首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nitric oxide reductase (NOR) from P. denitrificans is a membrane-bound protein complex that catalyses the reduction of NO to N(2)O (2NO+2e(-)+2H(+)-->N(2)O+H(2)O) as part of the denitrification process. Even though NO reduction is a highly exergonic reaction, and NOR belongs to the superfamily of O(2)-reducing, proton-pumping heme-copper oxidases (HCuOs), previous measurements have indicated that the reaction catalyzed by NOR is non-electrogenic, i.e. not contributing to the proton electrochemical gradient. Since electrons are provided by donors in the periplasm, this non-electrogenicity implies that the substrate protons are also taken up from the periplasm. Here, using direct measurements in liposome-reconstituted NOR during reduction of both NO and the alternative substrate O(2), we demonstrate that protons are indeed consumed from the 'outside'. First, multiple turnover reduction of O(2) resulted in an increase in pH on the outside of the NOR-vesicles. Second, comparison of electrical potential generation in NOR-liposomes during oxidation of the reduced enzyme by either NO or O(2) shows that the proton transfer signals are very similar for the two substrates proving the usefulness of O(2) as a model substrate for these studies. Last, optical measurements during single-turnover oxidation by O(2) show electron transfer coupled to proton uptake from outside the NOR-liposomes with a tau=15 ms, similar to results obtained for net proton uptake in solubilised NOR [U. Flock, N.J. Watmough, P. Adelroth, Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen, Biochemistry 44 (2005) 10711-10719]. NOR must thus contain a proton transfer pathway leading from the periplasmic surface into the active site. Using homology modeling with the structures of HCuOs as templates, we constructed a 3D model of the NorB catalytic subunit from P. denitrificans in order to search for such a pathway. A plausible pathway, consisting of conserved protonatable residues, is suggested.  相似文献   

3.
The bacterial nitric oxide reductase (NOR) is a divergent member of the family of respiratory heme-copper oxidases. It differs from other family members in that it contains an Fe(B)-heme-Fe dinuclear catalytic center rather than a Cu(B)-heme-Fe center and in that it does not pump protons. Several glutamate residues are conserved in NORs but are absent in other heme-copper oxidases. To facilitate mutagenesis-based studies of these residues in Paracoccus denitrificans NOR, we developed two expression systems that enable inactive or poorly active NOR to be expressed, characterized in vivo, and purified. These are (i) a homologous system utilizing the cycA promoter to drive aerobic expression of NOR in P. denitrificans and (ii) a heterologous system which provides the first example of the expression of an integral-membrane cytochrome bc complex in Escherichia coli. Alanine substitutions for three of the conserved glutamate residues (E125, E198, and E202) were introduced into NOR, and the proteins were expressed in P. denitrificans and E. coli. Characterization in intact cells and membranes has demonstrated that two of the glutamates are essential for normal levels of NOR activity: E125, which is predicted to be on the periplasmic surface close to helix IV, and E198, which is predicted to lie in the middle of transmembrane helix VI. The subsequent purification and spectroscopic characterization of these enzymes established that they are stable and have a wild-type cofactor composition. Possible roles for these glutamates in proton uptake and the chemistry of NO reduction at the active site are discussed.  相似文献   

4.
Joachim Reimann  Pia Ädelroth 《BBA》2007,1767(5):362-373
Nitric oxide reductase (NOR) from P. denitrificans is a membrane-bound protein complex that catalyses the reduction of NO to N2O (2NO + 2e + 2H+ → N2O + H2O) as part of the denitrification process. Even though NO reduction is a highly exergonic reaction, and NOR belongs to the superfamily of O2-reducing, proton-pumping heme-copper oxidases (HCuOs), previous measurements have indicated that the reaction catalyzed by NOR is non-electrogenic, i.e. not contributing to the proton electrochemical gradient. Since electrons are provided by donors in the periplasm, this non-electrogenicity implies that the substrate protons are also taken up from the periplasm. Here, using direct measurements in liposome-reconstituted NOR during reduction of both NO and the alternative substrate O2, we demonstrate that protons are indeed consumed from the ‘outside’. First, multiple turnover reduction of O2 resulted in an increase in pH on the outside of the NOR-vesicles. Second, comparison of electrical potential generation in NOR-liposomes during oxidation of the reduced enzyme by either NO or O2 shows that the proton transfer signals are very similar for the two substrates proving the usefulness of O2 as a model substrate for these studies. Last, optical measurements during single-turnover oxidation by O2 show electron transfer coupled to proton uptake from outside the NOR-liposomes with a τ = 15 ms, similar to results obtained for net proton uptake in solubilised NOR [U. Flock, N.J. Watmough, P. Ädelroth, Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen, Biochemistry 44 (2005) 10711-10719]. NOR must thus contain a proton transfer pathway leading from the periplasmic surface into the active site. Using homology modeling with the structures of HCuOs as templates, we constructed a 3D model of the NorB catalytic subunit from P. denitrificans in order to search for such a pathway. A plausible pathway, consisting of conserved protonatable residues, is suggested.  相似文献   

5.
The respiratory heme-copper oxidases catalyze reduction of O(2) to H(2)O, linking this process to transmembrane proton pumping. These oxidases have been classified according to the architecture, location and number of proton pathways. Most structural and functional studies to date have been performed on the A-class oxidases, which includes those that are found in the inner mitochondrial membrane and bacteria such as Rhodobacter sphaeroides and Paracoccus denitrificans (aa(3)-type oxidases in these bacteria). These oxidases pump protons with a stoichiometry of one proton per electron transferred to the catalytic site. The bacterial A-class oxidases use two proton pathways (denoted by letters D and K, respectively), for the transfer of protons to the catalytic site, and protons that are pumped across the membrane. The B-type oxidases such as, for example, the ba(3) oxidase from Thermus thermophilus, pump protons with a lower stoichiometry of 0.5 H(+)/electron and use only one proton pathway for the transfer of all protons. This pathway overlaps in space with the K pathway in the A class oxidases without showing any sequence homology though. Here, we review the functional properties of the A- and the B-class ba(3) oxidases with a focus on mechanisms of proton transfer and pumping.  相似文献   

6.
Nitric oxide reductase (NOR) is a key enzyme in denitrification, reforming the N–N bond (making N2O from two NO molecules) in the nitrogen cycle. It is a cytochrome bc complex which has apparently only two subunits, NorB and NorC. It contains two low-spin cytochromes (c and b), and a high-spin cytochrome b which forms a binuclear center with a non-heme iron. NorC contains the c-type heme and NorB can be predicted to bind the other metal centers. NorB is homologous to the major subunit of the heme/copper cytochrome oxidases, and NOR thus belongs to the superfamily, although it has an Fe/Fe active site rather than an Fe/Cu binuclear center and a different catalytic activity. Current evidence suggests that NOR is not a proton pump, and that the protons consumed in NO reduction are not taken from the cytoplasmic side of the membrane. Therefore, the comparison between structural and functional properties of NOR and cytochrome c- and quinol-oxidizing enzymes which function as proton pumps may help us to understand the mechanism of the latter. This review is a brief summary of the current knowledge on molecular biology, structure, and bioenergetics of NOR as a member of the oxidase superfamily.  相似文献   

7.
The NO reductase from Paracoccus denitrificans reduces NO to N2O (2NO + 2H+ + 2e → N2O + H2O) with electrons donated by periplasmic cytochrome c (cytochrome c-dependent NO reductase; cNOR). cNORs are members of the heme-copper oxidase superfamily of integral membrane proteins, comprising the O2-reducing, proton-pumping respiratory enzymes. In contrast, although NO reduction is as exergonic as O2 reduction, there are no protons pumped in cNOR, and in addition, protons needed for NO reduction are derived from the periplasmic solution (no contribution to the electrochemical gradient is made). cNOR thus only needs to transport protons from the periplasm into the active site without the requirement to control the timing of opening and closing (gating) of proton pathways as is needed in a proton pump. Based on the crystal structure of a closely related cNOR and molecular dynamics simulations, several proton transfer pathways were suggested, and in principle, these could all be functional. In this work, we show that residues in one of the suggested pathways (denoted pathway 1) are sensitive to site-directed mutation, whereas residues in the other proposed pathways (pathways 2 and 3) could be exchanged without severe effects on turnover activity with either NO or O2. We further show that electron transfer during single-turnover reduction of O2 is limited by proton transfer and can thus be used to study alterations in proton transfer rates. The exchange of residues along pathway 1 showed specific slowing of this proton-coupled electron transfer as well as changes in its pH dependence. Our results indicate that only pathway 1 is used to transfer protons in cNOR.  相似文献   

8.
One of the key problems of molecular bioenergetics is the understanding of the function of redox-driven proton pumps on a molecular level. One such class of proton pumps are the heme-copper oxidases. These enzymes are integral membrane proteins in which proton translocation across the membrane is driven by electron transfer from a low-potential donor, such as, e.g. cytochrome c, to a high-potential acceptor, O(2). Proton pumping is associated with distinct exergonic reaction steps that involve gradual reduction of oxygen to water. During the process of O(2) reduction, unprotonated high pK(a) proton acceptors are created at the catalytic site. Initially, these proton acceptors become protonated as a result of intramolecular proton transfer from a residue(s) located in the membrane-spanning part of the enzyme, but removed from the catalytic site. This residue is then reprotonated from the bulk solution. In cytochrome c oxidase from Rhodobacter sphaeroides, the proton is initially transferred from a glutamate, E(I-286), which has an apparent pK(a) of 9.4. According to a recently published structure of the enzyme, the deprotonation of E(I-286) is likely to result in minor structural changes that propagate to protonatable groups on the proton output (positive) side of the protein. We propose that in this way, the free energy available from the O(2) reduction is conserved during the proton transfer. On the basis of the observation of these structural changes, a possible proton-pumping model is presented in this paper. Initially, the structural changes associated with deprotonation of E(I-286) result in the transfer of a proton to an acceptor for pumped protons from the input (negative) side of the membrane. After reprotonation of E(I-286) this acceptor releases a proton to the output side of the membrane.  相似文献   

9.
Cytochrome ba3 from Thermus thermophilus belongs to the B family of heme-copper oxidases and pumps protons across the membrane with an as yet unknown mechanism. The K channel of the A family heme-copper oxidases provides delivery of a substrate proton from the internal water phase to the binuclear heme-copper center (BNC) during the reductive phase of the catalytic cycle, while the D channel is responsible for transferring both substrate and pumped protons. By contrast, in the B family oxidases there is no D-channel and the structural equivalent of the K channel seems to be responsible for the transfer of both categories of protons. Here we have studied the effect of the T315V substitution in the K channel on the kinetics of membrane potential generation coupled to the oxidative half-reaction of the catalytic cycle of cytochrome ba3. The results suggest that the mutated enzyme does not pump protons during the reaction of the fully reduced form with molecular oxygen in a single turnover. Specific inhibition of proton pumping in the T315V mutant appears to be a consequence of inability to provide rapid (τ ~ 100 μs) reprotonation of the internal transient proton donor(s) of the K channel. In contrast to the A family, the K channel of the B-type oxidases is necessary for the electrogenic transfer of both pumped and substrate protons during the oxidative half-reaction of the catalytic cycle.  相似文献   

10.
Flock U  Watmough NJ  Adelroth P 《Biochemistry》2005,44(31):10711-10719
The respiratory nitric oxide reductase (NOR) from Paracoccus denitrificans catalyzes the two-electron reduction of NO to N(2)O (2NO + 2H(+) + 2e(-) --> N(2)O + H(2)O), which is an obligatory step in the sequential reduction of nitrate to dinitrogen known as denitrification. NOR has four redox-active cofactors, namely, two low-spin hemes c and b, one high-spin heme b(3), and a non-heme iron Fe(B), and belongs to same superfamily as the oxygen-reducing heme-copper oxidases. NOR can also use oxygen as an electron acceptor; this catalytic activity was investigated in this study. We show that the product in the steady-state reduction of oxygen is water. A single turnover of the fully reduced NOR with oxygen was initiated using the flow-flash technique, and the progress of the reaction monitored by time-resolved optical absorption spectroscopy. Two major phases with time constants of 40 micros and 25 ms (pH 7.5, 1 mM O(2)) were observed. The rate constant for the faster process was dependent on the O(2) concentration and is assigned to O(2) binding to heme b(3) at a bimolecular rate constant of 2 x 10(7) M(-)(1) s(-)(1). The second phase (tau = 25 ms) involves oxidation of the low-spin hemes b and c, and is coupled to the uptake of protons from the bulk solution. The rate constant for this phase shows a pH dependence consistent with rate limitation by proton transfer from an internal group with a pK(a) = 6.6. This group is presumably an amino acid residue that is crucial for proton transfer to the catalytic site also during NO reduction.  相似文献   

11.
Respiratory heme-copper oxidases are integral membrane proteins that catalyze the reduction of molecular oxygen to water using electrons donated by either quinol (quinol oxidases) or cytochrome c (cytochrome c oxidases, CcOs). Even though the X-ray crystal structures of several heme-copper oxidases and results from functional studies have provided significant insights into the mechanisms of O2 -reduction and, electron and proton transfer, the design of the proton-pumping machinery is not known. Here, we summarize the current knowledge on the identity of the structural elements involved in proton transfer in CcO. Furthermore, we discuss the order and timing of electron-transfer reactions in CcO during O2 reduction and how these reactions might be energetically coupled to proton pumping across the membrane.  相似文献   

12.
The thermohalophilic bacterium Rhodothermus marinus expresses a caa(3)-type dioxygen reductase as one of its terminal oxidases. The subunit I amino acid sequence shows the presence of all the essential residues of the D- and K-proton channels, defined in most heme-copper oxidases, with the exception of the key glutamate residue located in the middle of the membrane dielectric (E278 in Paracoccus denitrificans). On the basis of homology modeling studies, a tyrosine residue (Y256, R. marinus numbering) has been proposed to act as a functional substitute [Pereira, M. M., Santana, M., Soares, C. M., Mendes, J., Carita, J. N., Fernandes, A. S., Saraste, M., Carrondo, M. A., and Teixeira, M. (1999) Biochim. Biophys. Acta 1413, 1-13]. Here, R. marinus caa(3) oxidase was reconstituted in liposomes and shown to operate as a proton pump, translocating protons from the cytoplasmic side of the bacterial inner membrane to the periplasmatic space with a stoichiometry of 1H(+)/e(-), as in the case in heme-copper oxidases that contain the glutamate residue. Possible mechanisms of proton transfer in the D-channel with the participation of the tyrosine residue are discussed. The observation that the tyrosine residue is conserved in several other members of the heme-copper oxidase superfamily suggests a common alternative mode of action for the D-channel.  相似文献   

13.
Heme-copper oxidases are membrane-bound proteins that catalyze the reduction of O(2) to H(2)O, a highly exergonic reaction. Part of the free energy of this reaction is used for pumping of protons across the membrane. The ba(3) oxidase from Thermus thermophilus presumably uses a single proton pathway for the transfer of substrate protons used during O(2) reduction as well as for the transfer of the protons that are pumped across the membrane. The pumping stoichiometry (0.5 H(+)/electron) is lower than that of most other (mitochondrial-like) oxidases characterized to date (1?H(+)/electron). We studied the pH dependence and deuterium isotope effect of the kinetics of electron and proton transfer reactions in the ba(3) oxidase. The results from these studies suggest that the movement of protons to the catalytic site and movement to a site located some distance from the catalytic site [proposed to be a "proton-loading site" (PLS) for pumped protons] are separated in time, which allows individual investigation of these reactions. A scenario in which the uptake and release of a pumped proton occurs upon every second transfer of an electron to the catalytic site would explain the decreased proton pumping stoichiometry compared to that of mitochondrial-like oxidases.  相似文献   

14.
Hemp J  Han H  Roh JH  Kaplan S  Martinez TJ  Gennis RB 《Biochemistry》2007,46(35):9963-9972
Oxygen reductase members of the heme-copper superfamily are terminal respiratory oxidases in mitochondria and many aerobic bacteria and archaea, coupling the reduction of molecular oxygen to water to the translocation of protons across the plasma membrane. The protons required for catalysis and pumping in the oxygen reductases are derived from the cytoplasmic side of the membrane, transferred via proton-conducting channels comprised of hydrogen bond chains containing internal water molecules along with polar amino acid side chains. Recent analyses identified eight oxygen reductase families in the superfamily: the A-, B-, C-, D-, E-, F-, G-, and H-families of oxygen reductases. Two proton input channels, the K-channel and the D-channel, are well established in the A-family of oxygen reductases (exemplified by the mitochondrial cytochrome c oxidases and by the respiratory oxidases from Rhodobacter sphaeroides and Paracoccus denitrificans). Each of these channels can be identified by the pattern of conserved polar amino acid residues within the protein. The C-family (cbb3 oxidases) is the second most abundant oxygen reductase family after the A-family, making up more than 20% of the sequences of the heme-copper superfamily. In this work, sequence analyses and structural modeling have been used to identify likely proton channels in the C-family. The pattern of conserved polar residues supports the presence of only one proton input channel, which is spatially analogous to the K-channel in the A-family. There is no pattern of conserved residues that could form a D-channel analogue or an alternative proton channel. The functional importance of the residues proposed to be part of the K-channel was tested by site-directed mutagenesis using the cbb3 oxidases from R. sphaeroides and Vibrio cholerae. Several of the residues proposed to be part of the putative K-channel had significantly reduced catalytic activity upon mutation: T219V, Y227F/Y228F, N293D, and Y321F. The data strongly suggest that in the C-family only one channel functions for the delivery of both catalytic and pumped protons. In addition, it is also proposed that a pair of acidic residues, which are totally conserved among the C-family, may be part of a proton-conducting exit channel for pumped protons. The residues homologous to these acidic amino acids are highly conserved in the cNOR family of nitric oxide reductases and have previously been implicated as part of a proton-conducting channel delivering protons from the periplasmic side of the membrane to the enzyme active site in the cNOR family. It is possible that the C-family contains a homologous proton-conducting channel that delivers pumped protons in the opposite direction, from the active site to the periplasm.  相似文献   

15.
The respiratory heme-copper oxidases catalyze reduction of O2 to H2O, linking this process to transmembrane proton pumping. These oxidases have been classified according to the architecture, location and number of proton pathways. Most structural and functional studies to date have been performed on the A-class oxidases, which includes those that are found in the inner mitochondrial membrane and bacteria such as Rhodobacter sphaeroides and Paracoccus denitrificans (aa3-type oxidases in these bacteria). These oxidases pump protons with a stoichiometry of one proton per electron transferred to the catalytic site. The bacterial A-class oxidases use two proton pathways (denoted by letters D and K, respectively), for the transfer of protons to the catalytic site, and protons that are pumped across the membrane. The B-type oxidases such as, for example, the ba3 oxidase from Thermus thermophilus, pump protons with a lower stoichiometry of 0.5 H+/electron and use only one proton pathway for the transfer of all protons. This pathway overlaps in space with the K pathway in the A class oxidases without showing any sequence homology though. Here, we review the functional properties of the A- and the B-class ba3 oxidases with a focus on mechanisms of proton transfer and pumping. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

16.
The c-type nitric oxide reductase (cNOR) from Paracoccus (P.) denitrificans is an integral membrane protein that catalyzes NO reduction; 2NO + 2e + 2H+ → N2O + H2O. It is also capable of catalyzing the reduction of oxygen to water, albeit more slowly than NO reduction. cNORs are divergent members of the heme-copper oxidase superfamily (HCuOs) which reduce NO, do not pump protons, and the reaction they catalyse is non-electrogenic. All known cNORs have been shown to have five conserved glutamates (E) in the catalytic subunit, by P. denitrificans numbering, the E122, E125, E198, E202 and E267. The E122 and E125 are presumed to face the periplasm and the E198, E202 and E267 are located in the interior of the membrane, close to the catalytic site. We recently showed that the E122 and E125 define the entry point of the proton pathway leading from the periplasm into the active site [U. Flock, F.H. Thorndycroft, A.D. Matorin, D.J. Richardson, N.J. Watmough, P. Ädelroth, J. Biol. Chem. 283 (2008) 3839-3845]. Here we present results from the reaction between fully reduced NOR and oxygen on the alanine variants of the E198, E202 and E267. The initial binding of O2 to the active site was unaffected by these mutations. In contrast, proton uptake to the bound O2 was significantly inhibited in both the E198A and E267A variants, whilst the E202A NOR behaved essentially as wildtype. We propose that the E198 and E267 are involved in terminating the proton pathway in the region close to the active site in NOR.  相似文献   

17.
A specific amperometric assay was developed for the membrane-bound NOR [NO (nitric oxide) reductase] from the model denitrifying bacterium Paracoccus denitrificans using its natural electron donor, pseudoazurin, as a co-substrate. The method allows the rapid and specific assay of NO reduction catalysed by recombinant NOR expressed in the cytoplasmic membranes of Escherichia coli. The effect on enzyme activity of substituting alanine, aspartate or glutamine for two highly conserved glutamate residues, which lie in a periplasmic facing loop between transmembrane helices III and IV in the catalytic subunit of NOR, was determined using this method. Three of the substitutions (E122A, E125A and E125D) lead to an almost complete loss of NOR activity. Some activity is retained when either Glu122 or Glu125 is substituted with a glutamine residue, but only replacement of Glu122 with an aspartate residue retains a high level of activity. These results are interpreted in terms of these residues forming the mouth of a channel that conducts substrate protons to the active site of NOR during turnover. This channel is also likely to be that responsible in the coupling of proton movement to electron transfer during the oxidation of fully reduced NOR with oxygen [U. Flock, N. J. Watmough and P. Adelroth (2005) Biochemistry 44, 10711-10719].  相似文献   

18.
Electron- and proton-transfer reactions in bacterial nitric oxide reductase (NOR) have been investigated by optical spectroscopy and electrometry. In liposomes, NOR does not show any generation of an electric potential during steady-state turnover. This electroneutrality implies that protons are taken up from the same side of the membrane as electrons during catalysis. Intramolecular electron redistribution after photolysis of the partially reduced CO-bound enzyme shows that the electron transfer in NOR has the same pathway as in the heme-copper oxidases. The electron is transferred from the acceptor site, heme c, via a low-spin heme b to the binuclear active site (heme b3/FeB). The electron-transfer rate between hemes c and b is (3 +/- 2) x 10(4) s(-1). The rate of electron transfer between hemes b and b3 is too fast to be resolved (>10(6) s(-1)). Only electron transfer between heme c and heme b is coupled to the generation of an electric potential. This implies that the topology of redox centers in NOR is comparable to that in the heme-copper cytochrome oxidases. The optical and electrometric measurements allow identification of the intermediate states formed during turnover of the fully reduced enzyme, as well as the associated proton and electron movement linked to the NO reduction. The first phase (k = 5 x 10(5) s(-1)) is electrically silent, and characterized by the disappearance of absorbance at 433 nm and the appearance of a broad peak at 410 nm. We assign this phase to the formation of a ferrous NO adduct of heme b3. NO binding is followed by a charge separation phase (k = 2.2 x 10(5) s(-1)). We suggest that the formation of this intermediate that is not linked to significant optical changes involves movement of charged side chains near the active site. The next step creates a negative potential with a rate constant of approximately 3 x 10(4) s(-1) and a weak optical signature. This is followed by an electrically silent phase with a rate constant of 5 x 10(3) s(-1) leading to the last intermediate of the first turnover (a rate constant of approximately 10(3) s(-1)). The fully reduced enzyme has four electrons, enough for two complete catalytic cycles. However, the protons for the second turnover must be taken from the bulk, resulting in the generation of a positive potential in two steps. The optical measurements also verify two phases in the oxidation of low-spin hemes. Based on these results, we present mechanistic models of NO reduction by NOR. The results can be explained with a trans mechanism rather than a cis model involving FeB. Additionally, the data open up the possibility that NOR employs a P450-type mechanism in which only heme b3 functions as the NO binding site during turnover.  相似文献   

19.
Gisela Brändén  Peter Brzezinski 《BBA》2006,1757(8):1052-1063
Respiratory heme-copper oxidases are integral membrane proteins that catalyze the reduction of molecular oxygen to water using electrons donated by either quinol (quinol oxidases) or cytochrome c (cytochrome c oxidases, CcOs). Even though the X-ray crystal structures of several heme-copper oxidases and results from functional studies have provided significant insights into the mechanisms of O2-reduction and, electron and proton transfer, the design of the proton-pumping machinery is not known. Here, we summarize the current knowledge on the identity of the structural elements involved in proton transfer in CcO. Furthermore, we discuss the order and timing of electron-transfer reactions in CcO during O2 reduction and how these reactions might be energetically coupled to proton pumping across the membrane.  相似文献   

20.
The D-pathway in A-type cytochrome c oxidases conducts protons from a conserved aspartate on the negatively charged N-side of the membrane to a conserved glutamic acid at about the middle of the membrane dielectric. Extensive work in the past has indicated that all four protons pumped across the membrane on reduction of O(2) to water are transferred via the D-pathway, and that it is also responsible for transfer of two out of the four "chemical protons" from the N-side to the binuclear oxygen reduction site to form product water. The function of the D-pathway has been discussed in terms of an apparent pK(a) of the glutamic acid. After reacting fully reduced enzyme with O(2), the rate of formation of the F state of the binuclear heme-copper active site was found to be independent of pH up to pH~9, but to drop off at higher pH with an apparent pK(a) of 9.4, which was attributed to the glutamic acid. Here, we present an alternative view, according to which the pH-dependence is controlled by proton transfer into the aspartate residue at the N-side orifice of the D-pathway. We summarise experimental evidence that favours a proton pump mechanism in which the proton to be pumped is transferred from the glutamic acid to a proton-loading site prior to proton transfer for completion of oxygen reduction chemistry. The mechanism is discussed by which the proton-pumping activity is decoupled from electron transfer by structural alterations of the D-pathway. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号