首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of this study was to define the relationship between arterial immunoreactive glucagon (IRG) and IRG that perfuses the liver via the portal vein during exercise in the diabetic state. Dogs underwent surgery >16 days before the experiment, at which time flow probes were implanted in the portal vein and the hepatic artery, and Silastic catheters were inserted in the carotid artery, portal vein, and hepatic vein for sampling. Dogs were made diabetic with alloxan injected intravenously approximately 3 wk before study (AD) or were studied in the nondiabetic state (ND). Each study consisted of a 30-min basal period and a 150-min moderate-exercise period on a treadmill. The findings from these studies indicate that the exercise-induced increment in portal vein IRG can be substantially greater in AD compared with ND, even when arterial and hepatic vein increments are not different. The larger IRG gradient from the portal vein to the systemic circulation in AD dogs is a function of a twofold greater increase in nonhepatic splanchnic IRG release and a fivefold greater hepatic fractional IRG extraction during exercise. In conclusion, during exercise, arterial IRG concentrations greatly underestimate the IRG levels to which the liver is exposed in ND, and this underestimation is considerably greater in dogs with poorly controlled diabetes.  相似文献   

2.
The purpose of this study was to determine the role of direct hepatic adrenergic stimulation in the control of endogenous glucose production (R(a)) during moderate exercise in poorly controlled alloxan-diabetic dogs. Chronically catheterized and instrumented (flow probes on hepatic artery and portal vein) dogs were made diabetic by administration of alloxan. Each study consisted of a 120-min equilibration, 30-min basal, 150-min moderate exercise, 30-min recovery, and 30-min blockade test period. Either vehicle (control; n = 6) or alpha (phentolamine)- and beta (propranolol)-adrenergic blockers (HAB; n = 6) were infused in the portal vein. In both groups, epinephrine (Epi) and norepinephrine (NE) were infused in the portal vein during the blockade test period to create suprapharmacological levels at the liver. Isotopic ([3-(3)H]glucose, [U-(14)C]alanine) and arteriovenous difference methods were used to assess hepatic function. Arterial plasma glucose was similar in controls (345 +/- 24 mg/dl) and HAB (336 +/- 23 mg/dl) and was unchanged by exercise. Basal arterial insulin was 5 +/- 1 mU/ml in controls and 4 +/- 1 mU/ml in HAB and fell by approximately 50% during exercise in both groups. Basal arterial glucagon was similar in controls (56 +/- 10 pg/ml) and HAB (55 +/- 7 pg/ml) and rose similarly, by approximately 1.4-fold, with exercise in both groups. Despite greater arterial Epi and NE levels in HAB compared with controls during the basal and exercise periods, exercise-induced increases in catecholamines from basal were similar in both groups. Gluconeogenic conversion from alanine and lactate and the intrahepatic efficiency of this process were increased by twofold during exercise in both groups. R(a) rose similarly by 2.9 +/- 0.7 and 2.7 +/- 1.0 mg. kg(-1). min(-1) at time = 150 min during exercise in controls and HAB. During the blockade test period, arterial plasma glucose and R(a) rose to 454 +/- 43 mg/dl and 11.3 mg. kg(-1). min(-1) in controls, respectively, but were essentially unchanged in HAB. The attenuated response to the blockade test in HAB substantiates the effectiveness of the hepatic adrenergic blockade. In conclusion, these results demonstrate that direct hepatic adrenergic stimulation does not play a role in the stimulation of R(a) during exercise in poorly controlled diabetes.  相似文献   

3.
This study aimed to test whether stimulation of net hepatic glucose output (NHGO) by increased concentrations of the AMP analog, 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl-5-monophosphate, can be suppressed by pharmacological insulin levels. Dogs had sampling (artery, portal vein, hepatic vein) and infusion (vena cava, portal vein) catheters and flow probes (hepatic artery, portal vein) implanted >16 days before study. Protocols consisted of equilibration (-130 to -30 min), basal (-30 to 0 min), and hyperinsulinemic-euglycemic (0-150 min) periods. At time (t) = 0 min, somatostatin was infused, and basal glucagon was replaced via the portal vein. Insulin was infused in the portal vein at either 2 (INS2) or 5 (INS5) mU.kg(-1).min(-1). At t = 60 min, 1 mg.kg(-1).min(-1) portal venous 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion was initiated. Arterial insulin rose approximately 9- and approximately 27-fold in INS2 and INS5, respectively. Glucagon, catecholamines, and cortisol did not change throughout the study. NHGO was completely suppressed before t = 60 min. Intraportal AICAR stimulated NHGO by 1.9 +/- 0.5 and 2.0 +/- 0.5 mg.kg(-1).min(-1) in INS2 and INS5, respectively. AICAR stimulated tracer-determined endogenous glucose production similarly in both groups. Intraportal AICAR infusion significantly increased hepatic acetyl-CoA carboxylase (ACC, Ser(79)) phosphorylation in INS2. Hepatic ACC (Ser(79)) phosphorylation, however, was not increased in INS5. Thus intraportal AICAR infusion renders hepatic glucose output insensitive to pharmacological insulin. The effectiveness of AICAR in countering the suppressive effect of pharmacological insulin on NHGO occurs even though AICAR-stimulated ACC phosphorylation is completely blocked.  相似文献   

4.
The aim of this study was to determine whether the elimination of the hepatic arterial-portal (A-P) venous glucose gradient would alter the effects of portal glucose delivery on hepatic or peripheral glucose uptake. Three groups of 42-h-fasted conscious dogs (n = 7/group) were studied. After a 40-min basal period, somatostatin was infused peripherally along with intraportal insulin (7.2 pmol x kg(-1) x min(-1)) and glucagon (0.65 ng x kg(-1) x min(-1)). In test period 1 (90 min), glucose was infused into a peripheral vein to double the hepatic glucose load (HGL) in all groups. In test period 2 (90 min) of the control group (CONT), saline was infused intraportally; in the other two groups, glucose was infused intraportally (22.2 micromol x kg(-1) x min(-1)). In the second group (PD), saline was simultaneously infused into the hepatic artery; in the third group (PD+HAD), glucose was infused into the hepatic artery to eliminate the negative hepatic A-P glucose gradient. HGL was twofold basal in each test period. Net hepatic glucose uptake (NHGU) was 10.1 +/- 2.2 and 12.8 +/- 2.1 vs. 11.5 +/- 1.6 and 23.8 +/- 3.3* vs. 9.0 +/- 2.4 and 13.8 +/- 4.2 micromol x kg(-1) x min(-1) in the two periods of CONT, PD, and PD+HAD, respectively (* P < 0.05 vs. same test period in PD and PD+HAD). NHGU was 28.9 +/- 1.2 and 39.5 +/- 4.3 vs. 26.3 +/- 3.7 and 24.5 +/- 3.7* vs. 36.1 +/- 3.8 and 53.3 +/- 8.5 micromol x kg(-1) x min(-1) in the first and second periods of CONT, PD, and PD+HAD, respectively (* P < 0.05 vs. same test period in PD and PD+HAD). Thus the increment in NHGU and decrement in extrahepatic glucose uptake caused by the portal signal were significantly reduced by hepatic arterial glucose infusion. These results suggest that the hepatic arterial glucose level plays an important role in generation of the effect of portal glucose delivery on glucose uptake by liver and muscle.  相似文献   

5.
It has been demonstrated in the conscious dog that portal glucose infusion creates a signal that increases net hepatic glucose uptake and hepatic glycogen deposition. Experiments leading to an understanding of the mechanism by which this change occurs will be facilitated if this finding can be reproduced in the rat. Rats weighing 275-300 g were implanted with four indwelling catheters (one in the portal vein, one in the left carotid artery, and two in the right jugular vein) that were externalized between the scapulae. The rats were studied in a conscious, unrestrained condition 7 days after surgery, following a 24-h fast. Each experiment consisted of a 30- to 60-min equilibration, a 30-min baseline, and a 120-min test period. In the test period, a pancreatic clamp was performed by using somatostatin, insulin, and glucagon. Glucose was given simultaneously either through the jugular vein to clamp the arterial blood level at 220 mg/dl (Pe low group) or at 250 mg/dl (Pe high group), or via the hepatic portal vein (Po group; 6 mg. kg(-1). min(-1)) and the jugular vein to clamp the arterial blood glucose level to 220 mg/dl. In the test period, the arterial plasma glucagon and insulin levels were not significantly different in the three groups (36 +/- 2, 33 +/- 2, and 30 +/- 2 pg/ml and 1.34 +/- 0.08, 1. 37 +/- 0.18, and 1.66 +/- 0.11 ng/ml in Po, Pe low, and Pe high groups, respectively). The arterial blood glucose levels during the test period were 224 +/- 4 mg/dl for Po, 220 +/- 3 for Pe low, and 255 +/- 2 for Pe high group. The liver glycogen content (micromol glucose/g liver) in the two Pe groups was not statistically different (51 +/- 7 and 65 +/- 8, respectively), whereas the glycogen level in the Po group was significantly greater (93 +/- 9, P < 0.05). Because portal glucose delivery also augments hepatic glycogen deposition in the rat, as it does in the dogs, mechanistic studies relating to its function can now be undertaken in this species.  相似文献   

6.
After a meal, glucagon-like peptide-1 (GLP-1) levels in the hepatic portal vein are elevated and are twice those in peripheral blood. The aim of this study was to determine whether any of GLP-1's acute metabolic effects are initiated within the hepatic portal vein. Experiments consisted of a 40-min basal period, followed by a 240-min experimental period, during which conscious 42-h-fasted dogs received glucose intraportally (4 mgxkg(-1)xmin(-1)) and peripherally (as needed) to maintain arterial plasma glucose levels at approximately 160 mg/dl. In addition, saline was given intraportally (CON; n = 8) or GLP-1 (1 pmolxkg(-1)xmin(-1)) was given into the hepatic portal vein (POR; n = 11) or the hepatic artery (HAT; n = 8). Portal vein plasma GLP-1 levels were basal in CON, 20x basal in POR, and 10x basal in HAT, whereas levels in the periphery and liver were the same in HAT and CON. The glucose infusion rate required to maintain hyperglycemia was significantly greater in POR (8.5 +/- 0.7 mgxkg(-1)xmin(-1), final 2 h) than in either CON or HAT (6.0 +/- 0.5 or 6.7 +/- 1.0 mgxkg(-1)xmin(-1), respectively). There were no differences among groups in either arterial plasma insulin (24 +/- 2, 23 +/- 3, and 23 +/- 3 microU/ml for CON, POR, and HAT, respectively) or glucagon (23 +/- 2, 30 +/- 3, and 25 +/- 2 pg/ml) levels during the experimental period. The increased need for glucose infusion reflected greater nonhepatic as opposed to liver glucose uptake. GLP-1 infusion increased glucose disposal independently of changes in pancreatic hormone secretion but only when the peptide was delivered intraportally.  相似文献   

7.
The role of alpha- and beta-adrenergic receptor subtypes in mediating the actions of catecholamines on hepatic glucose production (HGP) was determined in sixteen 18-h-fasted conscious dogs maintained on a pancreatic clamp with basal insulin and glucagon. The experiment consisted of a 100-min equilibration, a 40-min basal, and two 90-min test periods in groups 1 and 2, plus a 60-min third test period in groups 3 and 4. In group 1 [alpha-blockade with norepinephrine (alpha-blo+NE)], phentolamine (2 microg x kg(-1) x min(-1)) was infused portally during both test periods, and NE (50 ng x kg(-1) x min(-1)) was infused portally at the start of test period 2. In group 2, beta-blockade with epinephrine (beta-blo+EPI), propranolol (1 microg x kg(-1) x min(-1)) was infused portally during both test periods, and EPI (8 ng x kg(-1) x min(-1)) was infused portally during test period 2. In group 3 (alpha(1)-blo+NE), prazosin (4 microg x kg(-1) x min(-1)) was infused portally during all test periods, and NE (50 and 100 ng x kg(-1) x min(-1)) was infused portally during test periods 2 and 3, respectively. In group 4 (beta(2)-blo+EPI), butoxamine (40 microg x kg(-1) x min(-1)) was infused portally during all test periods, and EPI (8 and 40 ng x kg(-1) x min(-1)) was infused portally during test periods 2 and 3, respectively. In the presence of alpha- or alpha(1)-adrenergic blockade, a selective rise in hepatic sinusoidal NE failed to increase net hepatic glucose output (NHGO). In a previous study, the same rate of portal NE infusion had increased NHGO by 1.6 +/- 0.3 mg x kg(-1) x min(-1). In the presence of beta- or beta(2)-adrenergic blockade, the selective rise in hepatic sinusoidal EPI caused by EPI infusion at 8 ng x kg(-1) x min(-1) also failed to increase NHGO. In a previous study, the same rate of EPI infusion had increased NHGO by 1.6 +/- 0.4 mg x kg(-1) x min(-1). In conclusion, in the conscious dog, the direct effects of NE and EPI on HGP are predominantly mediated through alpha(1)- and beta(2)-adrenergic receptors, respectively.  相似文献   

8.
The purpose of this study was to assess whether a prior bout of exercise enhances passive gut glucose absorption. Mongrel dogs had sampling catheters, infusion catheters, and a portal vein flow probe implanted 17 days before an experiment. Protocols consisted of either 150 min of exercise (n = 8) or rest (n = 7) followed by basal (-30 to 0 min) and a primed (150 mg/kg) intraduodenal glucose infusion [8.0 mg x kg-1x min-1, time (t) = 0-90 min] periods. 3-O-[3H]methylglucose (absorbed actively, facilitatively, and passively) and l-[14C]glucose (absorbed passively) were injected into the duodenum at t = 20 and 80 min. Phloridzin, an inhibitor of the active sodium glucose cotransporter-1 (SGLT-1), was infused (0.1 mg x kg-1 x min-1) into the duodenum from t = 60-90 min with a peripheral venous isoglycemic clamp. Duodenal, arterial, and portal vein samples were taken every 10 min during the glucose infusion, as well as every minute after each tracer bolus injection. Net gut glucose output in exercised dogs increased compared with that in the sedentary group (5.34 +/- 0.47 and 4.02 +/- 0.53 mg x kg-1x min-1). Passive gut glucose absorption increased approximately 100% after exercise (0.93 +/- 0.06 and 0.45 +/- 0.07 mg x kg-1 x min-1). Transport-mediated glucose absorption increased by approximately 20%, but the change was not significant. The infusion of phloridzin eliminated the appearance of both glucose tracers in sedentary and exercised dogs, suggesting that passive transport required SGLT-1-mediated glucose uptake. This study shows 1). that prior exercise enhances passive absorption of intraduodenal glucose into the portal vein and 2). that basal and the added passive gut glucose absorption after exercise is dependent on initial transport of glucose via SGLT-1.  相似文献   

9.
The interaction of glutamine availability and glucose homeostasis during and after exercise was investigated, measuring whole body glucose kinetics with [3-3H]glucose and net organ balances of glucose and amino acids (AA) during basal, exercise, and postexercise hyperinsulinemic-euglycemic clamp periods in six multicatheterized dogs. Dogs were studied twice in random treatment order: once with glutamine (12 micromol.kg(-1).min(-1); Gln) and once with saline (Con) infused intravenously during and after exercise. Plasma glucose fell by 7 mg/dl with exercise in Con (P < 0.05), but it did not fall with Gln. Gln further stimulated whole body glucose production and utilization an additional 24% above a normal exercise response (P < 0.05). Net hepatic uptake of glutamine and alanine was greater with Gln than Con during exercise (P < 0.05). Net hepatic glucose output was increased sevenfold during exercise with Gln (P < 0.05) but not with Con. Net hindlimb glucose uptake was increased similarly during exercise in both groups (P < 0.05). During the postexercise hyperinsulinemic-euglycemic period, glucose production decreased to near zero with Con, but it did not decrease below basal levels with Gln. Gln increased glucose utilization by 16% compared with Con after exercise (P < 0.05). Furthermore, net hindlimb glucose uptake in the postexercise period was increased approximately twofold vs. basal with Gln (P < 0.05) but not with Con. Net hepatic uptake of glutamine during the postexercise period was threefold greater for Gln than Con (P < 0.05). In conclusion, glutamine availability modulates glucose homeostasis during and after exercise, which may have implications for postexercise recovery.  相似文献   

10.
Six non-anaesthetized Large White pigs (mean body weight 59 +/- 1.7 kg) were fitted with permanent catheters in the portal vein, the brachiocephalic artery and the right hepatic vein and with electromagnetic flow probes around the portal vein and the hepatic artery. The animals were provided a basal none-fibre diet (diet A) alone or together with 6% guar gum (diet B) or 15% purified cellulose (diet C). The diets were given for 1 week and according to a replicated 3 x 3 latin-square design. On the last day of each adaptation period test meals of 800 g were given prior to blood sampling. The sampling was continued for 8 h. Guar gum strongly reduced the glucose absorption as well as the insulin, gastric inhibitory polypeptide (GIP) and insulin-like growth factor-1 (IGF-1) production. However, the reduction in peripheral blood insulin levels caused by guar gum was not associated with a change in hepatic insulin extraction. IGF-1 appeared to be strongly produced by the gut. The liver had a net uptake of the peptide. Ingestion of guar gum increased the hepatic extraction coefficient of gut produced IGF-1. Guar gum ingestion also appeared to decrease pancreatic glucagon secretion. Cellulose at the level consumed had very little effect on the parameters considered. It is suggested that the modulation of intestinal mechanisms by guar gum was sufficient to mediate the latter internal metabolic effects.  相似文献   

11.
Portal glucose delivery enhances net hepatic glucose uptake (NHGU) relative to peripheral glucose delivery. We hypothesize that the sympathetic nervous system normally restrains NHGU, and portal glucose delivery relieves the inhibition. Two groups of 42-h-fasted conscious dogs were studied using arteriovenous difference techniques. Denervated dogs (DEN; n=10) underwent selective sympathetic denervation by cutting the nerves at the celiac nerve bundle near the common hepatic artery; control dogs (CON; n=10) underwent a sham procedure. After a 140-min basal period, somatostatin was given along with basal intraportal infusions of insulin and glucagon. Glucose was infused peripherally to double the hepatic glucose load (HGL) for 90 min (P1). In P2, glucose was infused intraportally (3-4 mg.kg(-1).min(-1)), and the peripheral glucose infusion was reduced to maintain the HGL for 90 min. This was followed by 90 min (P3) in which portal glucose infusion was terminated and peripheral glucose infusion was increased to maintain the HGL. P1 and P3 were averaged as the peripheral glucose infusion period (PE). The average HGLs (mg.kg(-1).min(-1)) in CON and DEN were 55+/-3 and 54+/-4 in the peripheral periods and 55+/-3 and 55+/-4 in P2, respectively. The arterial insulin and glucagon levels remained basal in both groups. NHGU (mg.kg(-1).min(-1)) in CON averaged 1.7+/-0.3 during PE and increased to 2.9+/-0.3 during P2. NHGU (mg.kg(-1).min(-1)) was greater in DEN than CON (P<0.05) during PE (2.9+/-0.4) and failed to increase significantly (3.2+/-0.2) during P2 (not significant vs. CON). Selective sympathetic denervation increased NHGU during hyperglycemia but significantly blunted the response to portal glucose delivery.  相似文献   

12.
To test whether hepatic insulin action and the response to an insulin-induced decrement in blood glucose are enhanced in the immediate postexercise state as they are during exercise, dogs had sampling (artery, portal vein, and hepatic vein) catheters and flow probes (portal vein and hepatic artery) implanted 16 days before a study. After 150 min of moderate treadmill exercise or rest, dogs were studied during a 150-min hyperinsulinemic (1 mU.kg(-1).min(-1)) euglycemic (n = 5 exercised and n = 9 sedentary) or hypoglycemic (65 mg/dl; n = 8 exercised and n = 9 sedentary) clamp. Net hepatic glucose output (NHGO) and endogenous glucose appearance (R(a)) and utilization (R(d)) were assessed with arteriovenous and isotopic ([3-(3)H]glucose) methods. Results show that, immediately after prolonged, moderate exercise, in relation to sedentary controls: 1) the glucose infusion rate required to maintain euglycemia, but not hypoglycemia, was higher; 2) R(d) was greater under euglycemic, but not hypoglycemic conditions; 3) NHGO, but not R(a), was suppressed more by a hyperinsulinemic euglycemic clamp, suggesting that hepatic glucose uptake was increased; 4) a decrement in glucose completely reversed the enhanced suppression of NHGO by insulin that followed exercise; and 5) arterial glucagon and cortisol were transiently higher in the presence of a decrement in glucose. In summary, an increase in insulin action that was readily evident under euglycemic conditions after exercise was abolished by moderate hypoglycemia. The means by which the glucoregulatory system is able to overcome the increase in insulin action during moderate hypoglycemia is related not to an increase in R(a) but to a reduction in insulin-stimulated R(d). The primary site of this reduction is the liver.  相似文献   

13.
Portal glucose delivery in the conscious dog augments net hepatic glucose uptake (NHGU). To investigate the possible role of altered autonomic nervous activity in the effect of portal glucose delivery, the effects of adrenergic blockade and acetylcholine (ACh) on hepatic glucose metabolism were examined in 42-h-fasted conscious dogs. Each study consisted of an equilibration (-120 to -20 min), a control (-20 to 0 min), and a hyperglycemic-hyperinsulinemic period (0 to 300 min). During the last period, somatostatin (0.8 microg. kg(-1). min(-1)) was infused along with intraportal insulin (1.2 mU. kg(-1). min(-1)) and glucagon (0.5 ng. kg(-1). min(-1)). Hepatic sinusoidal insulin was four times basal (73 +/- 7 microU/ml) and glucagon was basal (55 +/- 7 pg/ml). Glucose was infused peripherally (0-300 min) to create hyperglycemia (220 mg/dl). In test protocol, phentolamine and propranolol were infused intraportally at 0.2 microg and 0.1 microg. kg(-1). min(-1) from 120 min on. ACh was infused intraportally at 3 microg. kg(-1). min(-1) from 210 min on. In control protocol, saline was given in place of the blockers and ACh. Hyperglycemia-hyperinsulinemia switched the net hepatic glucose balance (mg. kg(-1). min(-1)) from output (2.1 +/- 0.3 and 1.1 +/- 0.2) to uptake (2.8 +/- 0.9 and 2.6 +/- 0.6) and lactate balance (micromol. kg(-1). min(-1)) from uptake (7.5 +/- 2.2 and 6.7 +/- 1.6) to output (3.7 +/- 2.6 and 3.9 +/- 1.6) by 120 min in the control and test protocols, respectively. Thereafter, in the control protocol, NHGU tended to increase slightly (3.0 +/- 0.6 mg. kg(-1). min(-1) by 300 min). In the test protocol, adrenergic blockade did not alter NHGU, but ACh infusion increased it to 4.4 +/- 0.6 and 4.6 +/- 0.6 mg. kg(-1). min(-1) by 220 and 300 min, respectively. These data are consistent with the hypothesis that alterations in nerve activity contribute to the increase in NHGU seen after portal glucose delivery.  相似文献   

14.
Whether glucagon-like peptide-1 (GLP-1) has insulin-independent effects on glucose disposal in vivo was assessed in conscious dogs by use of tracer and arteriovenous difference techniques. After a basal period, each experiment consisted of three periods (P1, P2, P3) during which somatostatin, glucagon, insulin, and glucose were infused. The control group (C) received saline in P1, P2, and P3, the PePe group received saline in P1 and GLP-1 (7.5 pmol.kg(-1).min(-1)) peripherally (Pe; iv) in P2 and P3, and the PePo group received saline in P1 and GLP-1 peripherally (iv) (P2) and then into the portal vein (Po; P3). Glucose and insulin concentrations increased to two- and fourfold basal, respectively, and glucagon remained basal. GLP-1 levels increased similarly in the PePe and PePo groups during P2 ( approximately 200 pM), whereas portal GLP-1 levels were significantly increased (3-fold) in PePo vs. PePe during P3. In all groups, net hepatic glucose uptake (NHGU) occurred during P1. During P2, NHGU increased slightly but not significantly in all groups. During P3, NHGU increased in PePe and PePo groups to a greater extent than in C, but no significant effect of the route of infusion of GLP-1 was demonstrated (16.61 +/- 2.91 and 14.67 +/- 2.09 vs. 4.22 +/- 1.57 micromol.kg(-1).min(-1), respectively). In conclusion: GLP-1 increased glucose disposal in the liver independently of insulin secretion; its full action required long-term infusion. The route of infusion did not modify the hepatic response.  相似文献   

15.
Arteriovenous difference and tracer ([3-(3)H]glucose) techniques were used in 42-h-fasted conscious dogs to identify any insulin-like effects of intraportally administered glucagon-like peptide 1-(7-36)amide (GLP-1). Each study consisted of an equilibration, a basal, and three 90-min test periods (P1, P2, and P3) during which somatostatin, intraportal insulin (3-fold basal) and glucagon (basal), and peripheral glucose were infused. Saline was infused intraportally in P1. During P2 and P3, GLP-1 was infused intraportally at 0.9 and 5.1 pmol. kg(-1). min(-1) in eight dogs, at 10 and 20 pmol. kg(-1). min(-1) in seven dogs, and at 0 pmol. kg(-1). min(-1) in eight dogs (control group). Net hepatic glucose uptake was significantly enhanced during GLP-1 infusion at 20 pmol. kg(-1). min(-1) [21.8 vs. 13.4 micromol. kg(-1). min(-1) (control), P < 0.05]. Glucose utilization was significantly increased during infusion at 10 and 20 pmol. kg(-1). min(-1) [87.3 +/- 8.3 and 105.3 +/- 12.8, respectively, vs. 62.2 +/- 5.3 and 74.7 +/- 7.4 micromol. kg(-1). min(-1) (control), P < 0.05]. The glucose infusion rate required to maintain hyperglycemia was increased (P < 0.05) during infusion of GLP-1 at 5.1, 10, and 20 pmol. kg(-1). min(-1) (22, 36, and 32%, respectively, greater than control). Nonhepatic glucose uptake increased significantly during delivery of GLP-1 at 5.1 and 10 pmol. kg(-1). min(-1) (25 and 46% greater than control) and tended (P = 0.1) to increase during GLP-1 infusion at 20 pmol. kg(-1). min(-1) (24% greater than control). Intraportal infusion of GLP-1 at high physiological and pharmacological rates increased glucose disposal primarily in nonhepatic tissues.  相似文献   

16.
The purpose of the present study was to test the hypothesis that a prior period of exercise is associated with an increase in hepatic glucagon sensitivity. Hepatic glucose production (HGP) was measured in four groups of anesthetized rats infused with glucagon (2 microg. kg(-1). min(-1) iv) over a period of 60 min. Among these groups, two were normally fed and, therefore, had a normal level of liver glycogen (NG). One of these two groups was killed at rest (NG-Re) and the other after a period of exercise (NG-Ex; 60 min of running, 15-26 m/min, 0% grade). The two other groups of rats had a high hepatic glycogen level (HG), which had been increased by a fast-refed diet, and were also killed either at rest (HG-Re) or after exercise (HG-Ex). Plasma glucagon and insulin levels were increased similarly in all four conditions. Glucagon-induced hyperglycemia was higher (P < 0.01) in the HG-Re group than in all other groups. HGP in the HG-Re group was not, however, on the whole more elevated than in the NG-Re group. Exercised rats (NG-Ex and HG-Ex) had higher hyperglycemia, HGP, and glucose utilization than rested rats in the first 10 min of the glucagon infusion. HG-Ex group had the highest HGP throughout the 60-min experiment. It is concluded that hyperglucagonemia-induced HGP is stimulated by a prior period of exercise, suggesting an increased sensitivity of the liver to glucagon during exercise.  相似文献   

17.
To determine the role of nitric oxide in regulating net hepatic glucose uptake (NHGU) in vivo, studies were performed on three groups of 42-h-fasted conscious dogs using a nitric oxide donor [3-morpholinosydnonimine (SIN-1)]. The experimental period was divided into period 1 (0-90 min) and period 2 (P2; 90-240 min). At 0 min, somatostatin was infused peripherally, and insulin (4-fold basal) and glucagon (basal) were given intraportally. Glucose was delivered intraportally (22.2 mumol.kg(-1).min(-1)) and peripherally (as needed) to increase the hepatic glucose load twofold basal. At 90 min, an infusion of SIN-1 (4 mug.kg(-1).min(-1)) was started in a peripheral vein (PeSin-1, n = 10) or the portal vein (PoSin-1, n = 12) while the control group received saline (SAL, n = 8). Both peripheral and portal infusion of SIN-1, unlike saline, significantly reduced systolic and diastolic blood pressure. Heart rate rose in PeSin-1 and PoSin-1 (96 +/- 5 to 120 +/- 10 and 88 +/- 6 to 107 +/- 5 beats/min, respectively, P < 0.05) but did not change in response to saline. NHGU during P2 was 31.0 +/- 2.4 and 29.9 +/- 2.0 mumol.kg(-1).min(-1) in SAL and PeSin-1, respectively but was 23.7 +/- 1.7 in PoSin-1 (P < 0.05). Net hepatic carbon retention during P2 was significantly lower in PoSin-1 than SAL or PeSin-1 (21.4 +/- 1.2 vs. 27.1 +/- 1.5 and 26.1 +/- 1.0 mumol.kg(-1).min(-1)). Nonhepatic glucose uptake did not change in response to saline or SIN-1 infusion. In conclusion, portal but not peripheral infusion of the nitric oxide donor SIN-1 inhibited NHGU.  相似文献   

18.
Portal infusion of glucose in the mouse at a rate equivalent to basal endogenous glucose production causes hypoglycemia, whereas peripheral infusion at the same rate causes significant hyperglycemia. We used tracer and arteriovenous difference techniques in conscious 42-h-fasted dogs to determine their response to the same treatments. The studies consisted of three periods: equilibration (100 min), basal (40 min), and experimental (180 min), during which glucose was infused at 13.7 micromol.kg(-1).min(-1) into a peripheral vein (p.e., n = 5) or the hepatic portal (p.o., n = 5) vein. Arterial blood glucose increased approximately 0.8 mmol/l in both groups. Arterial and hepatic sinusoidal insulin concentrations were not significantly different between groups. p.e. exhibited an increase in nonhepatic glucose uptake (non-HGU; Delta8.6 +/- 1.2 micromol.kg(-1).min(-1)) within 30 min, whereas p.o. showed a slight suppression (Delta-3.7 +/- 3.1 micromol.kg(-1).min(-1)). p.o. shifted from net hepatic glucose output (NHGO) to uptake (NHGU; 2.5 +/- 2.8 micromol.kg-1.min-1) within 30 min, but p.e. still exhibited NHGO (6.0 +/- 1.9 micromol.kg(-1).min(-1)) at that time and did not initiate NHGU until after 90 min. Glucose rates of appearance and disappearance did not differ between groups. The response to the two infusion routes was markedly different. Peripheral infusion caused a rapid enhancement of non-HGU, whereas portal delivery quickly activated NHGU. As a result, both groups maintained near-euglycemia. The dog glucoregulates more rigorously than the mouse in response to both portal and peripheral glucose delivery.  相似文献   

19.
Summary Six non-anaesthetized Large White pigs (mean body weight 59 ± 1.7 kg) were fitted with permanent catheters in the portal vein, the brachiocephalic artery and the right hepatic vein as well as with electromagnetic flow probes around the portal vein and around the hepatic artery. The animals were given a basal none-fibre diet (diet A) alone or together with 6% guar gum (diet B) or 15% purified cellulose (diet C). The diets were given for one week and according to a replicated 3 × 3 latin square design. On the last day of each such adaptation period test meals of 800 g were given prior to blood samplings. These samplings were continued for 8 h. Guar gum strongly reduced the amino acids (aa) and urea absorption as well as the hepatic production of urea. The aa profile of the absorbed mixture was not strongly modified by guar gum ingestion as well as the profile of the hepatic aa uptake. Cellulose at the consumed level had very few effects on the considered parameters.It is suggested that the modulation of intestinal mechanisms by guar gum was sufficient to mediate the latter internal metabolic effects.  相似文献   

20.
In vitro and animal studies have pointed out complex interrelations between gastrointestinal hormones and calcitonin. To analyse the acute effects of calcitonin in more detail, patients undergoing surgery were infused intravenously with synthetic salmon calcitonin, a potent analog of the human hormone. Samples were taken after 0, 30 and 60 minutes from the hepatic, portal and a peripheral vein. Somatostatin and gastrin were determined by radioimmunoassay. The mean basal levels of somatostatin in peripheral and hepatic venous plasma (14.2 and 15.6 pg/ml) were significantly lower than in portal plasma (45.6 pg/ml), indicating effective removal by the liver. After infusion of calcitonin there was a general rise in somatostatin levels and an increase in the gradient between hepatic and portal blood. Basal gastrin levels were highest in the portal vein when compared intraindividually. The differences disappeared after calcitonin infusion with a concomitant systemic reduction of gastrin levels. Thus, calcitonin is able to stimulate the secretion of somatostatin from the gastrointestinal tract and does reduce gastrin secretion, possibly via the stimulation of somatostatin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号