 Japan  相似文献   

10.
A novel mutant of Arabidopsis thaliana, arc6 (accumulation and replication of chloroplasts), has been isolated from a transfer DNA-mutagenized population of Arabidopsis seedlings. arc6 has the most extreme arc mutant phenotype we have yet described, with only one to three chloroplasts per leaf mesophyll cell compared to a mean of 83 in cells of the wild-type var Wassilewskija. The chloroplasts of arc6 are 20-fold larger than wild-type chloroplasts.Chloroplast division is almost certainly precluded in arc6 mesophyll cells, since chloroplast number per cell does not increase during mesophyll cell expansion. arc6 chloroplasts are long and thin in cross-section and only one-half the width of wild-type chloroplasts and the arrangement of thylakoid membranes is largely unaltered. arc6 segregates as a monogenic recessive nuclear mutation in a normal Mendelian manner and the arc6 phenotype is stably inherited for at least four generations. arc6 plants grow normally and are fertile, although the rosette leaves appear curled and twisted. arc6 plants accumulate 70 to 75% of the biomass of wild type. The phenotype of this novel mutant is discussed in relation to the nature of the control of chloroplast division in leaf cells.  相似文献   

11.
Olisthodiscus luteus is a unicellular biflagellate alga which contains many small discoidal chloroplasts. This naturally wall-less organism can be axenically maintained on a defined nonprecipitating artificial seawater medium. Sufficient light, the presence of bicarbonate, minimum mechanical turbulence, and the addition of vitamin B12 to the culture medium are important factors in the maintenance of a good growth response. Cells can be induced to divide synchronously when subject to a 12-hour light/12-hour dark cycle. The chronology of cell division, DNA synthesis, and plastid replication has been studied during this synchronous growth cycle. Cell division begins at hour 4 in the dark and terminates at hour 3 in the light, whereas DNA synthesis initiates 3 hours prior to cell division and terminates at hour 10 in the dark. Synchronous replication of the cell's numerous chloroplasts begins at hour 10 in the light and terminates almost 8 hours before cell division is completed. The average number of chloroplasts found in an exponentially growing synchronous culture is rather stringently maintained at 20 to 21 plastids per cell, although a large variability in plastid complement (4-50) is observed within individual cells of the population. A change in the physiological condition of an Olisthodiscus cell may cause an alteration of this chloroplast complement. For example, during the linear growth period, chloroplast number is reduced to 14 plastids per cell. In addition, when Olisthodiscus cells are grown in medium lacking vitamin B12, plastid replication continues in the absence of cell division thereby increasing the cell's plastid complement significantly.  相似文献   

12.
13.
During the growth of beet leaves from 2 to 3 to 25 to 30 centimeters, the leaf cells increase in size, the average number of chloroplasts per cell increases from 11 to 65 and the amount of chloroplast DNA per cell increases from 1100 to 1900 plastome copies. The average number of copies of the plastome per chloroplast decreases from 104 in 2 to 3-centimeter leaves to 29 in 25 to 30-centimeter leaves during a period when the chloroplasts undergo two to three rounds of division and increase diameter from 1.5 to 4.9 micrometers. This result is at variance with previously published studies of beet chloroplasts but agrees with the conclusions reached in more recent studies of pea and spinach and wheat leaf cell expansion.  相似文献   

14.
Pyke KA  Leech RM 《Plant physiology》1994,104(1):201-207
A nuclear recessive mutant of Arabidopsis thaliana, arc5, has been isolated in which there is no significant increase in chloroplast number during leaf mesophyll cell expansion and in which there are only 13 chloroplasts per mesophyll cell compared with 121 in wild-type cells. Mature arc5 chloroplasts in fully expanded mesophyll cells are 6-fold larger than in wild-type cells. A large proportion of arc5 chloroplasts also show some degree of central constriction, suggesting that the mutation has prevented the completion of the chloroplast division process. To examine the interaction of arc loci, a double mutant was constructed between arc1, a mutant possessing many small chloroplasts, and arc5. A second double mutant was also constructed between arc3, a previously discovered mutant also possessing few large chloroplasts per cell, and arc1. Analysis of these double mutants shows that chloroplast number per mesophyll cell is greater when arc5 and arc3 mutations are expressed in the arc1 background than when expressed alone. The cell-specific nature of arc mutants was also analyzed. The phenotypic traits characteristic of arc3 and arc5 are a reduction in chloroplast number and an increase in chloroplast size in mesophyll cells: these changes are also observed in reduced form in the epidermal and guard cell chloroplasts of arc3 and arc5 plants. Analysis of parenchyma sheath cell chloroplasts suggests that in leaves of arc1 plants the normal developmental distinction between mesophyll and parenchyma sheath chloroplasts is perturbed. The relevance of these findings to the analysis of the control of chloroplast division in mesophyll cells is discussed.  相似文献   

15.
We examined the effects of phosphate enrichment on chloroplasts of the unicellular green alga Nannochloris bacillaris Naumann. The doubling time of cells was similar in phosphate‐limited (no β‐glycerophosphate) and phosphate‐enriched (2 mM β‐glycerophosphate) media. The lengths of cells and chloroplasts were similar, regardless of phosphate concentration. The relationship between the ring formation of the prokaryote‐derived chloroplast division protein FtsZ and phosphate concentration was examined using indirect fluorescent antibody staining. The number of FtsZ rings increased as the phosphate concentration of the medium increased. Multiple FtsZ rings were formed in cells in phosphate‐enriched medium; up to six FtsZ rings per chloroplast were observed. The number of FtsZ rings increased as the chloroplast grew. The FtsZ ring located near the center of the chloroplast had the strongest fluorescence. The FtsZ ring at the relative center of all FtsZ rings was used for division. Plastid division rings did not multiply in phosphate‐enriched culture. The chloroplast DNA content was 2.3 times greater in phosphate‐enriched than in phosphate‐limited culture and decreased in cells cultured in phosphate‐enriched medium containing 5‐fluorodeoxyuridine (FdUr). In the presence of FdUr, only one FtsZ ring formed, even under phosphate enrichment. This finding suggests that excessive chloroplast DNA replication induces multiple FtsZ ring formation in phosphate‐enriched culture. We propose a multiple FtsZ ring formation model under phosphate enrichment.  相似文献   

16.
Summary The potential of tuber disc culture for chromosome doubling was investigated in somaclonal populations of four dihaploid genotypes and one tetraploid cultivar of potato (Solanum tuberosum). Laser scanning confocal microscopy (LSCM) was used for rapid determination of the ploidy level based on the number of chloroplasts in stomatal guard cells of leaves. Factorial analysis of chloroplast number in 58 clones and two leaf types showed that somaclones were clearly divided in two groups. Clones with 5–7 chloroplasts per cell as observed in tuber derived diploid controls were classified as 2X (not doubled), while those with 9–14 chloroplasts resembled the tuber derived tetraploid controls and were considered 4X (doubled). A high frequency of spontaneous chromosome doubling, 42% – 50%, was detected in 3 dihaploid genotypes, whereas no doubling was observed in one of the dihaploids as well as the tetraploid cultivar Yukon Gold. Effects of leaf type on chloroplast number was also significant. The middle leaf showed significantly higher chloroplast number than the younger leaves.  相似文献   

17.
Recent studies of transgenic poplars over‐expressing the genes gsh1 and gsh2 encoding γ‐glutamylcysteine synthetase (γ‐ECS) and glutathione synthetase, respectively, provided detailed information on regulation of GSH synthesis, enzymes activities and mRNA expression. In this experiment, we studied quantitative parameters of leaves, assimilating tissues, cells and chloroplasts, mesophyll resistance for CO2 diffusion, chlorophyll and carbohydrate content in wild‐type poplar and transgenic plants over‐expressing gsh1 in the cytosol after 3 years of growth in relatively clean (control) or heavy metal‐contaminated soil in the field. Over‐expression of gsh1 in the cytosol led to a twofold increase of intrafoliar GSH concentration and influenced the photosynthetic apparatus at different levels of organisation, i.e., leaves, photosynthetic cells and chloroplasts. At the control site, transgenic poplars had a twofold smaller total leaf area per plant and a 1.6‐fold leaf area per leaf compared to wild‐type controls. Annual aboveground biomass gain was reduced by 50% in the transgenic plants. The reduction of leaf area of the transformants was accompanied by a significant decline in total cell number per leaf, indicating suppression of cell division. Over‐expression of γ‐ECS in the cytosol also caused changes in mesophyll structure, i.e., a 20% decrease in cell and chloroplast number per leaf area, but also an enhanced volume share of chloroplasts and intercellular airspaces in the leaves. Transgenic and wild poplars did not exhibit differences in chlorophyll and carotenoid content of leaves, but transformants had 1.3‐fold fewer soluble carbohydrates. Cultivation on contaminated soil caused a reduction of palisade cell volume and chloroplast number, both per cell and leaf area, in wild‐type plants but not in transformants. Biomass accumulation of wild‐type poplars decreased in contaminated soil by more than 30‐fold, whereas transformants showed a twofold decrease compared to the control site. Thus, poplars over‐expressing γ‐ECS in the cytosol were more tolerant to heavy metal stress under field conditions than wild‐type plants according to the parameters analysed. Correlation analysis revealed strong dependence of cell number per leaf area unit, chloroplast parameters and mesophyll resistance with the GSH level in poplar leaves.  相似文献   

18.
Synchronized cultures of the green alga Scenedesmus quadricauda were grown in the absence (untreated cultures) or in the presence (FdUrd-treated cultures) of 5-fluorodeoxyuridine, the specific inhibitor of nuclear DNA replication. The attainment of commitment points, at which the cells become committed to nuclear DNA replication, mitosis and cellular division, and the course of committed processes themselves were determined for cell cycle characterization. FdUrd-treated cultures showed nearly unaffected growth and attainment of the commitment points, while DNA replication(s), nuclear division(s) and protoplast fission(s) were blocked. Interestingly, the FdUrd-treated cells possessed a very high mitotic histone H1 kinase activity in the absence of any nuclear division(s). Compared with the untreated cultures, the kinase activity as well as mitotic cyclin B accumulation increased continuously to high values without any oscillation. Division of chloroplasts was not blocked but occurred delayed and over a longer time span than in the untreated culture. The FtsZ protein level in the FdUrd-treated culture did not exceed the level in the untreated culture, but rather, in contrast to the untreated culture, remained elevated. FtsZ structures were both localized around pyrenoids and spread inside of the chloroplast in the form of spots and mini-rings. The abundance and localization of the FtsZ protein were comparable in untreated and FdUrd-treated cells until the end of the untreated cell cycle. However, in the inhibitor-treated culture, the signal did not decrease and was localized in intense spots surrounding the chloroplast/cell perimeter; this was in agreement with both the elevated protein level and persisting chloroplast division.  相似文献   

19.
This paper describes the first localization of immunofluorescence of topoisomerase II in developing chloroplasts. In order to investigate the relationship between topoisomerase II and chloroplast DNA (ctDNA) replication during chloroplast development the 7-day-old wheat leaf was used. Topoisomerase II was immunolabelled and fluorescein tagged and the ctDNA simultaneously stained with 4,6-diamidino-2-phenylindole (DAPI) in the same sections. Topoisomerase II was detected at every stage of chloroplast development and maximal levels of topoisomerase II were found in chloroplasts at the time of ctDNA replication. Topoisomerase II was localized around the plastid periphery, exactly mirroring the position of the ctDNA. After chloroplast division both topoisomerase II and ctDNA are seen to be restricted to small discrete areas within the plastid, but at different sites. These findings strongly suggest a role for topoisomerase II in ctDNA decatenation prior to chloroplast division.  相似文献   

20.
Changes in chloroplast number during pea leaf development   总被引:3,自引:0,他引:3  
Protoplasts were prepared from pea (Pisum sativum L.) leaves throughout development and their contents spread in a monolayer to determine the number of chloroplasts per cell. This approach permitted the rapid analysis of more than 100 cells at each stage of development. The average number of chloroplasts per cell increased from 24±10 to 64±20 during greening and expansion of the first true foliage leaves; all cells containing chloroplasts apparently increase their chloroplast number. A parallel increase in the amount of DNA per nucleus was not observed. As the leaves senesced the chloroplast number gradually decreased to 44±12. We have correlated these changes with our previous results on the percentage of chloroplast DNA per cell. Chloroplast multiplication resulted in a 2.7-fold dilution (from 272 to 102) of the number of copies of the chloroplast DNA molecule per plastid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号