首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to test the hypothesis that high-frequency oscillations in insulin release is a part of the mechanistic basis of a prompt and adequate insulin response to iv-glucose and GLP-1 exposure. In ten healthy subjects, five different insulin release patterns were induced for 360 min using computer-based glucose infusion (glucose delivered in a constant, a regular pulsatile, an irregular pulse frequency, an irregular pulse amplitude or a regular but very fast-pulsatile manner) in healthy subjects. The amount of glucose infused was identical in all five protocols (24 mg/kg/h). After 360 min, insulin secretion was assessed by means of a first-phase insulin secretion test (25 g glucose) and injection of GLP-1 (9 microg). By frequent blood sampling and analysis of insulin concentration, glucose-induced entrainment was evident in all protocols except in the constant infusion and the very fast-pulse protocol. The first-phase insulin release to glucose and GLP-1-induced insulin release were, however, comparable in the protocols. We therefore conclude from this short-term experimental setting in healthy subjects that beta-cell response to either iv-glucose or GLP-1 is independent of the preceding regularity of oscillations in insulin release.  相似文献   

2.
Beta- and alpha-cell dysfunction in type 2 diabetes.   总被引:3,自引:0,他引:3  
Insulin resistance is a common pathogenetic feature of type 2 diabetes. However, hyperglycemia would not develop if a concomitant defect in insulin secretion were not present. Impaired insulin secretion results from functional and survival defects of the beta-cell. The functional defects can be demonstrated early in the natural history of diabetes and they are hallmarked by abnormal pulsatility of basal insulin secretion and loss of first-phase insulin release in response to a glucose challenge. Moreover, a significant reduction of the beta-cell mass is apparent at the time of the diagnosis of diabetes. The progressive increase in glucose levels, that seems to characterize the natural history of type 2 diabetes, has been claimed to be largely due to progressive reduction of function and mass of beta-cells. Although a genetic predisposition is likely to account for impaired insulin secretion, chronic exposure to hyperglycemia and high circulating FFA is likely to contribute to both functional and survival defects. The disturbance in the endocrine activity of the pancreas is not limited to insulin, since a concomitant increase in fasting plasma glucagon and impaired suppression after the ingestion of an oral glucose load are often observed. This alteration becomes prominent after the ingestion of a mixed meal, when plasma glucagon remains much higher in the diabetic patient as compared to normal individuals. The disproportionate changes in the plasma concentration of the two pancreatic hormones is clearly evident when the insulin:glucagon molar ratio is considered. It is the latter that mainly affects hepatic glucose production. Because of the reduction of the insulin:glucagon molar ratio basal endogenous glucose concentration will be higher causing fasting hyperglycemia, while the hepatic glucose output will not be efficiently suppressed after the ingestion of a meal, contributing to excessive post-prandial glucose rise. Correcting beta- and alpha-cell dysfunction becomes, therefore, an attractive and rational therapeutic approach, particularly in the light of new treatments that may directly act on these pathogenetic mechanisms of type 2 diabetes.  相似文献   

3.
Insulin supplements, predominantly as a constant basal fish insulin infusion, were given to patients with mild diabetes to reduce the overnight fasting glucose level to normal. The basal plasma human insulin levels were reduced to subnormal levels by the infusion, and the insulin response to intravenous glucose was enhanced. The beta-cell in diabetes seems to be in a vicious circle in which an impaired insulin response to glucose produces hyperglycaemia, which stresses beta-cell function, making it more inefficient. A constant basal insulin supplement to induce basal normoglycaemia may benefit beta-cell function in diabetes.  相似文献   

4.
In health insulin is secreted in discrete insulin secretory bursts from pancreatic beta-cells, collectively referred to as beta-cell mass. We sought to establish the relationship between beta-cell mass, insulin secretory-burst mass, and hepatic insulin clearance over a range of age-related insulin sensitivity in adult rats. To address this, we used a novel rat model with chronically implanted portal vein catheters in which we recently established the parameters to permit deconvolution of portal vein insulin concentration profiles to measure insulin secretion and resolve its pulsatile components. In the present study, we examined total and pulsatile insulin secretion, insulin sensitivity, hepatic insulin clearance, and beta-cell mass in 35 rats aged 2-12 mo. With aging, insulin sensitivity declined, but euglycemia was sustained by an adaptive increase in fasting and glucose-stimulated insulin secretion through the mechanism of a selective augmentation of insulin pulse mass. The latter was attributable to a closely related increase in beta-cell mass (r=0.8, P<0.001). Hepatic insulin clearance increased with increasing portal vein insulin pulse amplitude, damping the delivery of insulin in the systemic circulation. In consequence, the curvilinear relationship previously reported between insulin secretion and insulin sensitivity was extended to both insulin pulse mass and beta-cell mass vs. insulin sensitivity. These data support a central role of adaptive changes in beta-cell mass to permit appropriate insulin secretion in the setting of decreasing insulin sensitivity in the aging animal. They emphasize the cooperative role of pancreatic beta-cells and the liver in regulating the secretion and delivery of insulin to the systemic circulation.  相似文献   

5.
In healthy subjects, basal endogenous glucose production is partly regulated by paracrine intrahepatic factors. It is currently unknown whether paracrine intrahepatic factors also influence the increased basal endogenous glucose production in patients with type 2 diabetes mellitus. Administration of indomethacin to patients with type 2 diabetes mellitus stimulates endogenous glucose production and inhibits insulin secretion. Our aim was to evaluate whether this stimulatory effect on glucose production is solely attributable to inhibition of insulin secretion. In order to do this, we administered indomethacin to 5 patients with type 2 diabetes during continuous infusion of somatostatin to block endogenous insulin and glucagon secretion and infusion of basal concentrations of insulin and glucagon in a placebo-controlled study. Endogenous glucose production was measured 3 hours after the start of the somatostatin, insulin and glucagon infusion, for 4 hours after administration of placebo/indomethacin, by primed, continuous infusion of [6,6-(2)H(2)] glucose. At the time of administration of placebo or indomethacin, there were no significant differences in plasma glucose concentrations and endogenous glucose production rates between the two experiments (16.4 +/- 2.09 mmol/l vs. 16.6 +/- 1.34 mmol/l and 17.7 +/- 1.05 micromol/kg/min and 17.0 +/- 1.06 micromol/kg/min), control vs. indomethacin). Plasma glucose concentration did not change significantly in the four hours after indomethacin or placebo administration. Endogenous glucose production in both experiments was similar after both placebo and indomethacin. Mean plasma C-peptide concentrations were all below the detection limit of the assay, reflecting adequate suppression of endogenous insulin secretion by somatostatin. There were no differences in plasma concentrations of insulin (76 +/- 5 vs. 74 +/- 4 pmol/l) and glucagon (69 +/- 8 vs. 71 +/- 6 ng/l) between the studies with levels remaining unchanged in both experiments. Plasma concentrations of cortisol, epinephrine, and norepinephrine were similar in the two studies and did not change significantly. We conclude that indomethacin stimulates endogenous glucose production in patients with type 2 diabetes mellitus by inhibition of insulin secretion.  相似文献   

6.
Elevated plasma FFA cause beta-cell lipotoxicity and impair insulin secretion in nondiabetic subjects predisposed to type 2 diabetes mellitus [T2DM; i.e., with a strong family history of T2DM (FH+)] but not in nondiabetic subjects without a family history of T2DM. To determine whether lowering plasma FFA with acipimox, an antilipolytic nicotinic acid derivative, may enhance insulin secretion, nine FH+ volunteers were admitted twice and received in random order either acipimox or placebo (double-blind) for 48 h. Plasma glucose/insulin/C-peptide concentrations were measured from 0800 to 2400. On day 3, insulin secretion rates (ISRs) were assessed during a +125 mg/dl hyperglycemic clamp. Acipimox reduced 48-h plasma FFA by 36% (P < 0.001) and increased the plasma C-peptide relative to the plasma glucose concentration or DeltaC-peptide/Deltaglucose AUC (+177%, P = 0.02), an index of improved beta-cell function. Acipimox improved insulin sensitivity (M/I) 26.1 +/- 5% (P < 0.04). First- (+19 +/- 6%, P = 0.1) and second-phase (+31 +/- 6%, P = 0.05) ISRs during the hyperglycemic clamp also improved. This was particularly evident when examined relative to the prevailing insulin resistance [1/(M/I)], as both first- and second-phase ISR markedly increased by 29 +/- 7 (P < 0.05) and 41 +/- 8% (P = 0.02). There was an inverse correlation between fasting FFA and first-phase ISR (r2 = 0.31, P < 0.02) and acute (2-4 min) glucose-induced insulin release after acipimox (r2 =0.52, P < 0.04). In this proof-of-concept study in FH+ individuals predisposed to T2DM, a 48-h reduction of plasma FFA improves day-long meal and glucose-stimulated insulin secretion. These results provide additional evidence for the important role that plasma FFA play regarding insulin secretion in FH+ subjects predisposed to T2DM.  相似文献   

7.
It has previously been shown that insulin is secreted in discrete secretory bursts by sampling directly from the portal vein in the dog and humans. Deficient pulsatile insulin secretion is the basis for impaired insulin secretion in type 2 diabetes. However, while novel genetically modified disease models of diabetes are being developed in rodents, no validated method for quantifying pulsatile insulin secretion has been established for rodents. To address this we 1) developed a novel rat model with chronically implanted portal vein catheters, 2) established the parameters to permit deconvolution of portal vein insulin concentrations profiles to measure insulin secretion and resolve its pulsatile components, and 3) measured total and pulsatile insulin secretion compared with that in the dog, the species in which this sampling and deconvolution approach was validated for quantifying pulsatile insulin secretion. In rats, portal vein catheter patency and function were maintained for periods up to 2-3 wk with no postoperative complications such as catheter tract infection. Rat portal vein insulin concentration profiles in the fasting state revealed distinct insulin oscillations with a periodicity of approximately 5 min and an amplitude of up to 600 pmol/l, which was remarkably similar to that in the dogs and in humans. Deconvolution analysis of portal vein insulin concentrations revealed that the majority of insulin ( approximately 70%) in the rat is secreted in distinct insulin pulses occurring at approximately 5-min intervals. This model therefore permits direct accurate measurements of pulsatile insulin secretion in a relatively inexpensive animal. With increased introduction of genetically modified rat models will be an important tool in elucidating the underlying mechanisms of impaired pulsatile insulin secretion in diabetes.  相似文献   

8.
This study tested the hypothesis that central mechanisms regulating luteinizing hormone (LH) secretion are responsive to insulin. Our approach was to infuse insulin into the lateral ventricle of six streptozotocin-induced diabetic sheep in an amount that is normally present in the CSF when LH secretion is maintained by peripheral insulin administration. In the first experiment, we monitored cerebrospinal fluid (CSF) insulin concentrations every 3-5 h in four diabetic sheep given insulin by peripheral injection (30 IU). The insulin concentration in the CSF was increased after insulin injection, and there was a positive relationship between CSF and plasma concentrations of insulin (r = 0.80, P < 0.01). In the second experiment, peripheral insulin administration was discontinued, and the sheep received either an intracerebroventricular (i.c.v.) infusion of insulin (12 mU/day in 2.4 ml saline) or saline (2.4 ml/day) for 5 days (n = 6) in a crossover design. The dose of insulin (i.c.v.) was calculated to approximate the increase in CSF insulin concentration found after peripheral insulin treatment. To monitor LH secretory patterns, blood samples were collected by jugular venipuncture at 10-min intervals for 4 h on the day before and 5 days after the start of i.c.v. insulin infusion. To monitor the increase in CSF insulin concentrations, a single CSF sample was collected one and four days after the start of the central infusion. The i.c.v. insulin infusion increased CSF insulin concentrations above those in saline-treated animals (P < 0.05) and maintained them at or above the peak levels achieved after peripheral insulin treatment. Central insulin infusion did not affect peripheral (plasma) insulin or glucose concentrations. LH pulse frequency in insulin-treated animals was greater than that in saline-treated animals (3.5 +/- 0.2 vs. 2.3 +/- 0.3 pulses/4 h, P < 0.01), but it was less than that during peripheral insulin treatment (4.8 +/- 0.2 pulses/4 h, P < 0.01). Our findings suggest that physiologic levels of central insulin supplementation are able to increase pulsatile LH secretion in diabetic sheep with low peripheral insulin. These results are consistent with the notion that central insulin plays a role in regulating pulsatile GnRH secretion.  相似文献   

9.
Glucagon counterregulation (GCR) is a key protection against hypoglycemia that is compromised in diabetes via an unknown mechanism. To test the hypothesis that alpha-cell-inhibiting signals that are switched off during hypoglycemia amplify GCR, we studied streptozotocin (STZ)-treated male Wistar rats and estimated the effect on GCR of intrapancreatic infusion and termination during hypoglycemia of saline, insulin, and somatostatin. Times 10 min before and 45 min after the switch-off were analyzed. Insulin and somatostatin, but not saline, switch-off significantly increased the glucagon levels (P = 0.03), and the fold increases relative to baseline were significantly higher (P < 0.05) in the insulin and somatostatin groups vs. the saline group. The peak concentrations were also higher in the insulin (368 pg/ml) and somatostatin (228 pg/ml) groups vs. the saline (114 pg/ml) group (P < 0.05). GCR was pulsatile in most animals, indicating a feedback regulation. After the switch-off, the number of secretory events and the total pulsatile production were lower in the saline group vs. the insulin and somatostatin groups (P < 0.05), indicating enhancement of glucagon pulsatile activity by insulin and somatostatin compared with saline. Network modeling analysis demonstrates that reciprocal interactions between alpha- and delta-cells can explain the amplification by interpreting the GCR as a rebound response to the switch-off. The model justifies experimental designs to further study the intrapancreatic network in relation to the switch-off phenomenon. The results of this proof-of-concept interdisciplinary study support the hypothesis that GCR develops as a rebound pulsatile response of the intrapancreatic endocrine feedback network to switch-off of alpha-cell-inhibiting islet signals.  相似文献   

10.
The effects of an intravenous infusion of porcine GIP on beta-cell secretion in patients with untreated type 2 diabetes mellitus have been studied. The subjects were studied on two separate days. After a 10 h overnight fast and a further 120 min basal period they were given an intravenous infusion of porcine GIP (2 pmol.kg-1.min-1) or control solution in random order from 120-140 min. Frequent plasma glucose, insulin, C-peptide and GIP measurements were made throughout and the study was continued until 200 min. Plasma glucose levels were similar throughout both tests. During the GIP infusion there was an early significant rise in insulin concentration from 0.058 +/- 0.006 nmol/l to 0.106 +/- 0.007 nmol/l (P less than 0.01) within 6 min of commencing the GIP infusion and insulin levels reached a peak of 0.131 +/- 0.011 nmol/l at 10 min (P less than 0.01). Insulin levels remained significantly elevated during the rest of the GIP infusion (P less than 0.01-0.001) and returned to basal values 20 min post infusion. No change in basal insulin values was seen during the control infusion. C-peptide levels were similarly raised during the GIP infusion and the increase was significant just 4 min after commencing the GIP infusion (P less than 0.05). GIP levels increased from 16 +/- 3 pmol/l prior to the infusion to a peak of 286 +/- 24 pmol/l 20 min later. At 4 min when a significant beta-cell response was observed GIP levels were well within the physiological range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effect of cyclic somatostatin on circulating insulin levels was studied in eight patients with insulin-dependent diabetes mellitus (IDDM). The study was performed after an overnight fast when their subcutaneous depots of insulin had been depleted during i.v. insulin substitution for 18 hours. A constant rate i.v. insulin infusion (0.4 mU/kg/min) was given for 240 min and somatostatin was co-infused between 60-120 min (100 micrograms/h) and 180-240 min (250 micrograms/h) respectively. Plasma insulin, blood glucose and hematocrit were measured at 15 min intervals. Hematocrit fell from 41.7 to 38.3% during the study period. Somatostatin increased the plasma insulin levels, corrected for the changes of hematocrit, by approximately 8% in the low dose (P less than 0.05) as well as in the high dose (P less than 0.05) period. It is concluded that somatostatin interferes with the clearance of insulin thereby increasing the circulating plasma insulin levels in IDDM patients without residual insulin secretion.  相似文献   

12.
13.
IGFBP-1 is involved in glucohomeostasis, but the direct action of IGFBP-1 on the beta-cell remains unclear. Incubation of dispersed mouse beta-cells with IGFBP-1 for 30min inhibited insulin secretion stimulated by glucose, glucagon-like peptide 1 (GLP-1) or tolbutamide without changes in basal release of insulin and in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and NAD(P)H evoked by glucose. In contrast, IGFBP-1 augmented glucose-stimulated insulin secretion in intact islets, associated with a reduced somatostatin secretion. These results suggest a suppressive action of IGFBP-1 on insulin secretion in isolated beta-cells through a mechanism distal to energy generating steps and not involving regulation of [Ca(2+)](i). In contrast, IGFBP-1 amplifies glucose-stimulated insulin secretion in intact islets, possibly by suppressing somatostatin secretion. These direct modulatory influences of IGFBP-1 on insulin secretion may imply an important regulatory role of IGFBP-1 in vivo and in the pathogenesis of type 2 diabetes, in which loss of insulin release is an early pathogenetic event.  相似文献   

14.
The present study was undertaken to establish in normal volunteers the alterations in beta-cell responsiveness to glucose associated with a constant infusion of glucagon-like peptide-1 (GLP-1) or a pretreatment infusion for 60 min. A high-dose graded glucose infusion protocol was used to explore the dose-response relationship between glucose and insulin secretion. Studies were performed in 10 normal volunteers, and insulin secretion rates (ISR) were calculated by deconvolution of peripheral C-peptide levels by use of a two-compartmental model that utilized mean kinetic parameters. During the saline study, from 5 to 15 mM glucose, the relationship between glucose and ISR was linear. Constant GLP-1 infusion (0.4 pmol x kg(-1) x min(-1)) shifted the dose-response curve to the left, with an increase in the slope of this curve from 5 to 9 mM glucose from 71.0 +/- 12.4 pmol x min(-1) x mM(-1) during the saline study to 241.7 +/- 36.6 pmol x min(-1) x mM(-1) during the constant GLP-1 infusion (P < 0.0001). GLP-1 consistently stimulated a >200% increase in ISR at each 1 mM glucose interval, maintaining plasma glucose at <10 mM (P < 0.0007). Pretreatment with GLP-1 for 60 min resulted in no significant priming of the beta-cell response to glucose (P = 0.2). Insulin clearance rates were similar in all three studies at corresponding insulin levels. These studies demonstrate that physiological levels of GLP-1 stimulate glucose-induced insulin secretion in a linear manner, with a consistent increase in ISR at each 1 mM glucose interval, and that they have no independent effect on insulin clearance and no priming effect on subsequent insulin secretory response to glucose.  相似文献   

15.
Prolonged periods of "beta-cell rest" exert beneficial effects on insulin secretion from pancreatic islets subjected to a high-glucose environment. Here, we tested for effects of short-term intermittent rest achieved by diazoxide. Rat islets were cultured for 48 h with 27 mmol/l glucose alone, with diazoxide present for 2 h every 12 h or with continuous 48-h presence of diazoxide. Both protocols with diazoxide enhanced the postculture insulin response to 27 mmol/l glucose, to 200 mumol/l tolbutamide, and to 20 mmol/l KCl. Intermittent diazoxide did not affect islet insulin content and enhanced only K(ATP)-dependent secretion, whereas continuous diazoxide increased islet insulin contents and enhanced both K(ATP)-dependent and -independent secretory effects of glucose. Intermittent and continuous diazoxide alike increased postculture ATP-to-ADP ratios, failed to affect [(14)C]glucose oxidation, but decreased oxidation of [(14)C]oleate. Neither of the two protocols affected gene expression of the ion channel-associated proteins Kir6.2, sulfonylurea receptor 1, voltage-dependent calcium channel-alpha1, or Kv2.1. Continuous, but not intermittent, diazoxide decreased significantly mRNA for uncoupling protein-2. A 2-h exposure to 20 mmol/l KCl or 10 mumol/l cycloheximide abrogated the postculture effects of intermittent, but not of continuous, diazoxide. Intermittent diazoxide decreased islet levels of the SNARE protein SNAP-25, and KCl antagonized this effect. Thus short-term intermittent diazoxide treatment has beneficial functional effects that encompass some but not all characteristics of continuous diazoxide treatment. The results support the soundness of intermittent beta-cell rest as a treatment strategy in type 2 diabetes.  相似文献   

16.
Insulin is secreted as a series of punctuated secretory bursts superimposed on variable basal insulin release. The contribution of these secretory bursts to overall insulin secretion has been estimated on the basis of peripheral vein sampling in humans to encompass > or =75% of overall insulin release. A similar contribution of the pulsatile mode of release was inferred in a canine model by use of portal vein sampling. The primary regulation of insulin secretion is through perturbation of the mass and frequency of these secretory bursts. The mode of delivery of insulin into the circulation seems important for insulin action; therefore, physiological conditions that alter the pattern of insulin release may affect insulin action through this mechanism. Transhepatic intraportal shunt in humans may provide access to portal vein samples, thus potentially improving the sensitivity of detecting and quantitating the frequency, mass, and amplitude of secretory bursts along with basal release and the regularity of these variables. To establish the insulin-secretory mechanism in nondiabetic humans by the use of portal vein sampling, we here assessed the mass, frequency, amplitude, and overall contribution of pulsatile insulin secretion by deconvolution analysis of portal vein insulin profiles. We find that, in nondiabetic humans fasted overnight, the portal vein insulin concentration oscillates at a periodicity of 4.1 +/- 0.2 min/pulse and with secretory peak amplitudes averaging 660% of basal (interpulse) release. The frequency was confirmed by spectral and autocorrelation analyses. The punctuated insulin-secretory bursts partially overlap and are responsible for the majority (70 +/- 4%) of insulin release. After ingestion of a mixed meal, the insulin release was increased through amplification of the secretory burst mass (507 +/- 104 vs. 1,343 +/- 211 pmol x l(-1) x min(-1), P < 0.001), whereas frequency (4.4 +/- 0.2 vs. 4.3 +/- 0.2, P = 0.86) and basal secretion (62 +/- 14 vs. 91 +/- 22 pmol x l(-1) x min(-1), P = 0.33) were unaffected. One subject with diabetes and cirrhosis had a similar insulin-secretory pattern, whereas a subject with insulin-dependent diabetes mellitus and minimal insulin release had preserved pulsatile release. A single subject was entrained to show agreement between entrained frequency and portal vein insulin oscillations. We conclude that insulin release in the human portal vein occurs at a mean periodicity of 4.4 +/- 0.2 min with a high signal-to-noise ratio (pulse amplitude 660% of basal). The impact of noise on the detected high frequency cannot be excluded.  相似文献   

17.
High plasma fatty acid availability and a positive energy balance in sedentary individuals reduce insulin sensitivity. This study's purpose was to determine whether high plasma fatty acid availability and systemic caloric excess after exercise also impair insulin sensitivity. On two separate occasions, seven nonobese women performed 90 min of exercise at approximately 65% peak oxygen uptake. In one trial, a lipid + heparin emulsion (Lipid) was infused overnight to increase plasma fatty acid availability. In the other trial, saline was infused as control. The next morning, a muscle biopsy was taken to measure muscle glycogen and intramuscular triglyceride (IMTG) concentrations. Three hours after the overnight infusion was stopped, insulin sensitivity was assessed with an intravenous glucose tolerance test, using minimal model analysis (Si). During the overnight infusions, plasma fatty acid concentration was approximately fourfold higher [means (SD): 0.84 (0.36) vs. 0.22 (0.09) mmol/l; P = 0.003], and the next morning IMTG concentration was approximately 30% greater [49.2 (6.6) vs. 38.3 (7.7) mmol/kg dry wt; P = 0.036] in Lipid compared with saline. However, muscle glycogen concentration was not different between trials (P = 0.82). Lipid caused a 24-h surplus of approximately 1100 kcal above energy balance (P = 0.00001), whereas energy balance was maintained in saline. Despite these differences in fatty acid and energy availability, Si the morning after exercise was not different between trials (P = 0.72). Thus insulin sensitivity the morning after a single exercise session was not reduced despite overnight exposure to a fourfold increase in plasma fatty acid concentration, elevated IMTG concentration, and systemic delivery of approximately 1,100-kcal excess.  相似文献   

18.
The fasting proinsulin-to-insulin ratio is a currently used marker of beta-cell dysfunction. This ratio is calculated at the basal condition, but its behavior in dynamic conditions, i.e., during glucose stimulation, could be more informative. Given the different kinetics of the peptides, a mathematical model was necessary to analyze the oral glucose tolerance test (OGTT) data of insulin, C-peptide, and proinsulin in 55 healthy (NGT), 30 impaired glucose-tolerant (IGT), and 31 type 2 diabetic (T2DM) subjects. The model provided for secretion and disappearance of the peptides and an index of beta-cell function under dynamic conditions. Total proinsulin secretion during the OGTT was not different (P > 0.053) among NGT (0.17 +/- 0.01 mmol/l in 3 h), IGT (0.22 +/- 0.02), and T2DM (0.21 +/- 0.02) subjects. The proinsulin-to-insulin molar ratio measured from basal samples was higher (P < 0.0001) in T2DM (0.39 +/- 0.05) than in NGT (0.14 +/- 0.01) and IGT (0.13 +/- 0.02) subjects, and similar results (P < 0.003) were found by the dynamic index (0.27 +/- 0.04, 0.14 +/- 0.01, 0.15 +/- 0.01 in T2DM, NGT, IGT subjects, respectively). The basal ratio significantly correlated with the dynamic index, and the regression line slope was lower than 1 (0.43 +/- 0.08, 0.61 +/- 0.10, and 0.56 +/- 0.03 in NGT, IGT, and T2DM subjects, respectively, P < 0.0001). Impaired beta-cell function in T2DM could then be indicated by proinsulin-to-insulin indexes at both basal and dynamic phases.  相似文献   

19.
Insulin is secreted in discrete insulin secretory bursts. Regulation of insulin release is accomplished almost exclusively by modulation of insulin pulse mass, whereas the insulin pulse interval remains stable at approximately 4 min. It has been reported that in vivo insulin pulses can be entrained to a pulse interval of approximately 10 min by infused glucose oscillations. If oscillations in glucose concentration play an important role in the regulation of pulsatile insulin secretion, abnormal or absent glucose oscillations, which have been described in type 2 diabetes, might contribute to the defective insulin secretion. Using perifused human islets exposed to oscillatory vs. constant glucose, we questioned 1) whether the interval of insulin pulses released by human islets is entrained to infused glucose oscillations and 2) whether the exposure of islets to oscillating vs. constant glucose confers an increased signal for insulin secretion. We report that oscillatory glucose exposure does not entrain insulin pulse frequency, but it amplifies the mass of insulin secretory bursts that coincide with glucose oscillations (P < 0.001). Dose-response analyses showed that the mode of glucose drive does not influence total insulin secretion (P = not significant). The apparent entrainment of pulsatile insulin to infused glucose oscillations in nondiabetic humans in vivo might reflect the amplification of underlying insulin secretory bursts that are detected as entrained pulses at the peripheral sampling site, but without changes in the underlying pacemaker activity.  相似文献   

20.
In the perfused rat pancreas, infusion of urotensin-II (UII), a somatostatin-like peptide, inhibits glucose-induced insulin secretion. We have resorted to specific antagonists of the UII receptor (UT), palosuran and urantide, to investigate whether endogenous UII also behaves as an inhibitor of beta-cell secretion. The insulinostatic effect of UII was counteracted by palosuran and by urantide but not by a somatostatin-receptor antagonist (cyclo-somatostatin). Furthermore, the insulinostatic effect of somatostatin was not reversed by palosuran. These results suggest that UII and somatostatin blocked beta-cell secretion via distinct receptors. Finally, in the absence of exogenous UII, both palosuran and urantide potentiated glucose-induced insulin release, thus supporting the concept that endogenous UII is an insulinostatic peptide. By virtue of their insulinotropic effect, UT antagonists may be considered potential drugs for treating the impaired insulin secretion characteristic of type 2 diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号