首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D-amino acid oxidase (DAO) degrades the gliotransmitter D-serine, a potent endogenous ligand of N-methyl-D-aspartate type glutamate receptors. It also has been suggested that D-DOPA, the stereoisomer of L-DOPA, is oxidized by DAO and then converted to dopamine via an alternative biosynthetic pathway. Here, we provide direct crystallographic evidence that D-DOPA is readily fitted into the active site of human DAO, where it is oxidized by the enzyme. Moreover, our kinetic data show that the maximal velocity for oxidation of D-DOPA is much greater than for D-serine, which strongly supports the proposed alternative pathway for dopamine biosynthesis in the treatment of Parkinson's disease. In addition, determination of the structures of human DAO in various states revealed that the conformation of the hydrophobic VAAGL stretch (residues 47-51) to be uniquely stable in the human enzyme, which provides a structural basis for the unique kinetic features of human DAO.  相似文献   

2.
A full-length cDNA encoding D-amino acid oxidase (DAO, EC 1.4.3.3) was cloned and sequenced from the hepatopancreas of carp fed a diet supplemented with D-alanine. This clone contained an open reading frame encoding 347 amino acid residues. The deduced amino acid sequence exhibited about 60 and 19-29% identity to mammalian and microbial DAOs, respectively. The expression of full-length carp DAO cDNA in Escherichia coli resulted in a significant level of protein with DAO activity. In carp fed the diet with D-alanine for 14 days, DAO mRNA was strongly expressed in intestine followed by hepatopancreas and kidney, but not in muscle. During D-alanine administration, DAO gene was expressed quickly in hepatopancreas with the increase of DAO activity. The inducible nature of carp DAO indicates that it plays an important physiological role in metabolizing exogenous D-alanine that is abundant in their prey invertebrates, crustaceans, and mollusks.  相似文献   

3.
A cDNA encoding a homolog of mammalian serine racemase, a unique enzyme in eukaryotes, was isolated from Arabidopsis thaliana and expressed in Escherichia coli cells. The gene product, of which the amino acid residues for binding pyridoxal 5'-phosphate (PLP) are conserved in this as well as mammalian serine racemases, catalyzes not only serine racemization but also dehydration of serine to pyruvate. The enzyme is a homodimer and requires PLP and divalent cations, Ca2+, Mg2+, Mn2+, Fe2+, or Ni2+, at alkaline pH for both activities. The racemization process is highly specific toward L-serine, whereas L-alanine, L-arginine, and L-glutamine were poor substrates. The Vmax/Km values for racemase activity of L- and D-serine are 2.0 and 1.4 nmol/mg/min/mM, respectively, and those values for L- and D-serine on dehydratase activity are 13 and 5.3 nmol/mg/min/mM, i.e. consistent with the theory of racemization reaction and the specificity of dehydration toward L-serine. Hybridization analysis showed that the serine racemase gene was expressed in various organs of A. thaliana.  相似文献   

4.
D-Amino acid oxidase (DAAO) has been proposed to be involved in the oxidation of D-serine, an allosteric activator of the NMDA-type glutamate receptor in the brain, and to be associated with the onset of schizophrenia. The recombinant human DAAO was expressed in Escherichia coli and was isolated as an active homodimeric flavoenzyme. It shows the properties of the dehydrogenase-oxidase class of flavoproteins, possesses a low kinetic efficiency, and follows a ternary complex (sequential) kinetic mechanism. In contrast to the other known DAAOs, the human enzyme is a stable homodimer even in the apoprotein form and weakly binds the cofactor in the free form.  相似文献   

5.
Single unit extracellular recordings from dorsal horn neurons were performed with glass micropipettes in pentobarbital-anesthetized rats. A total of 60 wide dynamic range (WDR) neurons were obtained from 34 rats. In normal rats (20/34), spinally administered D-serine (10 nmol), a putative endogenous agonist of glycine site of NMDA receptors, significantly enhanced the C- but not Abeta-, and Adelta-fiber responses of WDR neurons in the spinal dorsal horn. When 1 nmol of the glycine site antagonist 7-chlorokynurenic acid (7-CK) was co-administered with 10 nmol D-serine, the facilitation of D-serine on C-fiber response was completely blocked. 7-CK (1 nmol) alone failed to influence Abeta-, Adelta-, and C-fiber responses of WDR neurons. In contrast, in carrageenan-injected rats (14/34), 10 nmol D-serine had no effect on C-fiber response, while 1 nmol 7-CK per se markedly depressed C-fiber response of WDR neurons. These findings suggest that under physiological conditions, glycine sites in the spinal cord were available but became saturated following peripheral inflammation. Thus, increased endogenous d-serine or glycine may be involved in nociceptive transmission by modulating NMDA receptor activities. The glycine site of NMDA receptors may become a target for the prevention of inflammatory pain.  相似文献   

6.
d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor, plays an important role in mammalian brain neurotransmission, via the NMDA receptor. d-Serine is synthesized from l-serine by the pyridoxal-5′ phosphate-dependent enzyme serine racemase (SRR), and d-serine is metabolized by d-amino acid oxidase (DAAO). In this study, we measured levels of the neurotransmission related amino acids, d-serine, l-serine, glycine, glutamine and glutamate in the frontal cortex, hippocampus, striatum and cerebellum as well as in peripheral tissues of blood, heart, pancreas, spleen, liver, kidney, testis, epididymis, heart, lung, muscle and eyeball, in wild-type (WT) and Srr-knockout (Srr-KO) mice. Levels of d-serine in the frontal cortex, hippocampus, and striatum of Srr-KO mice were significantly lower than in WT mice, while levels in the cerebellum stayed the same. In contrast, levels of l-serine, glycine, glutamine and glutamate remained the same in all tested brain regions. In vivo microdialysis using free-moving mice showed that extracellular levels of d-serine in the hippocampus of Srr-KO mice were significantly lower than in WT mice while the other amino acid levels remained the same between mice. In peripheral organs, levels of d-serine in the kidney, testis, and muscle of Srr-KO mice were significantly lower than in WT mice. Tissue levels of the other tested amino acids in peripheral organs were not altered. These results suggest that SRR is the major enzyme responsible for d-serine production in the mouse forebrain, and that other pathways of d-serine production may exist in the brain and peripheral organs.  相似文献   

7.
Tsai YC  Chou YC  Wu AB  Hu CM  Chen CY  Chen FA  Lee JA 《Life sciences》2006,78(12):1385-1391
In researches of ketone bodies, D-3-hydroxybutyrate (D-3HB) is usually the major one which has been investigated; in contrast, little attention has been paid to L-3-hydroxybutyrate (L-3HB), because of its presence in trace amounts, its dubious metabolism, and a lack of knowledge about its sources. In the present study we determined the distributions of enantiomers of 3-hydroxybutyrate (3HB) in rat brain, liver, heart, and kidney homogenates, and we found the heart homogenate contained an enriched amount of L-3HB (37.67 microM/mg protein) which generated a significant ratio of 66/34 (D/L). The ratio was altered to be 87/13 in the diabetic rat heart homogenate. We subsequently found this changed ratio of D/L-3HB may contribute to reduce glucose utilization in cardiomyocytes. Glucose utilization by cardiomyocytes with 5 mM of D-3HB was decreased to 61% of the control, but no interference was observed when D-3HB was replaced with L-3HB, suggesting L-3HB is not utilized for the energy fuel as other ketone bodies are. In addition, the reduced glucose utilization caused by D-3HB gradually recovered in a dose-dependent manner with administration of additional L-3HB. The results gave the necessity of taking L-3HB together with D-3HB into account with regard to glucose utilization, and L-3HB may be a helpful substrate for improving inhibited cardiac pyruvate oxidation caused by hyperketonemia.  相似文献   

8.
We found that as a result of d-lactate uptake and metabolism by Jerusalem artichoke mitochondria, reducing equivalents were exported from the mitochondrial matrix to the exterior in the form of malate. The rate of malate efflux, as measured photometrically using NADP+ and malic enzyme, depended on the rate of transport across the mitochondrial membrane. It showed saturation characteristics (K(m) = 5 mM; V(max) = 9 nmol/min mg of mitochondrial protein) and was inhibited by non-penetrant compounds. We conclude that reducing equivalent export from mitochondria is due to the occurrence of a putative d-lactate/malate antiporter which differs from other mitochondrial carriers, as shown by the different inhibitor sensitivity.  相似文献   

9.
Free neutral D-amino acids have previously been detected in human plasma, usually accounting for less than 2% of the total free amino acid concentration (D-amino acid ratio) [Nagata, Y., Masui, R., Akino, T., 1992a. The presence of free D-serine, D-alanine and D-proline in human plasma. Experientia 48, 986-988. Nagata, Y., Yamamoto, K., Shimojo, T., 1992b. Determination of D- and L-amino acids in mouse kidney by high-performance liquid chromatography. Journal of Chromatography 575, 147-152. Nagata, Y., Yamamoto, K., Shimojo, T., Konno, R., Yasumura, Y., Akino, T., 1992c. The presence of free D-alanine, D-proline and D-serine in mice. Biochimca et Biiophysica Acta 1115, 208-211]. In the present study to search for the source of free D-amino acids, D- and L-enantiomers of the major non-essential amino acids, i.e., the free form of serine, alanine, proline, aspartate and glutamate were analyzed by HPLC in human saliva, submandibular glands and oral epithelial cells. The D-enantiomer ratios to total of free alanine or proline were 35% and 20%, respectively, in saliva. The ratios of the other D-amino acids were less than 11%. The effect of ingested food and oral bacteria on the saliva amino acid levels was suggested to be insignificant. D-Alanine and d-aspartate were also detected in the submandibular gland in ratios up to 5%, and D-alanine and d-proline were found in oral epithelial cells in ratios of 18% and 5%, respectively. The submandibular gland and oral epithelial cells are suggested to be possible sources of the saliva D-alanine and D-aspartate.  相似文献   

10.
Phosphatidylserine (PS), a relatively abundant component of mammalian cell membranes, plays important roles in biological processes including apoptosis and cell signaling. It is believed that phosphatidyl-l-serine is the only naturally occurring PS. Here, we describe for the first time the occurrence of phosphatidyl-d-serine (d-PS) in rat cerebrum. Quantitative HPLC analysis of the derivatives of serine liberated from PS by hydrolysis revealed that the amount of d-PS was approximately 1% of the total PS in the cerebrum. Enzymatic cleavage of cerebrum PS with phospholipase D and phospholipase C resulted in the release of both isomers of serine and phosphoserine, respectively, providing additional evidence for the existence of d-PS. Free d-serine was incorporated into PS in an in vitro system using a cerebrum extract, and this activity was inhibited by EDTA, suggesting the occurrence of a divalent cation-dependent enzyme that synthesizes d-PS by a base-exchange reaction.  相似文献   

11.
The hyperthermophilic archaeon Sulfolobus solfataricus metabolises glucose and galactose by a 'promiscuous' non-phosphorylative variant of the Entner-Doudoroff pathway, in which a series of enzymes have sufficient substrate promiscuity to permit the metabolism of both sugars. Recently, it has been proposed that the part-phosphorylative Entner-Doudoroff pathway occurs in parallel in S. solfataricus as an alternative route for glucose metabolism. In this report we demonstrate, by in vitro kinetic studies of D-2-keto-3-deoxygluconate (KDG) kinase and KDG aldolase, that the part-phosphorylative pathway in S. solfataricus is also promiscuous for the metabolism of both glucose and galactose.  相似文献   

12.
Melting behaviour of D-sucrose, D-glucose and D-fructose   总被引:1,自引:0,他引:1  
The melting behaviour of d-sucrose, d-glucose and d-fructose was studied. The melting peaks were determined with DSC and the start of decomposition was studied with TG at different rates of heating. In addition, melting points were determined with a melting point apparatus. The samples were identified as d-sucrose, alpha-d-glucopyranose and beta-d-fructopyranose by powder diffraction measurements. There were differences in melting between the different samples of the same sugar and the rate of heating had a remarkable effect on the melting behaviour. For example, T(o), DeltaH(f) and T(i) (initial temperature of decomposition) at a 1 degrees Cmin(-1) rate of heating were 184.5 degrees C, 126.6Jg(-1) and 171.3 degrees C for d-sucrose, 146.5 degrees C, 185.4Jg(-1) and 152.0 degrees C for d-glucose and 112.7 degrees C, 154.1Jg(-1) and 113.9 degrees C for d-fructose. The same parameters at 10 degrees Cmin(-1) rate of heating were 188.9 degrees C, 134.4Jg(-1) and 189.2 degrees C for d-sucrose, 155.2 degrees C, 194.3Jg(-1) and 170.3 degrees C for d-glucose and 125.7 degrees C, 176.7Jg(-1) and 136.8 degrees C d-fructose. At slow rates of heating, there were substantial differences between the different samples of the same sugar. The melting point determination is a sensitive method for the characterization of crystal quality but it cannot be used alone for the identification of sugar samples in all cases. Therefore, the melting point method should be validated for different sugars.  相似文献   

13.
The protective effect of dietary l-glutamine against the hepatotoxic action of d-galactosamine (GalN) was investigated by model experiments with rats. Rats fed with 20% casein diets containing 10% free amino acids were injected with GalN, and the serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase activities and the hepatic glycogen content were assayed 20 hours after the injection. These enzyme activities in the group fed with the 10% l-glutamine diet for 8 days were lower than those in the groups fed with the control, 10% l-glutamic acid and 10% l-alanine diets for 8 days. The more prolonged the feeding period with the 10% l-glutamine diet was, the more the serum activity levels of such enzymes were decreased. Although neomycin also lowered these enzyme activities, its simultaneous ingestion with neomycin did not show any additive or synergistic effect. The hepatic glycogen content in the 10% glutamine group still remained high after the GalN treatment. It is therefore assumed that the effectiveness of glutamine intake would have been mediated by glycogen metabolism rather than by uridine metabolism.  相似文献   

14.
A column-switching chiral HPLC system for the determination of minute amounts of D-Ala in mammalian tissues has been established. D-Ala and its L-enantiomer are purified as a DL mixture on a micro-ODS column after precolumn fluorescence derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole and are introduced to a chiral column to determine each enantiomer. The calibration curve of D-Ala spiked into a rat cerebellum sample is linear from 5 to 5000 fmol with a correlation coefficient of 1.0000. The lower limit of quantitation of D-Ala is 5 fmol (S/N=5). Within-day and day-to-day precisions of spiked D-Ala (15 fmol) are 3.9 and 4.8% (R.S.D), respectively. With this system, the anatomical distribution of free D-Ala in the rat central nervous system and periphery has been investigated. Among the 22 examined tissues of the rat, the highest amount of D-Ala has been observed in the anterior pituitary gland (86.4+/-9.9 nmol/g wet tissue), and the second highest amount has been observed in the pancreas (29.2+/-5.0 nmol/g wet tissue). Postnatal and day-night changes in D-Ala amounts in the anterior pituitary gland have also been studied. The amount of D-Ala is highest at 6 weeks of age and significantly decreases with age, and the amount of D-Ala is significantly higher during the daytime than during the nighttime.  相似文献   

15.
Protein l-isoaspartyl/d-aspartyl o-methyltransferase (PIMT) is a widely expressed protein repair enzyme that restores isomerized aspartyl residues to their normal configuration. Current methods for measuring PIMT activity have limited sensitivity or require radioactivity. We have developed a highly sensitive new assay method to measure PIMT activity in cell lysates. As a substrate, we used a fluorescently labeled delta sleep-inducing peptide (DSIP) that contains an isoaspartyl residue: 7-nitro-2,1,3-benzoxadiazole (NBD)-DSIP(isoAsp). The PIMT-catalyzed transfer of a methyl group onto this substrate can be detected with a simple high-performance liquid chromatography (HPLC) procedure. After the enzyme reaction, the methylated form of the peptide is stable and can be reproducibly separated from the unmethylated form in an acidic solvent and fluorometrically detected by HPLC. The limit of detection was estimated to be approximately 1 pmol of NBD-DSIP(isoAsp) (signal/noise ratio [S/N] = 3), and the quantitation limit of the activity was approximately 18 μg of total cell lysate from HEK293 cells (10.7 pmol/min/mg protein). This assay method is sensitive enough to detect PIMT activity in biological samples without the use of radioisotopes, offering significant advantages over previously reported methods.  相似文献   

16.
17.
In previous studies [FEBS Lett. 434 (1998) 231, Arch. Biochem. Biophys. 404 (2002) 92], we demonstrated for the first time that D-aspartate (D-Asp) is synthesized in cultured mammalian cell lines, such as pheochromocytoma 12 (PC12) and its subclone, MPT1. Our current focus is analysis of the dynamics of D-Asp homeostasis in these cells. In this communication, we show that L-glutamate (Glu) and L-Glu transporter substrates in the extracellular space regulate the homeostasis of endogenous D-Asp in MPT1 cells. D-Asp is apparently in dynamic homeostasis, whereby endogenous D-Asp is constantly released into the extracellular space by an undefined mechanism, and continuously and intensively taken up into cells by an L-Glu transporter. Under these conditions, L-Glu and its transporter substrates in the medium may competitively inhibit the uptake of D-Asp via the transporter, resulting in accumulation of the amino acid in the extracellular space. We additionally demonstrate that DL-TBOA, a well-established L-Glu transporter inhibitor, is taken up by the transporter during long time intervals, but not on a short time-scale.  相似文献   

18.
d-Galactosamine (GalN) induces acute hepatitis in experimental animals and this hepatitis has been shown to be suppressed by preceding ingestion of amino acids such as Gly, l-Ser, and l-Gln. However, little is known about the mechanism of its action. The present study shows for the first time that IL-18 reduction is involved in the suppressive actions of l-Gln and l-Ser on GalN-induced hepatitis. Elevation of IL-18 mRNA expression in liver and its concentration in serum in GalN-treated rats were found to be suppressed by preceding ingestion of 10% l-Gln- or 10% l-Ser diets, and resulted in the attenuation of the increase in serum transaminase (ALT and AST) activities, indexes of hepatic injury. These results suggest that suppressive effects of some dietary amino acids on the GalN-induced hepatitis are mediated by IL-18 reduction.  相似文献   

19.
S. Asakura  Dr. R. Konno 《Amino acids》1997,12(3-4):213-223
Summary Urine of ddY/DAO mice lackingd-amino-acid oxidase contained 5.7 times more serine than that of normal ddY/DAO+ mice. Most of the serine wasd-isomer. The origin of thisd-serine was examined. Oral administration of 0.02% amoxicillin and 0.004% minocycline to the ddY/ DAO- mice for 7 days did not reduce the urinaryd-serine, indicating that thed-serine was not of intestinal bacterial origin. When the mouse diet was changed to one with different compositions, the urinaryd-serine was considerably reduced. Furthermore, starvation of the ddY/DAO- mice for 24 hours reduced the urinaryd-serine to 33% of the original level. These results indicate that most of the urinaryd-serine comes from the diet. However, the urine of the starved ddY/DAO- mice still contained 4.6 times mored-serine than that of the ddY/DAO+ mice, suggesting a part of the D-serine have an endogenous origin.  相似文献   

20.
High doses of diazepam (10.0-20.0 mg/kg) were shown to reduce the volume of acute inflammatory paw edema in rats as a response to carrageenan administration. This effect was attributed to an action of diazepam on the peripheral-type benzodiazepine receptor (PBR) present in the adrenal and/or immune/inflammatory cells. The present study was undertaken to analyze the involvement of nitric oxide (NO) on the effects of diazepam on carrageenan-induced paw edema in rats (CIPE) and to look for the presence of PBR and inducible/constitutive NO synthases (NOS) on slices taken from the inflamed paws of diazepam-treated rats. For that, an acute inhibition of NO biosynthesis was achieved using 50.0 mg/kg No mega-nitro-L-arginine (L-NAME), L-arginine (300.0 mg/kg), the true precursor of NO, and D-arginine (300.0 mg/kg), its false substrate, were also used. The following results were obtained: (1) diazepam (10.0 and 20.0 mg/kg) decreased CIPE values in a dose- and time-dependent way; (2) diazepam effects on CIPE were increased by L-NAME pretreatment; (3) treatment with L-arginine but not with D-arginine reverted at least in part the decrements of CIPE values observed after diazepam administration; (4) PBR were found in endothelial and inflammatory cells that migrated to the inflammatory site at the rat paw; (5) confocal microscopy showed the presence of both PBR and NOS in endothelial and inflammatory cells taken from inflamed paw tissues of rats treated with diazepam a finding not observed in tissues provided from rats treated with diazepam's control solution. These results suggest an important role for NO on the effects of diazepam on CIPE. Most probably, these effects reflect a direct action of diazepam on PBR present in the endothelium of the microvascular ambient and/or on immune/inflammatory cells. An action like that would lead, among other factors, to a decrease in NO, generated by NO synthase, and thus in the mechanisms responsible for CIPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号