首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein polymers (long-chain proteins in which a specific amino acid sequence "monomer" is repeated through the molecule) are found widely in nature, and these materials exhibit a diverse array of physical properties. One class of self-assembling proteins is hydrophobic-polar (HP) protein polymers capable of self-assembly under the appropriate solution conditions. We generated a chimeric protein consisting of an HP protein polymer monomer unit, EAK 1 (sequence n-AEAEAKAKAEAEAKAK-c), and a silaffin peptide, R5 (sequence: n-SSKKSGSYSGSKGSKRRIL-c). First identified in diatoms, silaffins represent a class of proteins and peptides capable of directing silica precipitation in vitro at neutral pH and ambient temperatures. The EAK 1-R5 chimera demonstrated self-assembly into hydrogels and the ability to direct silica precipitation in vitro. This chimera is capable of generating silica morphologies and feature sizes significantly different from those achievable with the R5 peptide alone, indicating that fusions of silaffins with self-assembling proteins may be a route to controlling the morphology of artificially produced silica matrices.  相似文献   

3.
We report here the 6.97-Mb draft genome sequence of Pseudomonas fluorescens strain NCIMB 11764, which is capable of growth on cyanide as the sole nitrogen source. The draft genome sequence allowed the discovery of several genes implicated in enzymatic cyanide turnover and provided additional information contributing to a better understanding of this organism''s unique cyanotrophic ability. This is the first sequenced genome of a cyanide-assimilating bacterium.  相似文献   

4.
5.
Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

6.
It is proposed that the first entity capable of adaptive Darwinian evolution consisted of a liposome vesicle formed of abiotically produced phospholipidlike molecules; a very few informational macromolecules; and some abiogenic, lipid-soluble, organic molecule serving as a symporter for phosphate and protons and as a means of high-energy-bond generation. The genetic material had functions that led to the production of phospholipidlike materials (leading to growth and division of the primitive cells) and of the carrier needed for energy transduction. It is suggested that the most primitive exploitable energy source was the donation of 2H+ + 2e- at the external face of the primitive cell. The electrons were transferred (by metal impurities) to internal sinks of organic material, thus creating, via a deficit, a protonmotive force that could drive both the active transport of phosphate and high-energy-bond formation. This model implies that proton translocation in a closed-membrane system preceded photochemical or electron transport mechanisms and that chemically transferable metabolic energy was needed at a much earlier stage in the development of life than has usually been assumed. It provides a plausible mechanism whereby cell division of the earliest protocells could have been a spontaneous process powered by the internal development of phospholipids. The stimulus for developing this evolutionary sequence was the realization that cellular life was essential if Darwinian "survival of the fittest" was to direct evolution toward adaptation to the external environment.  相似文献   

7.
Desulfotomaculum acetoxidans Widdel and Pfennig 1977 was one of the first sulfate-reducing bacteria known to grow with acetate as sole energy and carbon source. It is able to oxidize substrates completely to carbon dioxide with sulfate as the electron acceptor, which is reduced to hydrogen sulfide. All available data about this species are based on strain 5575(T), isolated from piggery waste in Germany. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a Desulfotomaculum species with validly published name. The 4,545,624 bp long single replicon genome with its 4370 protein-coding and 100 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

8.
The bacterial genus Paracoccus is comprised of metabolically versatile organisms having diverse degradative capabilities and potential industrial and environmental applications for bioremediation in particular. We report a de novo-assembled sequence and annotation of the genome of a novel isolate of Paracoccus denitrificans originally sourced from coal mine tailings in India. The isolate was capable of utilizing N,N-dimethylformamide (DMF) as a source of carbon and nitrogen and therefore holds potential for bioremediation and mineralization of industrial pollutants. The genome sequence and biological circuitry revealed thereupon will be invaluable in understanding the metabolic capabilities, functioning, and evolution of this important bacterial organism.  相似文献   

9.
A growing body of experimental data obtained from sporoderm ontogenetic studies led to the appearance of the ‘micellar’ hypothesis. The hypothesis is that the sequence of sporoderm developmental events represents the sequence of self-assembling micellar mesophases, initiated by genomically given physico-chemical parameters, which are then picked up by physico-chemical self-assembly. However, besides morphological evidence, the best proof of this hypothesis would be an experimental modelling of sporoderm-like patterns. The main idea of this study is to remove the influence of the genome, selecting substances and their concentrations for simulations to replace it, and then to trace what ‘pure’ self-assembly is capable of constructing. Our aim in this study was to simulate mainly young structures in sporoderm development, i.e. the glycocalyx and the primexine. Several polysaccharide gels (as a callose substitute) and surfactants (as glycocalyx and sporopollenin monomer substitutes) were mixed at different concentrations and combinations, thermally set and left to condense. A number of patterns were obtained in colloidal solutions in the course of condensation, simulating structures at different stages of exine development. Their structures were observed and analysed with transmission electron microscopy (TEM). Our first experiments on the modelling of biological patterns in vitro have shown encouraging results.  相似文献   

10.
The amino acid sequence of the membrane glycoprotein of Sindbis virus is specified by the viral genome, but it has not been determined whether the carbohydrate portion of this molecule is specified by the cell or by the virus. We have examined two of the enzyme activities which catalyze transfer of monosaccharides to glycoprotein (sialyl and fucosyl transferases). Comparison of particulate enzyme preparations from infected and uninfected cells showed no difference in either the specific activity or acceptor specificity of these enzymes. This is impressive in view of the fact that the Sindbis membrane glycoprotein is the only glycoprotein synthesized in the infected cell. It was also determined that sialyl transferase from uninfected cells is capable of transferring ((3)H) sialic acid to acceptor prepared from Sindbis membrane glycoprotein. These results imply that at least some of the carbohydrate of the virus glycoprotein can arise by host modification.  相似文献   

11.
We report the complete genome of Thermofilum pendens, a deeply branching, hyperthermophilic member of the order Thermoproteales in the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact, T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features that are common among obligate parasites and thus does not appear to be in the process of becoming a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known previously to utilize peptides as an energy source, but the genome revealed a substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may obtain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogen lyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time that this enzyme has been found outside the Methanosarcinales, and the presence of a presenilin-related protein. The predicted highly expressed proteins do not include proteins encoded by housekeeping genes and instead include ABC transporters for carbohydrates and peptides and clustered regularly interspaced short palindromic repeat-associated proteins.  相似文献   

12.
The mollicutes are cell wall-less bacteria that live in close association with their eukaryotic hosts. Their genomes are strongly reduced and so are their metabolic capabilities. A survey of the available genome sequences reveals that the mollicutes are capable of utilizing sugars as source of carbon and energy via glycolysis. The pentose phosphate pathway is incomplete in these bacteria, and genes encoding enzymes of the tricarboxylic acid cycle are absent from the genomes. Sugars are transported by the phosphotransferase system. As in related bacteria, the phosphotransferase system does also seem to play a regulatory role in the mollicutes as can be concluded from the functionality of the regulatory HPr kinase/phosphorylase. In Mycoplasma pneumoniae, the activity of HPr kinase is triggered in the presence of glycerol. This carbon source may be important for the mollicutes since it is available in epithelial tissues and its metabolism results in the formation of hydrogen peroxide, the major virulence factor of several mollicutes. In plant-pathogenic mollicutes such as Spiroplasma citri, the regulation of carbon metabolism is crucial in the adaptation to life in plant tissues or the insect vectors. Thus, carbon metabolism seems to be intimately linked to pathogenicity in the mollicutes.  相似文献   

13.
Feruloyl esterases constitute an interesting group of enzymes that have the potential for use over a broad range of applications in the agri–food industries. In order to expand the range of available enzymes, we have examined the presence of feruoyl esterase genes present in the genome sequence of the filamentous fungus Neurospora crassa. We have identified an orphan gene (contig 3.544), the translation of which shows sequence identity with known feruloyl esterases. This gene was cloned and the corresponding recombinant protein expressed in Pichia pastoris to confirm that the enzyme (NcFaeD-3.544) exhibits feruloyl esterase activity. Unusually the enzyme was capable of p-coumaric acid release from untreated crude plant cell wall materials. The substrate utilisation preferences of the recombinant enzyme place it in the recently recognised type-D sub-class of feruloyl esterase.  相似文献   

14.
A series of compounds (DAP-AA) composed of an amino acid (AA) and a dialkyl phosphoryl group (DAP) is the basic elements of life chemistry. Self-catalysis of DAP-AA gives the self-assembly oligopeptides, even in aqueous medium at 38°C. The oligo-nucleotides could also be assembled from nucleosides' phosphorylation by DAP-AA. DAP-AA acts as the energy source as well as the phosphoryl donor for the synthesis of nuclic Acids and protein. A general expression for the self assembly system is proposed.  相似文献   

15.
We established a mouse Ltk- cell line that contains within its genome a herpes simplex virus thymidine kinase gene (tk) that had been disrupted by the insertion of the recognition sequence for yeast endonuclease I-SceI. The artificially introduced 18 bp I-SceI recognition sequence was likely a unique sequence in the genome of the mouse cell line. To assess whether an induced double-strand break (DSB) in the genomic tk gene would be repaired preferentially by gene targeting or non-homologous recombination, we electroporated the mouse cell line with endonuclease I-SceI alone, one of two different gene targeting constructs alone, or with I-SceI in conjunction with each of the two targeting constructs. Each targeting construct was, in principle, capable of correcting the defective genomic tk sequence via homologous recombination. tk+ colonies were recovered following electroporation of cells with I-SceI in the presence or absence of a targeting construct. Through the detection of small deletions at the I-SceI recognition sequence in the mouse genome, we present evidence that a specific DSB can be introduced into the genome of a living mammalian cell by yeast endonuclease I-SceI. We further report that a DSB in the genome of a mouse Ltk- cell is repaired preferentially by non-homologous end-joining rather than by targeted homologous recombination with an exogenous donor sequence. The potential utility of this system is discussed.  相似文献   

16.
Molecular evolution in bacteria is examined with an emphasis on cell division. For a bacterial cell to assemble and then divide required an immense amount of integrated cell and molecular biology structures/functions to be present, such as a stable cellular structure, enzyme catalysis, minimal genome, septum formation at mid-cell and mechanisms to take up nutrients and produce and use energy, as well as store it. The first bacterial cell(s) capable of division must have had complex cell and molecular biology functions. At this stage of evolution, they would not have been primitive cells but would have reached a threshold in evolution where cell division occurred in a regulated manner.  相似文献   

17.
To investigate the cause of skeletal muscle weakening during aging we examined the sequence of cellular changes in murine muscles. Satellite cells isolated from single muscle fibers terminally differentiate progressively less well with increasing age of donor. This change is detected before decline in satellite cell numbers and all histological changes examined here. In MSVski transgenic mice, which show type IIb fiber hypertrophy, initial muscle weakness is followed by muscle degeneration in the first year of life. This degeneration is accompanied by a spectrum of changes typical of normal muscle aging and a more marked decline in satellite cell differentiation efficiency. On a myoD-null genetic background, in which satellite cell differentiation is defective, the MSVski muscle phenotype is aggravated. This suggests that, on a wild-type genetic background, satellite cells are capable of repairing MSVski fibers and preserving muscle integrity in early life. We propose that decline in myogenic cell differentiation efficiency is an early event in aging-related loss of muscle function, both in normal aging and in some late-onset muscle degenerative conditions.  相似文献   

18.
19.
An immunogenic sequence from the V3 loop of the MN isolate of human immunodeficiency virus type 1 (HIV-1), His-Ile-Gly-Pro-Gly-Arg-Ala-Phe, was transplanted onto a surface loop of the VP2 capsid protein of human rhinovirus 14. To optimize for virus viability and immunogenicity of the transplanted sequence, the HIV sequence was flanked by (1) a cysteine residue that could form a disulfide bond and (2) randomized amino acids (in either of two arrangements) to generate numerous presentations of the Cys-Cys loop. The location for engineering in VP2 was chosen by searching the geometries of disulfide-bound loops in known protein structures. A model for the structure of the transplanted V3 loop sequence was developed using molecular dynamics and energy minimization calculations. Proteolytic digestion with and without reducing agent demonstrated the presence of the disulfide bond in the chimeric virus examined. Monoclonal and polyclonal antibodies directed against the V3 region of the HIV-1MN strain potently neutralized two chimeric viruses. Guinea pig antisera against two chimeric viruses were able to neutralize HIV-1MN and HIV-1ALA-1 in cell culture. The ability of chimeric viruses to elicit antibodies capable of neutralizing the source of the transplanted sequence could be favorable for vaccine development.  相似文献   

20.
In order to achieve high level expression and to study the release of a protein capable of self-assembly, the gene encoding the crystalline cell surface (S-layer) protein SbsA of Bacillus stearothermophilus PV72/p6, including its signal sequence, was cloned and expressed in Bacillus subtilis. To obtain high level expression, a tightly regulated, xylose-inducible, stably replicating multicopy-plasmid vector was constructed. After induction of expression, the S-layer protein made up about 15% of the total cellular protein content, which was comparable to the SbsA content of B. stearothermophilus PV72/p6 cells. During all growth stages, SbsA was poorly secreted to the ambient cellular environment by B. subtilis. Extraction of whole cells with guanidine hydrochloride showed that in late stationary growth phase cells 65% of the synthesised SbsA was retained in the peptidoglycan-containing layer, indicating that the rigid cell wall layer was a barrier for efficient SbsA secretion. Electron microscopic investigation revealed that SbsA release from the peptidoglycan-containing layer started in the late stationary growth phase at distinct sites at the cell surface leading to the formation of extracellular self-assembly products which did not adhere to the cell wall surface. In addition, intracellular sheet-like SbsA self-assembly products which followed the curvature of the cell became visible in partly lysed cells. Intracellularly formed self-assembly products remained intact even after complete lysis of the rigid cell envelope layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号