首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysosomal beta-mannosidase (EC 3.2.11.25) has a functional size of 120-150 kDa, but the enzyme purified from guinea pig liver (GPL) reportedly gave a single band corresponding to a molecular mass of 110 kDa. In order to investigate the subunit structure and tissue-specific expression of beta-mannosidase, we prepared a polyclonal antibody against GPL beta-mannosidase in rabbits which immunoprecipitated beta-mannosidase activity, free from other lysosomal hydrolase activity. Following storage at -20 degrees C and SDS polyacrylamide gel electrophoresis in the presence of 2-mercaptoethanol, a sample of purified GPL beta-mannosidase gave a major Coomassie blue staining band at 97 kDa. This was confirmed by Western blot analysis, which also revealed a faster moving 37 kDa protein. In contrast, Western blot analysis of fresh GPL homogenate prepared in the presence of proteinase inhibitors showed a major band at 150 kDa. Upon freezing and thawing, we observed immunoreactive bands at 120 and 20 kDa and finally, immunoreactive bands at 97, 37 and 20 kDa. The formation of the 97, 37 and 20 kDa forms from the 150 kDa species was accelerated by an n-butanol/ether extraction of the associated lipids, suggesting some tight hydrophobic association of these subunits. In contrast to liver, both fresh and freeze-thawed preparations of guinea pig kidney (GPK) yielded only the 97, 37 and 20 kDa subunit forms confirming that these are the major beta-mannosidase subunits. Endo-F treatment converted both the liver and kidney 97 kDa into a 91 kDa form and the 37 kDa form into a 35 kDa form, whereas the 20 kDa form was unaffected. Total beta-mannosidase activity, as measured with the synthetic substrate 4MU-beta-mannoside was unaffected by dissociation of the 150 form into the 97, 37 and 20 kDa subunits, suggesting that these are the functional forms of the enzyme rather than proteolytic degradation products.  相似文献   

2.
Mo B  Bewley JD 《Planta》2002,215(1):141-152
Beta-mannosidase, a high-salt-soluble enzyme, increases in activity in seeds of tomato prior to the completion of germination. This increase occurs in both the lateral and micropylar endosperm and becomes more evident during post-germinative seedling growth. The beta-mannosidase activity profile is similar to that of endo beta-mannanase although it is the first to increase in the lateral endosperm. Tomato seed beta-mannosidase was purified to homogeneity and its cDNA (LeMside1) obtained by 3'-RACE PCR using oligonucleotide sequences based on four peptide sequences obtained from the purified enzyme. The derived amino acid sequence of the tomato beta-mannosidase shows the enzyme is a member of the Glycosyl Hydrolases Family 1 (GHF1) but has a very low sequence identity with that of beta-mannosidases from non-plant sources; no other plant sequence for the enzyme is known. There appears to be only one gene encoding beta-mannosidase in tomato, the sequence of which has been determined (LeMSide2). Its expression occurs first in the micropylar endosperm, and then declines after germination. This is followed by an increase in its expression in the lateral endosperm, which precedes that of the gene for endo beta-mannanase. Expression of the beta-mannosidase gene increases appreciably in the growing seedling embryo. With this report, the cloning of all three of the enzymes involved in galactomannan mobilization (endo beta-mannanase, alpha-galactosidase and beta-mannosidase) in tomato seeds has now been achieved.  相似文献   

3.
A beta-mannosidase was purified to homogeneity from the culture filtrate of Aspergillus niger. A specific activity of 500 nkat mg-1 and a 53-fold purification was achieved using ammonium sulfate precipitation, anion-exchange chromatography, and gel filtration. The isolated enzyme has an isoelectric point of 5.0 and appears to be a dimer composed of two 135-kDa subunits. It is a glycoprotein and contains 17% N-linked carbohydrate by weight. Maximal activity was observed at pH 2.4 5.0 and at 70 degrees C. The beta-mannosidase hydrolyzed beta-1,4-linked manno-oligosaccharides of degree of polymerization (DP) 2-6 and also released mannose from polymeric ivory nut mannan and galactomannan. The Km and Vmax values for p-nitrophenyl-beta-D-mannopyranoside were 0.30 mM and 500 nkat mg-1, respectively. Hydrolysis of D-galactose substituted manno-oligosaccharides showed that the beta-mannosidase was able to cleave up to, but not beyond, a side group. An internal peptide sequence of 15 amino acids was highly similar to that of an Aspergillus aculeatus beta-mannosidase belonging to family 2 of glycosyl hydrolases.  相似文献   

4.
5.
The two caprine hepatic beta-mannosidases have been partially purified and their properties have been compared. The lysosomal beta-mannosidase A had an apparent molecular weight of 127,000 +/- 10,000 and an isoelectric point of pH 6-7. Its activity was unaffected by incubation with Triton X-100 (0.1%) and cysteine (20 mM) and it hydrolyzed the presumed natural substrates, Man(beta 1-4)GlcNAc and Man(beta 1-4)GlcNAc(beta 1-4)GlcNAc. The nonlysosomal beta-mannosidase B had an apparent molecular weight of 43,000 +/- 2,000 and an isoelectric point of pH 5.5. beta-Mannosidase B was activated by Triton X-100 (0.1%) and was inhibited by cysteine (20 mM). Hydrolysis of Man(beta 1-4)GlcNAc, but not of Man(beta 1-4)GlcNAc(beta 1-4)GlcNAc, followed incubation with beta-mannosidase B. 1,5-Dideoxy-1,5-imino-D-mannitol did not inhibit the A enzyme and only feebly (Ki = 0.3 mM) inhibited the B enzyme; beta-D-mannopyranosylmethyl p-nitrophenyl triazene did not inactivate either enzyme but 1,2-anhydro-1,2,3,5,6/4-cyclohexane hexol inactivated the B enzyme only. The radical mechanistic differences between the two enzymes argue against their having the same genetic origin.  相似文献   

6.
Thermostable and thermoactive beta-mannanase (1,4-beta-D-mannan mannanohydrolase [EC 3.2.1.78]), beta-mannosidase (beta-D-mannopyranoside hydrolase [EC 3.2.1.25]) and alpha-galactosidase (alpha-D-galactoside galactohydrolase [EC 3.2.1.22]) were purified to homogeneity from cell extracts and extracellular culture supernatants of the hyperthermophilic eubacterium Thermotoga neapolitana 5068 grown on guar gum-based media. The beta-mannanase was an extracellular monomeric enzyme with a molecular mass of 65 kDa. The optimal temperature for activity was 90 to 92 degrees C, with half-lives (t1/2) of 34 h at 85 degrees C, 13 h at 90 degrees C, and 35 min at 100 degrees C. The beta-mannosidase and alpha-galactosidase were found primarily in cell extracts. The beta-mannosidase was a homodimer consisting of approximately 100-kDa molecular mass subunits. The optimal temperature for activity was 87 degrees C, with t1/2 of 18 h at 85 degrees C, 42 min at 90 degrees C, and 2 min at 98 degrees C. The alpha-galactosidase was a 61-kDa monomeric enzyme with a temperature optimum of 100 to 103 degrees C and t1/2 of 9 h at 85 degrees C, 2 h at 90 degrees C, and 3 min at 100 degrees C. These enzymes represent the most thermostable and thermoactive versions of these types yet reported and probably act synergistically to hydrolyze extracellular galactomannans to monosaccharides by T. neapolitana for nutritional purposes. The significance of such substrates in geothermal environments remains to be seen.  相似文献   

7.
Goat beta-mannosidase was purified 120,000-fold in 26% yield from kidney using concanavalin A-Sepharose chromatography followed by immunoaffinity and cation-exchange chromatography. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and visualized by Coomassie Blue staining, the purified enzyme preparation consists of 90- and 100-kDa peptides. Both these peptides react with anti-beta-mannosidase monoclonal antibodies and produce similar electrophoretic peptide patterns when subjected to limited proteolysis. Deglycosylation reduces the size of the 90- and 100-kDa peptides to 86 and 91 kDa, respectively. Goat kidney tissues lacking beta-mannosidase activity, acquired from animals affected with beta-mannosidosis, do not contain detectable quantities of the 90- and 100-kDa peptides as judged by monoclonal antibody reactivity. We postulate that the 90- and 100-kDa peptides represent two related forms of beta-mannosidase.  相似文献   

8.
Two mannan-degrading enzymes were purified from the crop of the terrestrial snail Helix aspersa Müller. The crude extracts were taken from dormant (for 4 months) snails. The enzymes were a betaD-mannanase of 37.4 +/- 0.3 kDa (EC 3.2.1.78) and a betaD-mannosidase of 77.8 +/- 1.9 kDa (EC 3.2.1.25). Both enzymes degraded insoluble mannan, releasing either mannose only (beta-mannosidase) or oligosaccharides, possibly mannotriose and mannopentaose (beta-mannanase). The beta-mannanase had a typical endo-activity pattern, while the beta-mannosidase was an exoenzyme. The incubation of both enzymes with mannan increased the catalysis by 83%. The best synergy was found with 75% mannosidase combined with 25% mannanase. The beta-mannanase also hydrolysed beta-linked heteromannans and its affinity for different galactomannans was studied. The Km values, varying from 2.89 +/- 0.47 mg x ml(-1) to 0.26 +/- 0.01 mg x ml(-1), revealed the inhibitory effect of the alphaD-galactosyl residues released. The beta-mannosidase was acidic (optimum pH = 3.3) and heat-sensitive (50% residual activity at 42 degrees C after 5 min of pre-incubation), while the beta-mannanase remained stable until 48.5 degrees C (50% residual activity) and over a pH range of 4.3-7.5. The properties of these mannanolytic enzymes are discussed in this paper compared with those purified in other gastropods and in a bacterium, Enterococcus casseliflavus, a quite similar strain previously isolated from this snail intestine. The occurrence of thermostable enzymes in H. aspersa digestive tract could be a zootechnic parameter of great importance for snail farming. J. Exp. Zool. 290:125-135, 2001.  相似文献   

9.
Purification and characterization of beta-mannosidase from human placenta   总被引:2,自引:0,他引:2  
Lysosomal beta-mannosidase was purified almost 10,000-fold from human placenta. The final preparation showed several protein bands on polyacrylamide gel electrophoresis. Its molecular mass was estimated to be 110 kDa, the optimal pH was 4.5, the Km was 0.56 mM, and the isoelectric point was 4.7. The enzyme was found to bind completely to Con A-Sepharose, and the pI was not changed after neuraminidase treatment. These results indicate that the purified enzyme represents a lysosomal form which contains high mannose type oligosaccharide chains and only a few sialic acids, if any.  相似文献   

10.
A molecular envelope of the beta-mannosidase from Trichoderma reesei has been obtained by combined use of solution small-angle X-ray scattering (SAXS) and protein crystallography. Crystallographic data at 4 A resolution have been used to enhance informational content of the SAXS data and to obtain an independent, more detailed protein shape. The phased molecular replacement technique using a low resolution SAXS model, building, and refinement of a free atom model has been employed successfully. The SAXS and crystallographic free atom models exhibit a similar globular form and were used to assess available crystallographic models of glycosyl hydrolases. The structure of the beta-galactosidase, a member of a family 2, clan GHA glycosyl hydrolases, shows an excellent fit to the experimental molecular envelope and distance distribution function of the beta-mannosidase, indicating gross similarities in their three-dimensional structures. The secondary structure of beta-mannosidase quantified by circular dichroism measurements is in a good agreement with that of beta-galactosidase. We show that a comparison of distance distribution functions in combination with 1D and 2D sequence alignment techniques was able to restrict the number of possible structurally homologous proteins. The method could be applied as a general method in structural genomics and related fields once protein solution scattering data are available.  相似文献   

11.
Thermobifida fusca TM51, a thermophilic actinomycete isolated from composted horse manure, was found to produce a number of lignocellulose-degrading hydrolases, including endoglucanases, exoglucanases, endoxylanases, beta-xylosidases, endomannanases, and beta-mannosidases, when grown on cellulose or hemicellulose as carbon sources. beta-Mannosidases (EC 3.2.1.25), although contributing to the hydrolysis of hemicellulose fractions, such as galacto-mannans, constitute a lesser-known group of the lytic enzyme systems due to their low representation in the proteins secreted by hemicellulolytic microorganisms. An expression library of T. fusca, prepared in Streptomyces lividans TK24, was screened for beta-mannosidase activity to clone genes coding for mannosidases. One positive clone was identified, and a beta-mannosidase-encoding gene (manB) was isolated. Sequence analysis of the deduced amino acid sequence of the putative ManB protein revealed substantial similarity to known mannosidases in family 2 of the glycosyl hydrolase enzymes. The calculated molecular mass of the predicted protein was 94 kDa, with an estimated pI of 4.87. S. lividans was used as heterologous expression host for the putative beta-mannosidase gene of T. fusca. The purified gene product obtained from the culture filtrate of S. lividans was then subjected to more-detailed biochemical analysis. Temperature and pH optima of the recombinant enzyme were 53 degrees C and 7.17, respectively. Substrate specificity tests revealed that the enzyme exerts only beta-D-mannosidase activity. Its kinetic parameters, determined on para-nitrophenyl beta-D-mannopyranoside (pNP-betaM) substrate were as follows: K(m) = 180 micro M and V(max) = 5.96 micro mol min(-1) mg(-1); the inhibition constant for mannose was K(i) = 5.5 mM. Glucono-lacton had no effect on the enzyme activity. A moderate trans-glycosidase activity was also observed when the enzyme was incubated in the presence of pNP-alphaM and pNP-betaM; under these conditions mannosyl groups were transferred by the enzyme from pNP-betaM to pNP-alphaM resulting in the synthesis of small amounts (1 to 2%) of disaccharides.  相似文献   

12.
beta-Galactosidase [EC 3.2.1.23] was isolated from a partially purified preparation obtained from cultured cells of a special strain of Aspergillus oryzae, RT 102 (FERM-P1680). The enzyme preparation gave a single protein band on polyacrylamide gel electrophoresis and was free from alpha-galactosidase, alpha- and beta-mannosidase, alpha- and beta-N-acetylhexosaminidase, and protease activities. The beta-galactosidase was capable of acting on aryl beta-galactosides, lactose, and lactosides. It also hydrolyzed beta-galactosyl linkages in urinary glycoasparagines and asialo alpha1-acid glycoprotein. The enzyme was rather stable in aqueous solution, retaining full activity at 4 degrees for at least several months. At pH 4.5, the optimum pH for the enzyme activity, and 37 degrees, full activity was maintained for several days.  相似文献   

13.
Alpha-galactosidase (EC 3.2.1.22) and beta-mannosidase (EC 3.2.1.25) participate in the hydrolysis of complex plant saccharides such as galacto(gluco)mannans. Here we report on the cloning and characterization of genes encoding an alpha-galactosidase (AglC) and a beta-mannosidase (MndA) from Aspergillus niger. The aglC and mndA genes code for 747 and 931 amino acids, respectively, including the eukaryotic signal sequences. The predicted isoelectric points of AglC and MndA are 4.56 and 5.17, and the calculated molecular masses are 79.674 and 102.335 kDa, respectively. Both AglC and MndA contain several putative N-glycosylation sites. AglC was assigned to family 36 of the glycosyl hydrolases and MndA was assigned to family 2. The expression patterns of aglC and mndA and two other genes encoding A. niger alpha-galactosidases (aglA and aglB) during cultivation on galactomannan were studied by Northern analysis. A comparison of gene expression on monosaccharides in the A. niger wild-type and a CreA mutant strain showed that the carbon catabolite repressor protein CreA has a strong influence on aglA, but not on aglB, aglC or mndA. AglC and MndA were purified from constructed overexpression strains of A. niger, and the combined action of these enzymes degraded a galactomanno-oligosaccharide into galactose and mannose. The possible roles of AglC and MndA in galactomannan hydrolysis is discussed.  相似文献   

14.
1. Snail beta-mannosidase showed a Km value of 0.05 mM toward MU-beta-Man and could not be inhibited by Man, GlcNAc, Man beta(1-4)GlcNAc, Man beta(1-4)GlcNAc beta(1-N)urea or Man beta(1-4) GlcNAc beta(1-4)GlcNAc. 2. The Km value of the snail enzyme towards Man beta(1-4)GlcNAc, as measured by HPLC, was 10 mM, explaining the lack of inhibition. 3. The Km value of the human serum beta-mannosidase towards MU-beta-Man was 0.3 mM, but the human enzyme was not capable of degrading Man beta(1-4)GlcNAc in detectable amounts.  相似文献   

15.
The yeast alpha-mannosidase [EC 3.2.1.24] was purified 1160-fold from the crude extract of the autolysate. The purified preparation was practically free from alpha-glucosidase, beta-glucosidase, alpha-galactosidase, beta-galactosidase, beta-mannosidase, and beta-N-acetylhexosaminidase activities. After the separation of yeast mannan during the purification procedures the enzyme became unstable but could be stored at 5 degrees C for three weeks with 50% loss of activity. The purified enzyme hydrolyzed both aryl and alkyl mannosides, but hydrolysis of yeast mannan proceeded slowly. Yeast mannan and Zn2+ increased the enzyme catalyzed hydrolysis of p-nitrophenyl mannoside, whereas NaN3, monoiodoacetate and methyl alpha-D-mannoside acted as inhibitors. The molecular weight was estimated to be 450,000 by gel filtration.  相似文献   

16.
A beta-mannosidase gene (PH0501) was identified in the Pyrococcus horikoshii genome and cloned and expressed in E. coli. The purified enzyme (BglB) was most specific for the hydrolysis of p-nitrophenyl-beta-D-mannopyranoside (pNP-Man) (Km: 0.44 mM) with a low turnover rate (kcat: 4.3 s(-1)). The beta-mannosidase has been classified as a member of family 1 of glycoside hydrolases. Sequence alignments and homology modeling showed an apparent conservation of its active site region with, remarkably, two unique active site residues, Gln77 and Asp206. These residues are an arginine and asparagine residue in all other known family 1 enzymes, which interact with the catalytic nucleophile and equatorial C2-hydroxyl group of substrates, respectively. The unique residues of P. horikoshii BglB were introduced in the highly active beta-glucosidase CelB of Pyrococcus furiosus and vice versa, yielding two single and one double mutant for each enzyme. In CelB, both substitutions R77Q and N206D increased the specificity for mannosides and reduced hydrolysis rates 10-fold. In contrast, BglB D206N showed 10-fold increased hydrolysis rates and 35-fold increased affinity for the hydrolysis of glucosides. In combination with inhibitor studies, it was concluded that the substituted residues participate in the ground-state binding of substrates with an equatorial C2-hydroxyl group, but contribute most to transition-state stabilization. The unique activity profile of BglB seems to be caused by an altered interaction between the enzyme and C2-hydroxyl of the substrate and a specifically increased affinity for mannose that results from Asp206.  相似文献   

17.
18.
A beta-D-mannosidase was purified to homogeneity from visceral mass extract of Aplysia fasciata a mollusc belonging to the order Anaspidea. The purified enzyme is a homodimer with a subunit mass of 130 kDa. Temperature and pH optima of this enzyme were 45 degrees C and 4.5, respectively. Substrate specificity tests revealed that the enzyme exerts only beta-D-mannosidase activity. The K(M) and V(max) values for p-nitrophenyl beta-D-mannopyranoside were determined to be 2.4 mM and 50.3 micromol min(-1)mg(-1), respectively. The catalytic efficiency of this beta-mannosidase (11,519 min(-1)) was significantly higher than those reported for beta-mannosidases from other sources. It was verified that this is an exo-acting glycosyl hydrolase with transglycosidase activity. When the enzyme was incubated in the presence of p-nitrophenyl beta-D-mannopyranoside, self-transfer of the mannosyl group was observed, and a 10-15% yield of a beta-1-4 disaccharide was obtained. When the reaction was performed in the presence of o-nitrophenyl alpha-D-2-deoxy-N-acetyl glucopyranoside in 3:1 molar ratio with respect to the p-nitrophenyl beta-D-mannopyranoside, two regioisomers (85:15, 12% yield) due to the beta-mannosylation of the heteroacceptor in 4 and in 6 positions were formed.  相似文献   

19.
beta-Mannosidase and endo-beta-mannanase are involved in the mobilization of the mannan-containing cell walls of the tomato seed endosperm. The activities of both enzymes increase in a similar temporal manner in the micropylar and lateral endosperm during and following germination. This increase in enzyme activities in the micropylar endosperm is not markedly reduced in seeds imbibed in abscisic acid although, in the lateral endosperm, endo-beta-mannanase activity is more suppressed by this inhibitor than is the activity of beta-mannosidase. Gibberellin-deficient (gib-1) mutants of tomato do not germinate unless imbibed in gibberellin; low beta-mannosidase activity, and no endo-beta-mannanase activity is present in seeds imbibed in water, but both enzymes increase strongly in activity in the seeds imbibed in the growth regulator. For production of full activity of both beta-mannosidase and endo-beta-mannanase in the endosperm, this tissue must be in contact with the embryo for at least the first 6 h of imbibition, which is indicative of a stimulus diffusing from the embryo to the endosperm during this time. These results suggest some correlation between the activities of beta-mannosidase and endo-beta-mannanase, particularly in the micropylar endosperm, in populations of tomato seeds imbibed in water, abscisic acid and gibberellin. However, when individual micropylar endosperm parts are used to examine the effect of the growth regulators and of imbibition in water on the production of the two enzymes, it is apparent that within these individual seed parts there may be large differences in the amount of enzyme activity present. Micropylar endosperms with high endo-beta-mannanase activity do not necessarily have high beta-mannosidase activity, and vice versa, which is indicative of a lack of co-ordination of the activities of these two enzymes within individuals of a population.  相似文献   

20.
Goats affected with beta-mannosidosis, an autosomal recessive disease of glycoprotein metabolism, have deficient activity of the lysosomal enzyme beta-mannosidase along with tissue storage of oligosaccharides, including a trisaccharide [Man(beta 1-4)GlcNAc(beta 1-4)GlcNAc] and a disaccharide [Man(beta 1-4)GlcNAc]. CNS myelin deficiency, with regional variation in severity, is a major pathological characteristic of affected goats. This study was designed to investigate regional CNS differences in oligosaccharide accumulation to assess the extent of correlation between oligosaccharide accumulation and severity of myelin deficits. The concentrations of accumulated disaccharide and trisaccharide and the activity of beta-mannosidase were determined in cerebral hemisphere gray and white matter and in spinal cord from three affected and two control neonatal goats. In affected goats, the content of trisaccharide and disaccharide in spinal cord (moderate myelin deficiency) was similar to or greater than that in cerebral hemispheres (severe myelin deficiency). Thus, greater oligosaccharide accumulation was not associated with more severe myelin deficiency. Regional beta-mannosidase activity levels in control goats were consistent with the affected goat oligosaccharide accumulation pattern. The similarity of trisaccharide and disaccharide content in cerebral hemisphere gray and white matter suggested that lysosomal storage vacuoles, more numerous in gray matter, may not be the only location of stored CNS oligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号