首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of radiotherapy is to eradicate cancer cells with ionizing radiation; tumor cell death following irradiation can be induced by several signaling pathways, most of which are triggered as a consequence of DNA damage, the primary and major relevant cell response to radiation. Several lines of evidence demonstrated that ceramide, a crucial sensor and/or effector of different signalling pathways promoting cell cycle arrest, death and differentiation, is directly involved in the molecular mechanisms underlying cellular response to irradiation. Most of the studies strongly support a direct relationship between ceramide accumulation and radiation-induced cell death, mainly apoptosis; for this reason, defining the contribution of the multiple metabolic pathways leading to ceramide formation and the causes of its dysregulated metabolism represent the main goal in order to elucidate the ceramide-mediated signaling in radiotherapy. In this review, we summarize the current knowledge concerning the different routes leading to ceramide accumulation in radiation-induced cell response with particular regard to the role of the enzymes involved in both ceramide neogenesis and catabolism. Emphasis is placed on sphingolipid breakdown as mechanism of ceramide generation activated following cell irradiation; the functional relevance of this pathway, and the role of glycosphingolipid glycohydrolases as direct targets of ionizing radiation are also discussed. These new findings add a further attractive point of investigation to better define the complex interplay between sphingolipid metabolism and radiation therapy.  相似文献   

2.
Mimeault M 《FEBS letters》2002,530(1-3):9-16
Recent data on the cellular ceramide functions and its involvement in the apoptotic/necrotic cell death as well as its anticarcinogenic properties are presented. The emphasis is on the connections between the ceramide and caspase signaling pathways during the apoptotic cell death process. Notably, the experimental strategies and pharmacological tools used for establishment of the role of ceramide in triggering cell death are described. Moreover, the importance of a compartmentation of endogenous ceramide within the plasma membrane microdomains, lysosomes and mitochondria is discussed. Information on the deregulated functions of ceramide and caspase signaling pathways in several metastatic cancer types is also presented.  相似文献   

3.
Raymond MN  Le Stunff H 《FEBS letters》2006,580(1):131-136
Macrophage ionotropic P2X7 receptors regulate cell-death through ill-defined signaling pathways. Here, we investigated the role of ceramide, an apoptogenic sphingolipid and showed that ATP stimulated ceramide accumulation in macrophages. Benzoylbenzoyl-ATP, a potent P2X7 agonist, was able to mimic the effects of ATP on ceramide accumulation while oxidized ATP had the opposite effect. Ceramide accumulation was blocked by de novo ceramide biosynthesis inhibitors. Interestingly, ATP-induced caspase-3/7 activation was dependent on ceramide generation. Finally, we showed that de novo ceramide biosynthesis is involved in ATP-induced macrophage death in a caspase-dependent manner. Our results indicate a novel role of ceramide in P2X7-regulated cell-death.  相似文献   

4.
Sphingolipids and cell death   总被引:3,自引:0,他引:3  
Sphingolipids (SLs) have been considered for many years as predominant building blocks of biological membranes with key structural functions and little relevance in cellular signaling. However, this view has changed dramatically in recent years with the recognition that certain SLs such as ceramide, sphingosine 1-phosphate and gangliosides, participate actively in signal transduction pathways, regulating many different cell functions such as proliferation, differentiation, adhesion and cell death. In particular, ceramide has attracted considerable attention in cell biology and biophysics due to its key role in the modulation of membrane physical properties, signaling and cell death regulation. This latter function is largely exerted by the ability of ceramide to activate the major pathways governing cell death such as the endoplasmic reticulum and mitochondria. Overall, the evidence so far indicates a key function of SLs in disease pathogenesis and hence their regulation may be of potential therapeutic relevance in different pathologies including liver diseases, neurodegeneration and cancer biology and therapy.  相似文献   

5.
Sphingomyelin metabolites in vascular cell signaling and atherogenesis   总被引:5,自引:0,他引:5  
The atherosclerotic lesion most probably develops through a number of cellular events which implicate all vascular cell types and include synthesis of extracellular proteins, cell proliferation, differentiation and death. Sphingolipids and sphingolipid metabolizing enzymes may play important roles in atherogenesis, not only because of lipoprotein alterations but also by mediating a number of cellular events which are believed to be crucial in the development of the vascular lesions such as proliferation or cell death. Exogenous sphingolipids may mediate various biological effects such as apoptosis, mitogenesis or differentiation depending on the cell type. Moreover, several molecules present in the atherogenic lesion, such as oxidized LDL, growth factors or cytokines, which activate intracellular signaling pathways leading to vascular cell modifications, can stimulate sphingomyelin hydrolysis and generation of ceramide (and other metabolites as sphingosine-1-phosphate). Here we review the potential implication of the sphingomyelin/ceramide cycle in vascular cell signaling related to atherosclerosis, and more generally the role of sphingolipids in the events observed during the atherosclerotic process as cell differentiation, migration, adhesion, retraction, proliferation and death.  相似文献   

6.
Peptide hormones act to regulate apoptosis through activation of multiple pro- and anti-apoptotic signaling cascades of which lipid signaling events represent an important facet of the cellular rheostat that determines survival and death decisions. Activation of sphingomyelinase, which generates ceramide, is an intermediate in cellular stress responses and induction of apoptosis in many systems. Conversely, phosphatidylinositol 3-kinase (PI3K) is a critical signaling molecule involved in regulating cell survival and proliferation pathways. In the present study, we investigate cross-talk between the PI3K and sphingomyelinase pathways as a mechanism for regulation of cell survival/death decisions. We show that phorbol ester, insulin-like growth factor 1, and a constitutively active PI3K suppress both tumor necrosis factor-induced apoptosis and ceramide generation. Conversely, inhibition of the PI3K pathway with expression of a kinase-dead PI3K both prevented survival signaling and enhanced tumor necrosis factor-induced ceramide generation. The ability of exogenous sphingomyelinase to induce ceramide generation was partially suppressed by expression of constitutively active PI3K and enhanced by inhibition of PI3K suggesting that cross-talk between PI3K and ceramide generation within cells is regulated subsequent to activation of sphingomyelinase.  相似文献   

7.
Programmed cell death is an important physiological response to many forms of cellular stress. The signaling cascades that result in programmed cell death are as elaborate as those that promote cell survival, and it is clear that coordination of both protein- and lipid-mediated signals is crucial for proper cell execution. Sphingolipids are a large class of lipids whose diverse members share the common feature of a long-chain sphingoid base, e.g., sphingosine. Many sphingolipids have been shown to play essential roles in both death signaling and survival. Ceramide, an N-acylsphingosine, has been implicated in cell death following a myriad of cellular stresses. Sphingosine itself can induce cell death but via pathways both similar and dissimilar to those of ceramide. Sphingosine-1-phosphate, on the other hand, is an anti-apoptotic molecule that mediates a host of cellular effects antagonistic to those of its pro-apoptotic sphingolipid siblings. Extraordinarily, these lipid mediators are metabolically juxtaposed, suggesting that the regulation of their metabolism is of the utmost importance in determining cell fate. In this review, we briefly examine the role of ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death and highlight the potential roles that these lipids play in the pathway to apoptosis.  相似文献   

8.
Ample evidence indicates that sphingosine-1-phosphate (SPP) can serve as an intracellular second messenger regulating calcium mobilization, and cell growth and survival. Moreover, the dynamic balance between levels of the sphingolipids metabolites, ceramide and SPP, and consequent regulation of opposing signaling pathways, is an important factor that determines whether a cell survives or dies. SPP has also recently been shown to be the ligand for the EDG-1 family of G protein-coupled receptors, which now includes EDG-1, -3, -5, -6, and -8. SPP is thus a lipid mediator that has novel dual actions signaling inside and outside of the cell. This review is focussed on sphingosine kinase, the enzyme that regulates levels of SPP and thus plays a critical role in diverse biological processes.  相似文献   

9.
Olivera A  Spiegel S 《Prostaglandins》2001,64(1-4):123-134
Ample evidence indicates that sphingosine-1-phosphate (SPP) can serve as an intracellular second messenger regulating calcium mobilization, and cell growth and survival. Moreover, the dynamic balance between levels of the sphingolipids metabolites, ceramide and SPP, and consequent regulation of opposing signaling pathways, is an important factor that determines whether a cell survives or dies. SPP has also recently been shown to be the ligand for the EDG-1 family of G protein-coupled receptors, which now includes EDG-1, -3, -5, -6, and -8. SPP is thus a lipid mediator that has novel dual actions signaling inside and outside of the cell. This review is focussed on sphingosine kinase, the enzyme that regulates levels of SPP and thus plays a critical role in diverse biological processes.  相似文献   

10.
Recent biophysical data suggest that the properties of ceramide observed in model membranes may apply to biological systems. In particular, the ability of ceramide to form microdomains, which coalesce into larger platforms or macrodomains, appears to be important for some cellular signaling processes. Several laboratories have now demonstrated similar reorganization of plasma membrane sphingolipid rafts, via ceramide generation, into macrodomains. This event appeared necessary for signaling upon activation of a specific set of cell surface receptors. In this article, we review the properties and functions of rafts, and the role of sphingomyelinase and ceramide in the biogenesis and re-modeling of these rafts. As clustering of some cell surface receptors in these domains may be critical for signal transduction, we propose a new model for transmembrane signal transmission.  相似文献   

11.

Background

We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs). The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury.

Results

We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFα and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3) and apoptosis (Bax).

Conclusion

We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration.  相似文献   

12.
Cerebral ischemia/reperfusion (I/R) injury triggers multiple and distinct but overlapping cell signaling pathways, which may lead to cell survival or cell damage. There is overwhelming evidence to suggest that besides necrosis, apoptosis do contributes significantly to the cell death subsequent to I/R injury. Both extrinsic and intrinsic apoptotic pathways play a vital role, and upon initiation, these pathways recruit downstream apoptotic molecules to execute cell death. Caspases and Bcl-2 family members appear to be crucial in regulating multiple apoptotic cell death pathways initiated during I/R. Similarly, inhibitor of apoptosis family of proteins (IAPs), mitogen-activated protein kinases, and newly identified apoptogenic molecules, like second mitochondrial-activated factor/direct IAP-binding protein with low pI (Smac/Diablo), omi/high-temperature requirement serine protease A2 (Omi/HtrA2), X-linked mammalian inhibitor of apoptosis protein-associated factor 1, and apoptosis-inducing factor, have emerged as potent regulators of cellular apoptotic/antiapoptotic machinery. All instances of cell survival/death mechanisms triggered during I/R are multifaceted and interlinked, which ultimately decide the fate of brain cells. Moreover, apoptotic cross-talk between major subcellular organelles suggests that therapeutic strategies should be optimally directed at multiple targets/mechanisms for better therapeutic outcome. Based on the current knowledge, this review briefly focuses I/R injury-induced multiple mechanisms of apoptosis, involving key apoptotic regulators and their emerging roles in orchestrating cell death programme. In addition, we have also highlighted the role of autophagy in modulating cell survival/death during cerebral ischemia. Furthermore, an attempt has been made to provide an encouraging outlook on emerging therapeutic approaches for cerebral ischemia. Venkata Prasuja Nakka and Anchal Gusain equally contributed to this work.  相似文献   

13.
Ceramide and other sphingolipids in cellular responses   总被引:7,自引:0,他引:7  
Formerly considered to serve only as structural components, sphingolipids are emerging as an important group of signaling molecules involved in many cellular events, including cell growth, senescence, meiotic maturation, and cell death. They are also implicated in functions such as inflammation and the responses to heat shock and genotoxic stress. Defects in the metabolism of sphingolipids are related to various genetic disorders, and sphingolipids have the potential to serve as therapeutic agents for human diseases such as colon cancer and viral or bacterial infections. The best-studied member of this family, ceramide, which also serves as the structural back-bone for other sphingolipids, is an important mediator in multiple cellular signaling pathways. The metabolism and functions of sphingolipids are discussed in this review, with a focus on ceramide regulation in various cellular responses.  相似文献   

14.
A cardinal feature of brain tissue injury in stroke is mitochondrial dysfunction leading to cell death, yet remarkably little is known about the mechanisms underlying mitochondrial injury in cerebral ischemia/reperfusion (IR). Ceramide, a naturally occurring membrane sphingolipid, functions as an important second messenger in apoptosis signaling and is generated by de novo synthesis, sphingomyelin hydrolysis, or recycling of sphingolipids. In this study, cerebral IR-induced ceramide elevation resulted from ceramide biosynthesis rather than from hydrolysis of sphingomyelin. Investigation of intracellular sites of ceramide accumulation revealed the elevation of ceramide in mitochondria because of activation of mitochondrial ceramide synthase via post-translational mechanisms. Furthermore, ceramide accumulation appears to cause mitochondrial respiratory chain damage that could be mimicked by exogenously added natural ceramide to mitochondria. The effect of ceramide on mitochondria was somewhat specific; dihydroceramide, a structure closely related to ceramide, did not inflict damage. Stimulation of ceramide biosynthesis seems to be under control of JNK3 signaling: IR-induced ceramide generation and respiratory chain damage was abolished in mitochondria of JNK3-deficient mice, which exhibited reduced infarct volume after IR. These studies suggest that the hallmark of mitochondrial injury in cerebral IR, respiratory chain dysfunction, is caused by the accumulation of ceramide via stimulation of ceramide synthase activity in mitochondria, and that JNK3 has a pivotal role in regulation of ceramide biosynthesis in cerebral IR.  相似文献   

15.
Programmed cell death is an important physiological response to many forms of cellular stress. The signaling cascades that result in programmed cell death are as elaborate as those that promote cell survival, and it is clear that coordination of both protein- and lipid-mediated signals is crucial for proper cell execution. Sphingolipids are a large class of lipids whose diverse members share the common feature of a long-chain sphingoid base, e.g., sphingosine. Many sphingolipids have been shown to play essential roles in both death signaling and survival. Ceramide, an N-acylsphingosine, has been implicated in cell death following a myriad of cellular stresses. Sphingosine itself can induce cell death but via pathways both similar and dissimilar to those of ceramide. Sphingosine-1-phosphate, on the other hand, is an anti-apoptotic molecule that mediates a host of cellular effects antagonistic to those of its pro-apoptotic sphingolipid siblings. Extraordinarily, these lipid mediators are metabolically juxtaposed, suggesting that the regulation of their metabolism is of the utmost importance in determining cell fate. In this review, we briefly examine the role of ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death and highlight the potential roles that these lipids play in the pathway to apoptosis.  相似文献   

16.
Kim JH  Yoon YD  Shin I  Han JS 《IUBMB life》1999,48(4):445-452
Although recent studies have demonstrated that ovarian follicular atresia occurs by apoptosis of granulosa cells, the intracellular signaling pathways involved in apoptotic cell death are still poorly characterized. We examined the role of ceramide as a candidate intracellular mediator of Fas-mediated signaling in cultured granulosa cells. Expression of Fas antigen was demonstrated by Western blot of granulosa cell lysates and immunostaining of cultured granulosa cells. Exposure of granulosa cells to anti-Fas monoclonal antibody (anti-Fas mAb) resulted in significant sphingomyelin hydrolysis, which was accompanied by a progressive increase in endogenous levels of ceramide. The addition of exogenous C6-ceramide induced drastic morphological change, including nuclear fragmentation and typical apoptotic DNA degradation. Furthermore, both anti-Fas mAb and C6-ceramide decreased phospholipase D (PLD) activity and diacylglycerol (DAG) concentrations in a time- or a dose-dependent manner. In addition, treatment with phorbol 12-myristate 13-acetate completely attenuated the ceramide-induced inhibition of PLD activity and partially suppressed ceramide-induced apoptosis. These results indicate that the Fas/ceramide signaling pathway might play a role in granulosa cell apoptosis and suggest that the PLD/DAG pathway might be cross-linked to the Fas/ceramide pathway in apoptotic processes of granulosa cells.  相似文献   

17.
To date, precise roles of EMD (emerin) remain poorly described. In this paper, we investigated the role of EMD in the C16-ceramide autophagy pathway. Ceramides are bioactive signaling molecules acting notably in the regulation of cell growth, differentiation, or cell death. However, the mechanisms by which they mediate these pathways are not fully understood. We found that C16-ceramide induces EMD phosphorylation on its LEM domain through PRKACA. Upon ceramide treatment, phosphorylated EMD binds MAP1LC3B leading to an increase of autophagosome formation. These data suggest a new role of EMD as an enhancer of autophagosome formation in the C16-ceramide autophagy pathway in colon cancer cells.  相似文献   

18.
Increased extracellular Ca(2+) ([Ca(2+)](o)) can damage tissues, but the molecular mechanisms by which this occurs are poorly defined. Using HEK 293 cell lines that stably overexpress the Ca(2+)-sensing receptor (CaR), a G protein-coupled receptor, we demonstrate that activation of the CaR leads to apoptosis, which was determined by nuclear condensation, DNA fragmentation, caspase-3 activation, and increased cytosolic cytochrome c. This CaR-induced apoptotic pathway is initiated by CaR-induced accumulation of ceramide which plays an important role in inducing cell death signals by distinct G protein-independent signaling pathways. Pretreatment of wild-type CaR-expressing cells with pertussis toxin inhibited CaR-induced [(3)H]ceramide formation, c-Jun phosphorylation, and caspase-3 activation. The ceramide accumulation, c-Jun phosphorylation, and caspase-3 activation by the CaR can be abolished by sphingomyelinase and ceramide synthase inhibitors in different time frames. Cells that express a nonfunctional mutant CaR that were exposed to the same levels of [Ca(2+)](o) showed no evidence of activation of the apoptotic pathway. In conclusion, we report the involvement of the CaR in stimulating programmed cell death via a pathway involving GTP binding protein alpha subunit (Galpha(i))-dependent ceramide accumulation, activation of stress-activated protein kinase/c-Jun N-terminal kinase, c-Jun phosphorylation, caspase-3 activation, and DNA cleavage.  相似文献   

19.
It is commonly assumed that ceramide is a second messenger that transduces signaling leading to apoptosis. We tested this hypothesis by investigating the role of ceramide in TNF-alpha-initiated apoptotic signaling using the histiocytic lymphoma cell line U937. We found considerable differences between cell killing by TNF-alpha and by ceramide. U937 cells treated with TNF-alpha are committed early and irreversibly to the apoptotic pathway and start to die 90 min after treatment. U937 cells treated with ceramide start to die 12 h after the initial treatment. The cell death signaling initiated by TNF-alpha is transduced within minutes of exposure to TNF-alpha and it is irreversible. Exogenous ceramide increases the intracellular level of ceramide rapidly, significantly, and well above the physiological levels, within minutes, but cellular commitment to death does not occur until after the first 6 h of incubation. Furthermore, the endogenous ceramide in U937 cells treated with TNF-alpha increases well after the commitment to the apoptotic pathway. The differences between ceramide and TNF-alpha in the kinetics and the commitment to the apoptotic pathway suggest that, (a) ceramide is not a second messenger in the apoptotic signaling of TNF-alpha, (b) ceramide elevations, in TNF-alpha treated cells, are a consequence rather than a cause of apoptosis and (c) exogenously added ceramide and TNF-alpha kill cells via different pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号