首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The effects of intracerebroventricular administration of an 80 pmole dose of cholecystokinin octapeptide sulphate ester, unsulphated cholecystokinin octapeptide and their fragments were tested on the dopamine, norepinephrine and serotonin contents of the rat hypothalamus, mesencephalon, amygdala, septum, cerebral cortex and striatum, as well as on the plasma corticosterone level.Cholecystokinin octapeptide sulphate ester and the tyrosine-sulphate-methionine and tyrosine-sulphate-methionine-glycine fragments increased the dopamine and norepinephrine contents of the hypothalamus and mesencephalon. The same compounds increased the dopamine content of the amygdala, while they decreased the dopamine and norepinephrine concentrations in the striatum. The plasma corticosterone level was also increased. The unsulphated cholecystokinin octapeptide and its fragments had no effects on the brain monoamine contents and slight but not significant effect on the plasma corticosterone level.The data suggest that the presence of the tyrosine-sulphate-methionine dipeptide is essential in the effects of cholecystokinin octapeptide sulphate ester on the monoamine contents of different brain areas, as well as on the plasma corticosterone level.  相似文献   

2.
Various doses (0, 1, 5, 10, 15, 20, or 25 mg/kg) of methylazoxymethanol acetate (MAM), a potent alkylating agent, were injected singly into pregnant rats intraperitoneally on day 15 of gestation. Relationships between brain weights and neurochemical changes in the cerebral hemispheres (CHs; cerebral cortex and subjacent white matter, hippocampus, amygdala) and remainder of the brain (BGDM; basal ganglia, diencephalon, and mesencephalon) were examined at 60 days of age in offspring; varying degrees of microencephaly were observed. Dose-dependent reductions in the weights of CH and BGDM were observed. Reductions in total DNA content positively correlated with decreases in brain weights also observed. Dose-dependent elevations of noradrenaline (NA) and dopamine (DA) were observed in CH at MAM levels 10 mg/kg and above; dose-dependent elevations of 5-hydroxytryptamine (5-HT) were observed at 15 mg/kg and above; and in BGDM at 20 mg/kg and above dose-dependent elevations for NA and 5-HT were observed; dose-dependent elevations at 15 mg/kg and above were observed for DA. Monoamine concentrations were negatively correlated with brain weights or total DNA contents. NA and DA concentrations increased to the extent of approximately 1.3 times of control at a time when an 18% loss of CH weight was noted in animals treated with 10 mg/kg MAM. It is suggested that the above variables might be appropriately sensitive neurochemical markers for detecting minor developmental anomalies in the brain.  相似文献   

3.
The effect of endogenous and exogenous GABA on the level and turnover of noradrenaline and dopamine in the rat brain. Acta Physiol. Pol., 1978, 29 (2): 117--121. GABA administered to the lateral ventricle of the rat brain (i.v.c.) in doses of 200 and 600 microgram decreased the level of noradrenaline and had no effect on dopamine level. A similar effect was obtained after raising the level of endogenous GABA in the brain by means of intraperitoneal hydroxylamine (Hx) in doses of 50 and 75 mg/kg. It was also observed that GABA given i.v.c. in a dose of 600 mg/kg reduces the turnover of dopamine in the brain.  相似文献   

4.
Abstract— Pigeons working on a multiple lixed-ratio 50, fixed interval 10 schedule of food reinforcement were injected with l -tryptophan (300mg/kg; I.M.) and killed at various times before, during and after the period of behavioural depression following the administration of this amino acid (0, 25, 50, 90, 170 and 230 min). The levels of tryptophan, 5-hydroxytryptophan, 5-hydroxytryptamine, 5-hydroxyindoleacetic acid, tyrosine, dopamine and norepinephrine were concurrently measured in 4 specific areas of the brain (telencephalon, diencephalon plus mesencephalon, pons plus medulla-oblongata and cerebellum). The course of the increases in the level of 5-hydroxytryptamine in the telencephalon, and subsequent return to pre-injection levels, was temporally related to the onset of the decreased responding and gradual return to normal rates of responding. Changes in dopamine and norepinephrine were not correlated with the onset of and recovery from the decreased response rates. The data in this paper are discussed in terms of (a) the previously reported work with 5-hydroxytryptophan and (b) the importance of the telencephalic serotonergic system in certain types of behavioural depression.  相似文献   

5.
The action of 1.0 and 10.0 mg/kg (i.p.) of corticosterone on serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents and on serotonin turnover, measured by an MAO-inhibitor method, was studied at 30 and 120 min after administration. A 1.0 mg/kg dose of corticosterone increased the serotonin content and turnover in the hypothalamus and mesencephalon 30 min after administration; however, it was ineffective on dorsal hippocampus and frontal and parietal cortex. 5-HIAA content did not change significantly in any of the brain areas studied. A 10.0 mg/kg dose of corticosterone decreased the serotonin content and turnover in the hypothalamus and mesencephalon; it was ineffective in other brain areas investigated. 5-HIAA content significantly decreased in the hypothalamus while it increased in the mesencephalon and dorsal hippocampus. In the parietal and frontal cortex, 5-HIAA content did not change following administration of 10.0 mg/kg of corticosterone. At 120 min after corticosterone administration, neither 5-HT content and turnover nor 5-HIAA content showed any change in the brain areas investigated. The results suggest that corticosteroids might change the activity of the brain serotoninergic system in a dose- and time-dependent manner, and in this way the serotoninergic system might play an important role in mediation of the corticosteroid effect exerted on brain function.  相似文献   

6.
This study was designed to determine the role of endogenous nitric oxide (NO) in the corticotropin-releasing hormone (CRH)-induced ACTH and corticosterone secretion, as well as possible involvement of hypothalamic dopamine and noradrenaline in that secretion in conscious rats. CRH given i.p. stimulated dose-dependently the pituitary-adrenocortical activity measured 1 h later. Dexamethasone (0.2 mg/kg i.p.) injected 1 h before CRH (1 microg/kg i.p.) totally abolished the CRH-elicited ACTH and corticosterone secretion, indicating a predominantly pituitary site of CRH-evoked stimulation. L-arginine (120 mg/kg i.p.) and N(omega)-nitro-L-arginine methyl ester (L-NAME 5-10 mg/kg i.p.) did not markedly affect the basal plasma ACTH and corticosterone levels. L-NAME given 15 min before CRH markedly, but not significantly, augmented the CRH-induced ACTH response, and enhanced more potently and significantly the corticosterone response. Pretreatment with L-arginine, a substrate for NOS, slightly diminished the CRH-induced ACTH response and considerably reduced the corticosterone response. L-arginine also significantly reversed the L-NAME-evoked increase in the CRH-induced ACTH and corticosterone secretion. L-NAME did not markedly alter the CRH-induced hypothalamic dopamine and noradrenaline levels, while L-arginine significantly increased noradrenaline level. However, those alterations were not directly correlated with the observed changes in ACTH and corticosterone secretion. These results indicate that in conscious rats NO plays a marked inhibitory role in the CRH-induced ACTH secretion and inhibits more potently corticosterone secretion. Hypothalamic dopamine and noradrenaline do not seem to be directly involved in the observed alterations in ACTH and corticosterone secretion.  相似文献   

7.
The antidepressant-like effect of the hydroalcoholic extract obtained from aerial parts of Siphocampylus verticillatus, a Brazilian medicinal plant, was investigated in two models of depression in mice and against synaptosomal uptake of serotonin, noradrenaline and dopamine. The immobility times in the forced swimming test (FST) and in the tail suspension test (TST) were significantly reduced by the extract (dose range 100-1000 mg/kg, i.p.), without accompanying changes in ambulation when assessed in an open-field. In addition when given orally the extract was also effective in reducing the immobility time in the TST. The efficacy of extract in the TST was comparable to that of the tricyclic antidepressant imipramine (15 mg/kg, i.p.) and with fluoxetine (32 mg/kg, i.p.). The anti-immobility effect of the extract (600 mg/kg, i.p.) assessed in the TST was not affected by pre-treatment with naloxone (1 mg/kg, i.p., a non-selective opioid receptor antagonist) or L-arginine (750 mg/kg, i.p., a nitric oxide precursor). In contrast, the extract (600 mg/kg, i.p.) antidepressant-like effect was significantly reduced by pre-treatment of animals with p-chlorophenylalanine (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis), sulpiride (50 mg/kg, i.p., a selective D2 receptor antagonist), prazosin (62.5 microg/kg, i.p., an alpha1 adrenoreceptor antagonist) or by guanosine 5'-monophosphate (GMP, 250 mg/kg, i.p., a nucleotide known to block some actions elicited by NMDA). The biochemical data show that the extract of S. verticillatus inhibited in a graded manner the uptake of monoamines. However, at the IC50 level, the extract was approximately 3.2 to 3.4-fold more potent and also more efficacious in inhibiting the synaptosomal uptake of noradrenaline and serotonin than dopamine. Taken together these data demonstrate that the extract of S. verticillatus elicited a significant antidepressant-like effect, when assessed in the TST and FST in mice. Its action seems to involve an interaction with adrenergic, dopaminergic, glutamatergic and serotonergic systems.  相似文献   

8.
Effects of D2 dopamine receptor selective agonists: quinpirole (0.1, 0.3 and 1 mg/kg, i. p.), pergolide (0.3 mg/kg, i. p.), lisuride (0.1 mg/kg, i. p.) and antagonist raclopride (1.2 mg/kg, i. p.) on the metabolism and synthesis of DA and serotonin in the rat brain striatum and nucleus accumbens after GBL treatment were studied. GBL as well as dopamine D2 receptor selective drugs were shown not only to change neurochemical parameters of dopaminergic brain systems, but also to modulate serotonin metabolism without affecting its biosynthesis.  相似文献   

9.
Various studies have implicated the involvement of noradrenaline (NA) and/or serotonin (5-hydroxytryptamine (5-HT)) in the pathogenesis and treatment of depression. The aim of the present study was to investigate the effects of acute and 7 days of administration of desipramine, a NA re-uptake inhibitor, on the rate of 5-HT synthesis in the rat brain. The study was done by an autoradiographic method using alpha-[14C]-methyl-L-tryptophan as a tracer. The acute (10mg/kg, i.p., 2h before i.v. infusion of the tracer) or 7 days of desipramine (10mg/kg per day, i.p.) did not affect plasma tryptophan (Trp) concentrations, as compared to control (saline treated) rats. Acute treatment with desipramine decreased the rate of 5-HT synthesis in the brain regions that contain 5-HT cell bodies between 19 and 28%, and increased the rate of 5-HT synthesis in the majority of areas containing 5-HT terminals between 21 and 65%. In contrast to the acute treatment, a 7-day administration increased 5-HT synthesis rates in the dorsal raphe (24%), but decreased it in raphe magnus (35%), superior olive (45%), caudate (31%), superior (38%) and inferior (53%) colliculus, and in the auditory cortex (35%). This suggests that the effect of desipramine on 5-HT synthesis rate is time-dependent and differs in the cell bodies and structures containing 5-HT nerve terminals.  相似文献   

10.
The concentrations of dopamine (DA), 5-hydroxytryptamine (5-HT) and noradrenaline (NA) in the rat vas deferens divided in eight or four sections were determined by high performance liquid chromatography with electrochemical detection. Dopamine and NA had the same regional distribution; their concentrations were maximal near the prostatic end and decreased towards the epididymis. The concentration of 5-HT also decreased from the prostatic to the epididimal end, but 5-HT did not follow the same regional distribution as DA and NA. Reserpine (0.02 or 0.2 mg/kg, i.p., 24 hr) and 6-hydroxydopamine (2×80 mg/kg, i.v., 6 days) decreased the contents of DA and NA; the concentrations of both amines were modified to a similar extent. Reserpine also diminished the content of 5-HT. Pargyline (200 mg/kg, i.p., 2 hr) increased the concentration of 5-HT whilep-chlorophenylalanine (300 mg/kg, oral, 3 days) decreased the contents of the amine in some sections of the vas deferens. This study suggests that DA and NA co-exist in the same sympathetic neurons. Some of the 5-HT could be stored in mast cells as previously proposed, but the finding that tissue content of 5-HT changes after inhibiting the deamination or synthesis of the amine suggests that other source(s) of 5-HT distinct from mast cells exist in the rat vas deferens.  相似文献   

11.
Ochratoxin A (OA) is a mycotoxin produced by several storage fungi, such asAspergillus ochraceus and severalPenicillium species. OA (3 mg/kg) was given intraperitoneally to pregnant mice on day 11 of gestation (day 1=day of insemination), and neurochemical changes in brains of their offspring were examined at fetal and adult stages. OA treatment produced retardation of intrauterine growth as well as microencephaly and reductions in total weight and DNA content of fetal brains. Specific activities of lysosomal enzymes in fetal brains began to increase by the 2nd day after treatment and to reach peak activities by the 3rd or 4th day after injection, indicative of cell dealth in the developing brains. Examination of brain regions of offspring three months after birth revealed that both tissue weight and DNA content were reduced to 80% of control in cerebral hemispheres (CHs; cerebral cortex and subjacent white matter, hippocampus, and amygdala) and to 90% of control in remainder of the brain (BGDM; basal ganglia, diencephalon, and mesencephalon). Total content of noradrenaline (NA), dopamine (DA) 5-hydroxytryptamine (5-HT) in treated CH showed about 15% reduction, although, expressed on a tissue weight basis, concentrations of these monoamines were increased by about 15%. Total DA content in BGDM was also reduced to 85% of controls, but total content of NA and 5-HT in BGDM and pons-medulla oblongata did not change. These result suggest that synaptogenesis of monoamine neurons in the cerebrum is imparied by prenatal treatment with OA, and that dopaminergic neurons show a slight selective vulnerability to the toxin.Abbrevations used. Ochratoxin (OA) Ochratoxin A - (CH) cerebral hemisphere - (BGDM) remainder of the brain consisting basal ganglia, diencephalon and mesencephalon - (PM) pons-medulla oblongata - (CE) cerebellum - (NA) noradrenaline - (DA) dopamine - (5-HT) 5-hydroxytryptamine  相似文献   

12.
In the present study the role of endogenous nitric oxide (NO) in the vasopressin-induced ACTH and corticosterone secretion was investigated in conscious rats. Vasopressin (AVP 5 microg/kg i.p.) considerably augmented ACTH and corticosterone secretion. L-arginine (120 and 300 mg/kg i.p.) did not significantly alter the AVP-induced secretion of those hormones. Nitric oxide synthase (NOS) blockers N(omega)-nitro-L-arginine (L-NNA) and its methyl ester (L-NAME) given i.p. 15 min before AVP markedly increased the AVP-induced ACTH secretion. L-NNA (2 mg/kg) more potently and significantly increased the AVP-induced ACTH secretion, whereas L-NAME elicited a weaker and not significant effect. Both those NOS antagonists intensified significantly and to a similar extent the AVP-induced corticosterone secretion. L-arginine (120 mg/kg i.p.) reversed the L-NNA-induced rise in the AVP-stimulated ACTH secretion and substantially diminished the accompanying corticosterone secretion. Neither vasopressin alone nor in combination with L-arginine and L-NAME evoked any significant alterations in the hypothalamic noradrenaline and dopamine levels. L-NNA (2 and 10 mg/kg i.p.) elicited a dose dependent and significant decrease in the hypothalamic noradrenaline level. The hypothalamic dopamine level was not significantly altered by any treatment. These results indicate that in conscious rats endogenous NO has an inhibitory influence on the AVP-induced increase in ACTH and corticosterone secretion. L-NNA is significantly more potent than L-NAME in increasing the AVP-induced ACTH secretion. This may be connected with a considerable increase by L-NNA of hypothalamic noradrenergic system activation which stimulates the pituitary-adrenal axis in addition to specific inhibition of NOS.  相似文献   

13.
L L Murphy  B A Adrian  M Kohli 《Steroids》1999,64(9):664-671
Acute treatment with delta9-tetrahydrocannabinol [delta9-THC; 0.5 or 1.0 mg/kg b.w. intravenously (i.v.)], the major psychoactive constituent of marijuana, produces a dose-related suppression of pulsatile luteinizing hormone (LH) secretion in ovariectomized rats. To determine whether delta9-THC produces this response by altering neurotransmitter and/or neuropeptide systems involved in the regulation of LH secretion, ovariectomized rats were pretreated with antagonists for dopamine, norepinephrine, serotonin, or opioid receptors, and the effect of delta9-THC on LH release was determined. Pretreatment with the D2 receptor antagonists butaclamol (1.0 mg/kg b.w., intraperitoneally) or pimozide [0.63 mg/kg, subcutaneously (s.c.)], the opioid receptor antagonists naloxone (1-4 mg/kg, i.v.) or naltrexone (2 mg/kg, i.v.), the noradrenergic alpha2-receptor antagonist idazoxan (10 microg/kg, i.v.), or the serotonin 5-HT(1C/2) receptor antagonist ritanserin (1 or 5 mg/kg b.w., i.p.), did not alter delta9-THC-induced inhibition of pulsatile LH secretion. Pretreatment with a relatively high dose of the beta-adrenergic receptor blocker propranolol (6 mg/kg, i.v.) attenuated the ability of the low THC dose to inhibit LH release; however, lower doses of propranolol were without effect. Furthermore, the ability of a relatively nonspecific serotonin 5-HT(1A/1B) receptor antagonist pindolol (4 mg/kg, s.c.) or the specific 5-HT1A receptor antagonist WAY-100635 (1 mg/kg, s.c.) to significantly attenuate THC-induced LH suppression indicates that activation of serotonergic 5-HT1A receptors may be an important mode by which THC causes inhibition of LH release in the ovariectomized rat.  相似文献   

14.
The effects of acute and repeated nicotine administration on the extracellular levels of dopamine (DA) in the corpus striatum and the nucleus accumbens were studied in conscious, freely moving rats by in vivo microdialysis. Acute intraperitoneal (i.p.) injection of nicotine (1 mg/kg) increased DA outflow both in the corpus striatum and the nucleus accumbens. Repeated daily injection of nicotine (1 mg/kg, i.p.) for 10 consecutive days caused a significant increase in basal DA outflow both in the corpus striatum and the nucleus accumbens. Acute challenge with nicotine (1 mg/kg, i.p.) in animals treated repeatedly with this drug enhanced DA extracellular levels in both brain areas. However, the effect of nicotine was potentiated in the nucleus accumbens, but not in the corpus striatum. To test the hypothesis that stimulation of 5-HT (5-hydroxytryptamine, serotonin)(2C) receptors could affect nicotine-induced DA release, the selective 5-HT(2C) receptor agonist RO 60-0175 was used. Pretreatment with RO 60-0175 (1 and 3 mg/kg, i.p.) dose-dependently prevented the enhancement in DA release elicited by acute nicotine in the corpus striatum, but was devoid of any significant effect in the nucleus accumbens. RO 60-0175 (1 and 3 mg/kg, i.p.) dose-dependently reduced the stimulatory effect on striatal and accumbal DA release induced by an acute challenge with nicotine (1 mg/kg, i.p.) in rats treated repeatedly with this alkaloid. However, only the effect of 3 mg/kg RO 60-0175 reached statistical significance. The inhibitory effect of RO 60-0175 on DA release induced by nicotine in the corpus striatum and the nucleus accumbens was completely prevented by SB 242084 (0.5 mg/kg, i.p.) and SB 243213 (0.5 mg/kg, i.p.), two selective antagonists of 5-HT(2C) receptors. It is concluded that selective activation of 5-HT(2C) receptors can block the stimulatory action of nicotine on central DA function, an effect that might be relevant for the reported antiaddictive properties of RO 60-0175.  相似文献   

15.
To study the feedback control by histamine (HA) H3-receptors on the synthesis and release of HA at nerve endings in the brain, the effects of a potent and selective H3-agonist, (R)-alpha-methylhistamine, and an H3-antagonist, thioperamide, on the pargyline-induced accumulation of tele-methylhistamine (t-MH) in the brain of mice and rats were examined in vivo. (R)-alpha-Methylhistamine dihydrochloride (6.3 mg free base/kg, i.p.) and thioperamide (2 mg/kg, i.p.), respectively, significantly decreased and increased the steady-state t-MH level in the mouse brain, whereas these compounds produced no significant changes in the HA level. When administered to mice immediately after pargyline (65 mg/kg, i.p.), (R)-alpha-methylhistamine (3.2 mg/kg, i.p.) inhibited the pargyline-induced increase in the t-MH level almost completely during the first 2 h after treatment. Thioperamide (2 mg/kg, i.p.) enhanced the pargyline-induced t-MH accumulation by approximately 70% 1 and 2 h after treatment. Lower doses of (R)-alpha-methylhistamine (1.3 mg/kg) and thioperamide (1 mg/kg) induced significant changes in the pargyline-induced t-MH accumulation in the mouse brain. In the rat, (R)-alpha-methylhistamine (3.2 mg/kg, i.p.) and thioperamide (2 mg/kg, i.p.) also affected the pargyline-induced t-MH accumulation in eight brain regions and the effects were especially marked in the cerebral cortex and amygdala. These results indicate that these compounds have potent effects on HA turnover in vivo in the brain.  相似文献   

16.
Abstract: The somatodendritic release of dopamine in substantia nigra previously has been suggested to be nonvesicular in nature and thus to differ from the classical, exocytotic release of dopamine described for the dopaminergic nerve terminal in striatum. We have compared the effects of reserpine, a compound that disrupts vesicular sequestration of monoamines, on the storage and release of dopamine in substantia nigra and striatum of rats. Reserpine administration (5 mg/kg, i.p.) significantly decreased the tissue level of dopamine in substantia nigra pars reticulata, substantia nigra pars compacta, and striatum. In these brain areas, reserpine-induced reductions in tissue dopamine level occurred within 2 h and persisted at 24 h postdrug. In vivo measurements using microdialysis revealed that reserpine administration rapidly decreased the extracellular dopamine concentration to nondetectable levels in substantia nigra as well as in striatum. In both structures, it was observed that reserpine treatment significantly attenuated the release of dopamine evoked by a high dose of amphetamine (10 mg/kg, i.p.) given 2 h later. In contrast, dopamine efflux in response to a low dose of amphetamine (2 mg/kg, i.p.) was not altered by reserpine pretreatment either in substantia nigra or in striatum. The present data suggest the existence, both at the somatodendritic and at the nerve terminal level, of a vesicular pool of dopamine that is the primary site of transmitter storage and that can be displaced by high but not low doses of amphetamine. The physiological release of dopamine in substantia nigra and in striatum is dependent on the integrity of this vesicular store.  相似文献   

17.
The release of endogenous noradrenaline was measured in the cerebral cortex of the halothane-anesthetized rat by using the technique of brain dialysis coupled to a radioenzymatic assay. A thin dialysis tube was inserted transversally in the cerebral cortex (transcortical dialysis) and perfused with Ringer medium (2 microliter min-1). Under basal conditions, the cortical output of noradrenaline was stable over a period of at least 6 h and amounted to 8.7 pg/20 min (not corrected for recovery). Histological control of the perfused area revealed very little damage and normal morphology in the vicinity of the dialysis tube. Omission of calcium from the perfusion medium caused a marked drop in cortical noradrenaline output. Bilateral electrical stimulation (for 10 min) of the ascending noradrenergic pathways in the medial forebrain bundle caused a frequency-dependent increase in cortical noradrenaline output over the range 5-20 Hz. Stimulation at a higher frequency (50 Hz) resulted in a levelling off of the increase in cortical noradrenaline release. Systemic administration of the dopamine-beta-hydroxylase inhibitor bis-(4-methyl-1-homopiperazinylthiocarbonyl) disulfide (FLA 63) (25 mg/kg i.p.) markedly reduced, whereas injection of the monoamine oxidase inhibitor pargyline (75 mg/kg i.p.) resulted in a progressive increase in, cortical noradrenaline output. d-Amphetamine (2 mg/kg i.p.) provoked a sharp increase in cortical noradrenaline release (+450% over basal values within 40 min). Desmethylimipramine (10 mg/kg i.p.) produced a twofold increase of cortical noradrenaline release. Finally, idazoxan (20 mg/kg i.p.) and clonidine (0.3 mg/kg i.p.), respectively, increased and decreased the release of noradrenaline from the cerebral cortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
G Engberg  T H Svensson 《Life sciences》1979,24(24):2245-2253
The amphetamine-induced inhibition of brain noradrenaline (NA) containing neurons in the rat locus coeruleus (LC) was pharmacologically analyzed utilizing single unit recording techniques. The presynaptic α-receptor blocking agent yohimbine (10 mg/kg i.p., 30 min before) largely prevented the amphetamine-induced depression of LC units in contrast to prazosin (0.6 mg/kg i.p., 30 min) or phenoxybenzamine (20 mg/kg, 30 min) which both slow preference for postsynaptic α-receptors. The β-receptor blocking agent, propranolol (10 mg/kg, 30 min), as well as the peripherally but not centrally active α-receptor blocking drug phentolamine (10 mg/kg, i.p., 30 min), also did not block the amphetamine effect. The LC inhibition by amphetamine was blocked by pretreatment with reserpine (10 mg/kg, i.p., 5 h), which caused almost total depletion of brain catecholamines. However, unlike the amphetamine-induced inhibition of central dopamine (DA) neurons the NA cell inhibition was not blocked by pretreatment with a tyrosine hydroxylase inhibitor (α-MT, 50 or 250 mg/kg i.p., 30 min). These results suggest that the amphetamine-induced inhibition of NA neurons in the LC is an indirect effect, mediated via activation of central α-receptors of presynaptic character. The lack of antagonism by α-MT indicate that the NA release by amphetamine, unlike its effect on brain DA, is not critically dependent on the rate of tyrosine hydroxylation. Thus the euphoriant action of amphetamine, which is blocked by α-MT, may be associated with release of DA rather than NA in brain.  相似文献   

19.
The effects of the following drugs: nimodipine (1 mg/kg b. w., i. p.), 2-amino-5-phosphonovaleric acid (4mg/kg b.w., i.p.) and propentofylline (25mg/kg b.w., i.p.), administered (alone or in combination) at the end of 15 min bilateral ischemia in gerbils were evaluated on mitochondrial superoxide dismutase (SOD), glutathione reductase (GR), glucose-6 phosphate dehydrogenase (G6PD), monoamine oxidase (MAO) activities, and thiobarbituric acid reactive material (TBARM), and brain water content at 1 hour of reperfusion. The combined treatment virtually abolished early postischemic brain edema (4.1% v.s. 0.6%) and efficiently counteracted ischemia-induced changes [decreased SOD (79% v.s. 98%), GR (52% v.s. 105%) and MAO (25% v.s. 79%), and increased TBARM (198% v.s. 108%)]. The same combination of drugs administered 15 min before ischemia had a similar effect (e.g., reduced brain swelling and lipid peroxidation) as when given at the end of ischemia, whereas a limited or absent impact was seen when the drugs were given 15 min or 1 hour after ischemia, respectively. The data suggest that (post)ischemic brain swelling and mitochondrial dysfunction can be reduced by drugs which synchronously prevent processes induced in the early stages of reperfusion.  相似文献   

20.
Matsuda H  Li Y  Yoshikawa M 《Life sciences》2000,67(24):2921-2927
It was previously reported that escin Ib isolated from horse chestnut inhibited gastric emptying (GE) in mice, in which the capsaicin-sensitive sensory nerves (CPSN), the central nervous system and endogenous prostaglandins (PGs) were involved. In the present study, the possible involvement of dopamine and dopamine receptors in the inhibition of GE by escin Ib were investigated in mice. GE inhibition by escin Ib (25 mg/kg, p.o.) was attenuated after pretreatment with a single bolus of DL-alpha-methyl-p-tyrosine methyl ester (400 mg/kg, s.c., an inhibitor of tyrosine hydroxylase), reserpine (5 mg/kg, p.o., a catecholamine depletor), 6-hydroxydopamine (80 mg/kg, i.p., a dopamine depletor). Furthermore, pretreatment with spiperone (0.5-5 mg/kg, s.c., a dopamine2 receptor antagonist), haloperidol (0.5-10 mg/kg, s.c.) and metoclopramide (1-10 mg/kg, s.c.) (centrally acting dopamine2 receptor antagonists) attenuated the effect of escin Ib. Domperidone (0.1-5 mg/kg, s.c., a peripheral-acting dopamine2 antagonist) showed a weak attenuation, but SCH 23390 (1-5 mg/kg, s.c., a dopamine, receptor antagonist) did not. It is postulated that escin Ib inhibits GE, at least in part, mediated by CPSN, to stimulate the synthesis and/or release of dopamine, to act through central dopamine2 receptor, which in turn causes the release of PGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号