首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of human low density lipoprotein (LDL) receptors was studied by immunofluorescence and immunoelectron microscopy in epithelial cells of transgenic mice that express high levels of receptors under control of the metallothionein-I promoter. In hepatocytes and intestinal epithelial cells, the receptors were confined to the basal and basolateral surfaces, respectively. Very few LDL receptors were present in coated pits or intracellular vesicles. In striking contrast, in the epithelium of the renal tubule the receptors were present on the apical (lumenal) surface where they appeared to be concentrated at the base of microvilli and were abundant in vesicles of the endocytic recycling pathway. Intravenously administered LDL colloidal gold conjugates bound to the receptors on hepatocyte microvilli and were slowly internalized, apparently through slow migration into coated pits. We conclude that (a) sorting of LDL receptors to the surface of different epithelial cells varies with each tissue; and (b) in addition to a signal for clustering in coated pits, the LDL receptor may contain a signal for retention in noncoated membrane that is manifest in hepatocytes and intestinal epithelial cells, but not in renal epithelial cells or cultured human fibroblasts.  相似文献   

2.
Lipoprotein lipase (LPL), the major enzyme responsible for the hydrolysis of circulating lipoprotein triglyceride molecules, is synthesized in myocytes and adipocytes but functions while bound to heparan sulfate proteoglycans (HSPGs) on the luminal surface of vascular endothelial cells. This requires transfer of LPL from the abluminal side to the luminal side of endothelial cells. Studies were performed to investigate the mechanisms of LPL transcytosis using cultured monolayers of bovine aortic endothelial cells. We tested whether HSPGs and members of the low density lipoprotein (LDL) receptor superfamily were involved in transfer of LPL from the basolateral to the apical side of cultured endothelial cells. Heparinase/heparinitase treatment of the basolateral cell surface or addition of heparin to the basolateral medium decreased the movement of LPL. This suggested a requirement for HSPGs. To assess the role of receptors, we used either receptor-associated protein, the 39-kDa inhibitor of ligand binding to the LDL receptor-related protein and the very low density lipoprotein (VLDL) receptor, or specific receptor antibodies. Receptor-associated protein reduced (125)I-LPL and LPL activity transfer across the monolayers. When the basolateral surface of the cells was treated with antibodies, only anti-VLDL receptor antibodies inhibited transcytosis. Moreover, overexpression of the VLDL receptor using adenoviral-mediated gene transfer increased LPL transcytosis. Thus, movement of active LPL across endothelial cells involves both HSPGs and VLDL receptor.  相似文献   

3.
The uptake and transport of cholesterol-carrying low density lipoprotein (LDL) by the arterial wall is a continuous dynamic process, contributing to the cholesterol homeostasis in the plasma and in the cellular components of the vessel wall. Upon exposure to endothelial cells (EC), LDL interacts in part, with specific surface receptors (LDL-R). In this study we questioned: (i) the distribution of LDL receptors on the apical and basal cell membranes in endothelial cells; (ii) the role of LDL receptors in the control of cholesterol homeostasis and (iii) the translocation of LDL receptor across the EC. To this purpose bovine aortic EC were cultured on filters in a double-chamber system, in Dulbecco's medium supplemented either with 10% fetal calf serum (FCS) or with 10% lipoprotein-deficient serum (LPDS). The cells were exposed for 3h to 13H]acetate (40 microCi) added to both compartments of the cell culture inserts. The newly synthesized [3H]cholesterol was detected by thin layer chromatography and quantified by liquid scintillation counting. The LDL-R were detected in EC protein homogenates by immunoblotting using a monoclonal antibody against LDL-R (IgG-C7); the intracellular pathway of LDL-R was examined by electron microscopy using a complex made of protein A 5 nm or 20 nm colloidal gold particles and an anti-LDL receptor antibody (Au-PA-C7). To evaluate the distribution and the transport of LDL-R from one cell surface to the other, EC grown in LPDS were radioiodinated either on the apical or on the basolateral surface, incubated on the same surface with LDL, and subsequently biotinylated on the opposite non-radiolabeled surface. The EC were further solubilized and the protein extract immunoprecipitated with anti-LDL-R antibody or with mouse IgG (as control). The eluted antigen-antibody complexes were precipitated with streptavidin-agarose beads, solubilized, and subjected to SDS-PAGE. The results showed that: (a) the LDL-R were present on both endothelial cell fronts; (b) using the complex Au-PA-C7, the LDL-R were localized in endothelial plasmalemmal vesicles as well as coated pits and coated vesicles in multivesicular bodies and lysosomes, irrespective of the cell surface exposed to the complex; (c) biochemical assays indicated that upon ligand binding, the LDL-R were translocated preferentially from the apical to the basal plasma membrane.  相似文献   

4.
Though a mouse.human-human heterohybridoma, N12-16.63, secreting an antitetanus toxoid human monoclonal antibody grew well in a serum-free medium, its high producing subclone N12-69 required SSGF-I, a low density lipoprotein (LDL) from swine serum, or human-LDL (h-LDL) for growth. The growth-promoting action of SSGF-I was caused by its lipid fraction, and SSGF-I could be replaced completely with cholesterol in the presence of bovine serum albumin (BSA). Thus, cell line N12-69 is a cholesterol auxotroph of the heterohybridoma. N12-69 cells express both mouse and human LDL receptors on the cell surface in a ratio of 1:4. SSGF-I bound to both receptors with the same binding affinity, and h-LDL was also take up by the same receptors, though the affinity constant of the receptors for SSGF-I was 1.5 times stronger than that for h-LDL. The growth of N12-69 cells was completely inhibited by the addition of dextran sulfate, which is known to inhibit the binding of LDL to LDL receptors, to an SSGF-I or h-LDL containing medium but was not inhibited at all when dextran sulfate was added to a serum-free medium supplemented with cholesterol and BSA. Furthermore, an anti-human LDL receptor monoclonal antibody partially inhibited the growth of N12-69 cells in an SSGF-I or h-LDL containing medium. These findings suggest that N12-69 cells express both biologically active mouse and human LDL receptors on their cell surfaces and that SSGF-I or h-LDL is taken up by the both receptors to be utilized as a cholesterol source for the growth.  相似文献   

5.
Recent experiments suggest that low density lipoprotein (LDL) receptors on human fibroblasts are not inserted into the plasma membrane uniformly, as earlier experiments indicated, but are inserted into specialized regions, called plaques, where coated pits form. If the consequent reduction in the time required for LDL receptors to diffuse to coated pits were significant, this could alter conclusions drawn from previous calculations based on the assumption that LDL receptors are inserted uniformly. In particular, the conclusion could be wrong that diffusion of LDL receptors to coated pits is the rate limiting step in the interaction of cell surface LDL receptors with coated pits. Here we calculate the extent of the reduction in mean travel time of an LDL receptor to a coated pit, as a function of the plaque radius. We find that only if LDL receptor insertion is limited to a very small portion of the plasma membrane near coated pit sites is there a substantial decrease in the average time it would take an LDL receptor to diffuse to a coated pit. In order for preferential insertion of LDL receptors into plaques to cut the mean receptor travel time in half, plaques would have to take up no more than 10% of the cell surface area; to reduce the travel time by a factor of 10 plaques would have to cover only 2% of the cell surface, approximately twice the area covered by coated pits at 37°C.  相似文献   

6.
The effects of the acidotropic agent, NH4Cl, on the recycling and turnover of low density lipoprotein (LDL) receptors were analyzed in human skin fibroblasts using ligand binding assays, [35S]methionine pulse-chase experiments, and electron microscopy. NH4Cl did not prevent receptor internalization but caused a marked redistribution of LDL receptors to intracellular sites (endosomes) that was completely dependent on the presence of apolipoprotein-B- or -E-containing ligands. Maximal inhibition of recycling was observed at LDL concentrations that only partially saturated receptors, suggesting that the receptors function as oligomers. In contrast, full receptor occupancy by the multivalent, apolipoprotein-E-containing beta-very low density lipoprotein was required for the same effect. The intracellular accumulation was reversible and the majority of receptors returned to the cell surface when NH4Cl was removed after short treatments. The rate of degradation of LDL receptors was greatly accelerated in the presence of NH4Cl and ligand, with a t1/2 of about 2 h (approximately 6 times faster than receptor degradation in the absence of NH4Cl). Neither the redistribution nor the accelerated loss of immunoprecipitable LDL receptors was observed in an LDL receptor internalization-defective mutant cell line. We conclude that NH4Cl inhibited the recycling specifically of occupied receptors, thereby accelerating their degradation, probably in endosomes.  相似文献   

7.
Familial hypercholesterolemia (FH) is a congenital disorder of plasma low density lipoprotein (LDL) metabolism resulting from the defect or malfunction of LDL receptors on the cell surface. In most cases of FH, LDL binding to the cell surface is disrupted, while in some special cases LDL binding to the receptors occurs normally but the internalization of the bound LDL is inhibited (internalization-defective type). We studied the biosynthesis and transport of the LDL receptor in cultured fibroblasts obtained from one of the internalization-defective mutants by using [35S]methionine labeling and detection with anti-LDL receptor antibody. The mutant cells synthesized LDL receptors with a molecular weight slightly smaller than normal as shown in SDS-polyacrylamide gel electrophoresis. A large portion of the synthesized receptors was secreted into the medium while the other portion was associated with the cells. The apparent molecular weight of the receptors secreted into the medium was about 10 kDa smaller than that of the cell-associated receptors. The cell-associated form was converted into the secreted form following a prolonged incubation of the cells, showing the precursor-product relationship between the cell-associated and the secreted forms.  相似文献   

8.
Recent experiments suggest that low density lipoprotein (LDL) receptors on human fibroblasts are not inserted into the plasma membrane uniformly, as earlier experiments indicated, but are inserted into specialized regions, called plaques, where coated pits form. If the consequent reduction in the time required for LDL receptors to diffuse to coated pits were significant, this could alter conclusions drawn from previous calculations based on the assumption that LDL receptors are inserted uniformly. In particular, the conclusion could be wrong that diffusion of LDL receptors to coated pits is the rate limiting step in the interaction of cell surface LDL receptors with coated pits. Here we calculate the extent of the reduction in mean travel time of an LDL receptor to a coated pit, as a function of the plaque radius. We find that only if LDL receptor insertion is limited to a very small portion of the plasma membrane near coated pit sites is there a substantial decrease in the average time it would take an LDL receptor to diffuse to a coated pit. In order for preferential insertion of LDL receptors into plaques to cut the mean receptor travel time in half, plaques would have to take up no more than 10% of the cell surface area; to reduce the travel time by a factor of 10, plaques would have to cover only 2% of the cell surface, approximately twice the area covered by coated pits at 37 degrees C.  相似文献   

9.
Stimulation of the proliferation of human skin fibroblasts by platelet-derived growth factor increased the binding and degradation of low-density lipoproteins at cell densities of 2000-30,000 cells/cm2. Binding and degradation of low-density lipoprotein was an inverse function of cell density in both proliferating and quiescent cells, indicating that the effect of cell density on the LDL receptor has proliferation-dependent and proliferation-independent components. The effect of medium conditioned by confluent fibroblasts on LDL metabolism was tested to determine if the effects of cell density on LDL metabolism might be mediated by cellular secretion products. Fibroblast-conditioned medium increased LDL metabolism, suggesting secretion products do not mediate these effects of cell density. These data indicate that regulation of the low-density lipoprotein receptor is not a simple on/off response to growth stimulation, but is responsive to extracellular cues such as cell density.  相似文献   

10.
ARH is an adaptor protein required for efficient endocytosis of low density lipoprotein (LDL) receptors (LDLRs) in selected tissues. Individuals lacking ARH (ARH-/-) have severe hypercholesterolemia due to impaired hepatic clearance of LDL. Immortalized lymphocytes, but not fibroblasts, from ARH-deficient subjects fail to internalize LDL. To further define the role of ARH in LDLR function, we compared the subcellular distribution of the LDLR in lymphocytes from normal and ARH-/- subjects. In normal lymphocytes LDLRs were predominantly located in intracellular compartments, whereas in ARH-/- cells the receptors were almost exclusively on the plasma membrane. Biochemical assays and quantification of LDLR by electron microscopy indicated that ARH-/- lymphocytes had >20-fold more LDLR on the cell surface and a approximately 27-fold excess of LDLR outside of coated pits. The accumulation of LDLR on the cell surface was not due to failure of receptors to localize in coated pits since the number of LDLRs in coated pits was similar in ARH-/- and normal cells. Despite the dramatic increase in cell surface receptors, LDL binding was only 2-fold higher in the ARH-/- lymphocytes. These findings indicate that ARH is required not only for internalization of the LDL.LDLR complex but also for efficient binding of LDL to the receptor and suggest that ARH stabilizes the associations of the receptor with LDL and with the invaginating portion of the budding pit, thereby increasing the efficiency of LDL internalization.  相似文献   

11.
The distribution of low density lipoprotein (LDL) receptors marked with colloidal gold-conjugated low density lipoproteins has been mapped on the surfaces of cultured human skin fibroblasts and bovine aortic endothelial cells viewed whole in the transmission electron microscope. A dispersed or scattered population of LDL receptors, in addition to and clearly distinct from clustered receptors was detected on the surfaces of both fibroblasts and dividing endothelial cells. No LDL receptors could be detected on contact-inhibited endothelial cells. Clustered receptors imaged in whole-mount preparations were often arranged in rings with an approximate diameter of 250 nm. In ultra-thin sections of marked cells, clustered receptors were localised in coated pits while the few dispersed receptors seen were restricted to non-coated membrane regions. Clustered receptors often appeared localised on the rims of coated pits whose central areas were not marked. The dispersed population of receptors was usually distributed diffusely amongst the clusters on dividing endothelial cells and normal fibroblasts. Only the dispersed population appeared on LDL receptor internalisation-defective mutant fibroblasts. The marginal zones of both fibroblasts and dividing endothelial cells were populated by dispersed receptors. Clusters appeared further "inland" and were rarely seen near the cell margins. These results indicate that LDL receptors on dividing endothelial cells and fibroblasts may be dispersed on the cell surface upon or soon after their insertion during recycling.  相似文献   

12.
Apolipoprotein E plays a critical role in plasma lipoprotein clearance. Peptide models of a highly conserved, N-terminal domain of this protein have been shown to increase the binding of low density lipoprotein (LDL) to fibroblast cell surfaces independently of the low density lipoprotein receptor. Here we provide data to show that these peptides not only increase the binding of LDL, but also of high density lipoprotein, though not acetylated LDL. We also have data suggesting that this novel activity is mediated, at least in part, by a member of the scavenger receptor family, SR-AI. Furthermore, we show that this activity is also prominent in macrophages, a cell relevant to atherogenesis. In addition, this current paper provides evidence suggesting that this complex binding activity is initiated by a peptide-receptor interaction, and that our peptides are able to induce activity at physiologically relevant concentrations. This study provides evidence for a possible novel receptor interaction and further anti-atherogenic properties of apolipoprotein E and raises the possibility of a therapeutic potential of our peptide models.  相似文献   

13.
14.
Secretory products of freshly isolated human circulating blood cells such as platelets, monocytes, and B lymphocytes, but not T lymphocytes, have previously been shown to enhance low density lipoprotein (LDL) metabolism by arterial wall cells. This study was undertaken to evaluate how secretory factor(s) from mononuclear cells that had been stimulated by concanavalin A (Con A) alters LDL receptor activity by cultured human skin fibroblasts. Conditioned medium from Con A-stimulated mononuclear cells produced an increase of 125I-LDL degradation accompanied by increased thymidine incorporation into DNA. The effect of conditioned medium from the Con A-stimulated mononuclear cells was mediated by the LDL receptor pathway. Degradation of HDL and methylated LDL, neither of which is taken up by the classical LDL receptor pathway, was not affected. The conditioned medium from these Con A-stimulated cells also failed to stimulate fluid pinocytosis, as measured by the uptake of [14C]sucrose. Some strains of fibroblasts, deficient in LDL receptors, responded to the conditioned medium from the Con A-stimulated mononuclear cells by increasing the very small amounts of LDL degraded by these cells. Fibroblasts from other homozygous familial hypercholesterolemic cell strains were unresponsive, however. The effect on LDL receptors was characterized by an increase in LDL receptor number without a change in the affinity of LDL for its receptor. Thus stimulated mononuclear cells secrete mitogens that also stimulate LDL receptor activity in human skin fibroblasts.  相似文献   

15.
Administration of estrogens in pharmacologic doses to rats and rabbits induces hepatic low-density lipoprotein (LDL) receptor activity. To determine if estrogens can regulate LDL receptor activity in human cells, 125I-LDL binding and ligand blotting studies were performed with the cell line Hep G2, well-differentiated cells derived from a human hepatoma, and with normal human fibroblasts. Addition of estradiol to Hep G2 cells growing in lipoprotein-deficient medium increased cell surface receptor activity by 141%, whereas fibroblast receptors were slightly reduced. Measurement of LDL internalization and degradation showed that estradiol induced the entire LDL receptor pathway and not simply surface receptors for LDL. Scatchard analysis of specific binding data in Hep G2 cells revealed that increased LDL receptor activity was due to high-affinity binding. When Hep G2 cells were incubated with LDL as well as estradiol, estradiol induction of LDL receptor activity did not occur. Estrogen treatment reduced Hep G2 free cholesterol content by 24% as determined by gas-liquid chromatography but had no significant effect on fibroblast free cholesterol, suggesting that estrogens may induce Hep G2 LDL receptor activity indirectly by lowering intracellular cholesterol. LDL receptor activity in Hep G2 cells grown in the absence of estradiol was resistant to down-regulation by LDL; incubation of cells with LDL for 48 h reduced receptor activity by only 25.8% in Hep G2 cells compared to 80.3% in fibroblasts. The Hep G2 LDL receptor was shown to be biochemically similar to the fibroblast receptor by ligand blotting and immunoblotting with IgG-C7, a monoclonal antibody to the extrahepatic LDL receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Lipoprotein lipase (LpL) hydrolyzes chylomicron and very low density lipoprotein triglycerides to provide fatty acids to tissues. Aside from its lipolytic activity, LpL promotes lipoprotein uptake by increasing the association of these particles with cell surfaces allowing for the internalization by receptors and proteoglycans. Recent studies also indicate that LpL stimulates selective uptake of lipids from high density lipoprotein (HDL) and very low density lipoprotein. To study whether LpL can mediate selective uptake of lipids from low density lipoprotein (LDL), LpL was incubated with LDL receptor negative fibroblasts, and the uptake of LDL protein, labeled with (125)I, and cholesteryl esters traced with [(3)H]cholesteryl oleoyl ether, was compared. LpL mediated greater uptake of [(3)H]cholesteryl oleoyl ether than (125)I-LDL protein, a result that indicated selective lipid uptake. Lipid enrichment of cells was confirmed by measuring cellular cholesterol mass. LpL-mediated LDL selective uptake was not affected by the LpL inhibitor tetrahydrolipstatin but was nearly abolished by heparin, monoclonal anti-LpL antibodies, or chlorate treatment of cells and was not found using proteoglycan-deficient Chinese hamster ovary cells. Selective uptake from HDL, but not LDL, was 2-3-fold greater in scavenger receptor class B type I overexpressing cells (SR-BI cells) than compared control cells. LpL, however, induced similar increases in selective uptake from LDL and HDL in either control or SR-BI cells, indicative of the SR-BI-independent pathway. This was further supported by ability of LpL to promote selective uptake from LDL in human embryonal kidney 293 cells, cells that do not express SR-BI. In Chinese hamster ovary cell lines that overexpress LpL, we also found that selective uptake from LDL was induced by both endogenous and exogenous LpL. Transgenic mice that overexpress human LpL via a muscle creatine kinase promoter had more LDL selective uptake in muscle than did wild type mice. In summary LpL stimulates selective uptake of cholesteryl esters from LDL via pathways that are distinct from SR-BI. Moreover this process also occurs in vivo in tissues where abundant LpL is present.  相似文献   

17.
This study characterizes the interactions of various rat and human lipoproteins with the lipoprotein cell surface receptors of rat and human cells. Iodinated rat very low density lipoproteins (VLDL), rat chylomicron remnants, rat low density lipoproteins (LDL), and rat high density lipoproteins containing predominantly apoprotein E (HDL1) bound to high affinity cell surface receptors of cultured rat fibroblasts and smooth muscle cells. Rat VLDL and chylomicron remnants were most avidly bound; the B-containing LDL and the E-containing HDL1 displayed lesser but similar binding. Rat HDL (d = 1.125 to 1.21) exhibited weak receptor binding; however, after recentrifugation to remove apoprotein E, they were devoid of binding activity. Competitive binding studies at 4 degrees C confirmed these results for normal lipoproteins and indicated that VLDL (B-VLDL), LDL, and HDLc (cholesterol-rich HDL1) isolated from hypercholesterolemic rats had increased affinity for the rat receptors compared with their normal counterparts, the most pronounced change being in the LDL. The cell surface receptor pathway in rat fibroblasts and smooth muscle cells resembled the system described for human fibroblasts as follows: 1) lipoproteins containing either the B or E apoproteins interacted with the receptors; 2) receptor binding activity was abolished by acetoacetylation or reductive methylation of a limited number of lysine residues of the lipoproteins; 3) receptor binding initiated the process of internalization and degradation of the apo-B- and apo-E-containing lipoproteins; 4) the lipoprotein cholesterol was re-esterified as determined by [14C]oleate incorporation into the cellular cholesteryl esters; and 5) receptor-mediated uptake (receptor number) was lipoprotein cholesterol. An important difference between rat and human fibroblasts was the inability of human LDL to interact with the cell surface receptors of rat fibroblasts. Rat lipoproteins did, however, react with human fibroblasts. Furthermore, the rat VLDL were the most avidly bound of the rat lipoproteins to rat fibroblasts. When the direct binding of 125I-VLDL was subjected to Scatchard analysis, the very high affinity of rat VLDL was apparent (Kd = 1 X 10(-11) M). Moreover, compared with data for rat LDL, the data suggested each VLDL particle bound to four to nine lipoprotein receptors. This multiple receptor binding could explain the enhanced binding affinity of the rat VLDL. The Scatchard plot of rat 125I-VLDL revealed a biphasic binding curve in rat and human fibroblast cells and in rat smooth muscle cells, suggesting two populations of rat VLDL. These results indicate that rat cells have a receptor pathway similar to, but not identical with, the LDL pathway of human cells. Since human LDL bind poorly to rat cell receptors on cultured rat fibroblasts and smooth muscle cells, metabolic studies using human lipoproteins in rats must be interpreted cautiously.  相似文献   

18.
Prior studies on receptor recycling through late endosomes and the TGN have suggested that such traffic may be largely limited to specialized proteins that reside in these organelles. We present evidence that efficient recycling along this pathway is functionally important for nonresident proteins. P-selectin, a transmembrane cell adhesion protein involved in inflammation, is sorted from recycling cell surface receptors (e.g., low density lipoprotein [LDL] receptor) in endosomes, and is transported from the cell surface to the TGN with a half-time of 20-25 min, six to seven times faster than LDL receptor. Native P-selectin colocalizes with LDL, which is efficiently transported to lysosomes, for 20 min after internalization, but a deletion mutant deficient in endosomal sorting activity rapidly separates from the LDL pathway. Thus, P-selectin is sorted from LDL receptor in early endosomes, driving P-selectin rapidly into late endosomes. P-selectin then recycles to the TGN as efficiently as other receptors. Thus, the primary effect of early endosomal sorting of P-selectin is its rapid delivery to the TGN, with rapid turnover in lysosomes a secondary effect of frequent passage through late endosomes. This endosomal sorting event provides a mechanism for efficiently recycling secretory granule membrane proteins and, more generally, for downregulating cell surface receptors.  相似文献   

19.
Because of very low density lipoprotein's (VLDL) potential atherogenicity and the demonstration that VLDL can bind to other cells, we examined the interaction of human VLDL with cultured porcine aortic endothelium. The lipoprotein-cell interaction had many properties similar to those seen with the binding of a ligand to a cell surface receptor. It was time and temperature dependent, saturable, and reversible. Scatchard analysis of competition data suggested that there may be more than one class of binding site. The affinity of the low affinity site was similar to that for low density lipoprotein (LDL). Also, the capacity of endothelial cells to bind VLDL was similar to that for LDL, when related to apo B (i.e., particle) concentration. Not only was unlabelled VLDL able to compete for VLDL binding sites, but so was LDL and high density lipoprotein (HDL). The maximal competition either by LDL or by HDL was less than that by VLDL. The maximal competition by HDL was more than by LDL. The VLDL binding was dependent on Ca2+. It was not changed by the content of lipoprotein in the medium in which cells were grown prior to the binding studies. These observations suggest that VLDL binding to endothelial cells is similar in some respects, but not in all, to the binding of LDL. Comparison of the data with endothelial cells to previous data with adipocytes also indicated differences between the interaction of these two cell types with VLDL. It is possible that this binding process may be involved in the formation of atherogenic remnants of triglyceride-rich lipoproteins on the endothelial surface of large blood vessels.  相似文献   

20.
《The Journal of cell biology》1993,122(6):1223-1230
Trophoblast-like BeWo cells form well-polarized epithelial monolayers, when cultured on permeable supports. Contrary to other polarized cell systems, in which the transferrin receptor is found predominantly on the basolateral cell surface, BeWo cells express the transferrin receptor at both apical and basolateral cell surfaces (Cerneus, D.P., and A. van der Ende. 1991. J. Cell Biol. 114: 1149-1158). In the present study we have addressed the question whether BeWo cells use a different sorting mechanism to target transferrin receptors to the cell surface, by examining the biosynthetic and transcytotic pathways of the transferrin receptor in BeWo cells. Using trypsin and antibodies to detect transferrin receptors at the cell surface of filter-grown BeWo cells, we show that at least 80% of newly synthesized transferrin receptor follows a direct pathway to the basolateral surface, demonstrating that the transferrin receptor is efficiently intracellularly sorted. After surface arrival, pulse-labeled transferrin receptor equilibrates between apical and basolateral cell surfaces, due to ongoing transcytotic transport in both directions. The subsequent redistribution takes over 120 min and results in a steady state distribution with 1.5-2.0 times more transferrin receptors at the basolateral surface than at the apical surface. By monitoring the fate of surface-bound 125I-transferrin, internalized either from the apical or basolateral surface transcytosis of the transferrin receptor was studied. About 15% of 125I-transferrin is transcytosed in the basolateral to apical direction, whereas 25% is transcytosed in the opposite direction, indicated that the fraction of receptors involved in transcytosis is roughly twofold higher for the apical receptor pool, as compared to the basolateral pool. Upon internalization, both apical and basolateral receptor pools become redistributed on both surfaces, resulting in a twofold higher number of transferrin receptors at the basolateral surface. Our results indicate that in BeWo cells bidirectional transcytosis is the main factor in surface distribution of transferrin receptors on apical and basolateral surfaces, which may represent a cell type-specific, post-endocytic, sorting mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号