首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Activation-induced cytidine deaminase (AID) is a DNA mutator enzyme essential for adaptive immunity. AID initiates somatic hypermutation and class switch recombination (CSR) by deaminating cytosine to uracil in specific immunoglobulin (Ig) gene regions. However, other loci, including cancer-related genes, are also targeted. Thus, tight regulation of AID is crucial to balance immunity versus disease such as cancer. AID is regulated by several mechanisms including nucleocytoplasmic shuttling. Here we have studied nuclear import kinetics and subnuclear trafficking of AID in live cells and characterized in detail its nuclear localization signal. Importantly, we find that the nuclear localization signal motif also directs AID to nucleoli where it colocalizes with its interaction partner, catenin-β-like 1 (CTNNBL1), and physically associates with nucleolin and nucleophosmin. Moreover, we demonstrate that release of AID from nucleoli is dependent on its C-terminal motif. Finally, we find that CSR efficiency correlates strongly with the arithmetic product of AID nuclear import rate and DNA deamination activity. Our findings suggest that directional nucleolar transit is important for the physiological function of AID and demonstrate that nuclear/nucleolar import and DNA cytosine deamination together define the biological activity of AID. This is the first study on subnuclear trafficking of AID and demonstrates a new level in its complex regulation. In addition, our results resolve the problem related to dissociation of deamination activity and CSR activity of AID mutants.  相似文献   

2.
Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates class switch recombination and somatic hypermutation of immunoglobulin genes (Ig) in B lymphocytes. However, AID also produces off-target DNA damage, including mutations in oncogenes and double-stranded breaks that can serve as substrates for oncogenic chromosomal translocations. AID is strictly regulated by a number of mechanisms, including phosphorylation at serine 38 and threonine 140, which increase activity. Here we show that phosphorylation can also suppress AID activity in vivo. Serine 3 is a novel phospho-acceptor which, when mutated to alanine, leads to increased class switching and c-myc/IgH translocations without affecting AID levels or catalytic activity. Conversely, increasing AID phosphorylation specifically on serine 3 by interfering with serine/threonine protein phosphatase 2A (PP2A) leads to decreased class switching. We conclude that AID activity and its oncogenic potential can be downregulated by phosphorylation of serine 3 and that this process is controlled by PP2A.  相似文献   

3.
4.
In mammals, activation-induced deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of Ig genes. SHM and CSR activities require separate regions within AID. A chromosome region maintenance 1 (CRM1)-dependent nuclear export signal (NES) at the AID C terminus is necessary for CSR, and has been suggested to associate with CSR-specific cofactors. CSR appeared late in AID evolution, during the emergence of land vertebrates from bony fish, which only display SHM. Here, we show that AID from African clawed frog (Xenopus laevis), but not pufferfish (Takifugu rubripes), can induce CSR in AID-deficient mouse B cells, although both are catalytically active in bacteria and mammalian cell systems, albeit at decreased level. Like mammalian AID, Takifugu AID is actively exported from the cell nucleus by CRM1, and the Takifugu NES can substitute for the equivalent region in human AID, indicating that all the CSR-essential NES motif functions evolutionarily predated CSR activity. We also show that fusion of the Takifugu AID catalytic domain to the entire human noncatalytic domain restores activity in mammalian cells, suggesting that AID features mapping within the noncatalytic domain, but outside the NES, influence its function.  相似文献   

5.
6.
Activation-induced deaminase (AID) is required for both immunoglobulin class switch recombination and somatic hypermutation. AID is known to deaminate cytidines in single-stranded DNA, but the relationship of this step to the class switch or somatic hypermutation processes is not entirely clear. We have studied the activity of a recombinant form of the mouse AID protein that was purified from a baculovirus expression system. We find that the length of the single-stranded DNA target is critical to the action of AID at the Cs positioned anywhere along the length of the DNA. The DNA sequence surrounding a given C influences AID deamination efficiency. AID preferentially deaminates Cs in the WRC motif, and additionally has a small but consistent preference for purine at the position after the WRC, thereby favoring WRCr (the lowercase r corresponds to the smaller impact on activity).  相似文献   

7.
Class-switch recombination (CSR), somatic hypermutation (SHM), and antibody gene conversion are distinct DNA modification reactions, but all are initiated by activation-induced cytidine deaminase (AID), an enzyme that deaminates cytidine residues in single-stranded DNA. Here we describe a mutant form of AID that catalyzes SHM and gene conversion but not CSR. When expressed in E. coli, AID(delta189-198) is more active in catalyzing cytidine deamination than wild-type AID. AID(delta189-198) also promotes high levels of gene conversion and SHM when expressed in eukaryotic cells, but fails to induce CSR. These results underscore an essential role for the C-terminal domain of AID in CSR that is independent of its cytidine deaminase activity and that is not required for either gene conversion or SHM.  相似文献   

8.
Activation-induced cytidine deaminase (AID) is critically involved in class switch recombination and somatic hypermutation of Ig loci resulting in diversification of antibodies repertoire and production of high-affinity antibodies and as such represents a physiological tool to introduce DNA alterations. These processes take place within germinal centers of secondary lymphoid organs. Under physiological conditions, AID is expressed predominantly in activated B lymphocytes. Because of the mutagenic and recombinogenic potential of AID, its expression and activity is tightly regulated on different levels to minimize the risk of unwanted DNA damage. However, chronic inflammation and, probably, combination of other not-yet-identified factors are able to create a microenvironment sufficient for triggering an aberrant AID expression in B cells and, importantly, in non-B-cell background. Under these circumstances, AID may target also non-Ig genes, including cancer-related genes as oncogenes, tumor suppressor genes, and genomic stability genes, and modulate both genetic and epigenetic information. Despite ongoing progress, the complete understanding of fundamental aspects is still lacking as (1) what are the crucial factors triggering an aberrant AID expression/activity including the impact of Th2-driven inflammation and (2) to what extent may aberrant AID in human non-B cells lead to abnormal cell state associated with an increased rate of genomic alterations as point mutations, small insertions or deletions, and/or recurrent chromosomal translocations during solid tumor development and progression.  相似文献   

9.
Activation-induced cytidine deaminase (AID) is induced in B cells during an immune response and is essential for both class-switch recombination (CSR) and somatic hypermutation of Ab genes. The C-terminal 10 aa of AID are required for CSR but not for somatic hypermutation, although their role in CSR is unknown. Using retroviral transduction into mouse splenic B cells, we show that the C terminus is not required for switch (S) region double-strand breaks (DSBs) and therefore functions downstream of DSBs. Using chromatin immunoprecipitation, we show that AID binds cooperatively with UNG and the mismatch repair proteins Msh2-Msh6 to Ig Sμ and Sγ3 regions, and this depends on the C terminus and the deaminase activity of AID. We also show that mismatch repair does not contribute to the efficiency of CSR in the absence of the AID C terminus. Although it has been demonstrated that both UNG and Msh2-Msh6 are important for introduction of S region DSBs, our data suggest that the ability of AID to recruit these proteins is important for DSB resolution, perhaps by directing the S region DSBs toward accurate and efficient CSR via nonhomologous end joining.  相似文献   

10.
Activation Induced Deaminase (AID) triggers the antigen-driven antibody diversification processes through its ability to edit DNA. AID dependent DNA damage is also the cause of genetic alterations often found in mature B cell tumors. A number of splice variants of AID have been identified, for which a role in the modulation of its activity has been hypothesized. We have thus tested two of these splice variants, which we find catalytically inactive, for their ability to modulate the activity of endogenous AID in CH12F3 cells, a murine lymphoma cell line in which Class Switch Recombination (CSR) can be induced. In contrast to full-length AID, neither these splice variants or a catalytically impaired AID mutant affect the efficiency of Class Switch Recombination. Thus, while a role for these splice variants at the RNA level remains possible, it is unlikely that they exert any regulatory effect on the function of AID.  相似文献   

11.
Activation-induced cytidine deaminase (AID) plays critical roles in Ig class switch recombination and V(H) gene somatic hypermutation. We investigated the role of IL-4 in AID mRNA induction, the signaling transduction involved in IL-4-mediated AID induction, and the effect of CD45 on IL-4-dependent AID expression in human B cells. IL-4 was able to induce AID expression in human primary B cells and B cell lines, and IL-4-induced AID expression was further enhanced by CD40 signaling. IL-4-dependent AID induction was inhibited by a dominant-negative STAT6, indicating that IL-4 induced AID expression via the Janus kinase (JAK)/STAT6 signaling pathway. Moreover, triggering of CD45 with anti-CD45 Abs can inhibit IL-4-induced AID expression, and this CD45-mediated AID inhibition correlated with the ability of anti-CD45 to suppress IL-4-activated JAK1, JAK3, and STAT6 phosphorylations. Thus, in humans, IL-4 alone is sufficient to drive AID expression, and CD40 signaling is required for optimal AID production; IL-4-induced AID expression is mediated via the JAK/STAT signaling pathway, and can be negatively regulated by the JAK phosphatase activity of CD45. This study indicates that the JAK phosphatase activity of CD45 can be induced by anti-CD45 Ab treatment, and this principle may find clinical application in modulation of JAK activation in immune-mediated diseases.  相似文献   

12.
Activation-induced cytidine deaminase (AID) mediates antibody diversification by deaminating deoxycytidines to deoxyuridine within immunoglobulin genes. However, it also generates genome-wide DNA lesions, leading to transformation. Though the biochemical properties of AID have been described, its 3-dimensional structure has not been determined. Hence, to investigate the relationship between the primary structure and biochemical characteristics of AID, we compared the properties of human and bony fish AID, since these are most divergent in amino acid sequence. We show that AIDs of various species have different catalytic rates that are thermosensitive and optimal at native physiological temperatures. Zebrafish AID is severalfold more catalytically robust than human AID, while catfish AID is least active. This disparity is mediated by a single amino acid difference in the C terminus. Using functional assays supported by models of AID core and surface structure, we show that this residue modulates activity by affecting ssDNA binding. Furthermore, the cold-adapted catalytic rates of fish AID result from increased ssDNA binding affinity at lower temperatures. Our work suggests that AID may generate DNA damage with variable efficiencies in different organisms, identifies residues critical in regulating AID activity, and provides insights into the evolution of the APOBEC family of enzymes.  相似文献   

13.
Deoxycytidine deaminase enzyme activity was reduced in lysates of human leukemic THP1 cells 24 h after transfection with siRNA designed to inhibit cell synthesis of heat shock protein 70 (Hsp70)1a and Hsp701b. The cytidine deaminase enzyme activity from the cell lysates was purified from an affinity column which contained bound single-stranded oligodeoxycytidylic acid. Deficient enzyme activity in certain elution fractions from the siRNA-transfected cells was restored by including recombinant HSP 70 in the assays. Enzyme activity in some other fractions was increased after siRNA transfection. Activation-induced cytidine deaminase (AID) is a central factor in the immune response. A more specific assay for AID was used to study the influence of Hsp70 on AID activity. Unlike Hsp70's ability to stimulate certain enzymes of DNA base excision repair and other cytidine deaminases, it had little effect on AID activity in vitro, or was weakly inhibitory.  相似文献   

14.
Activation-induced cytidine deaminase (AID) is essential to all three genetic alterations required for generation of antigen-specific immunoglobulin: class switch recombination, somatic hypermutation, and gene conversion. Here we demonstrate that AID molecules form a homodimer autonomously in the absence of RNA, DNA, other cofactors, or post-translational modifications. Studies on serial deletion mutants revealed the minimum region between Thr27 and His56 responsible for dimerization. Analyses of point mutations within this region revealed that the residues between Gly47 and Gly54 are most important for the dimer formation. Functional analyses of these mutations indicate that all mutations impairing the dimer formation are inefficient for class switching, suggesting that dimer formation is required for class switching activity. Dimer formation and its requirement for the function of AID are features that AID shares with APOBEC-1, an RNA editing enzyme of apolipoprotein B100 mRNA.  相似文献   

15.
Hyper-IgM syndrome type 2 stems from mutations in activation-induced deoxycytidine deaminase (AID) that abolish immunoglobulin class-switch recombination, causing an accumulation of IgM and absence of IgG, IgA, and IgE isotypes. Although hyper-IgM syndrome type 2 is rare, the 23 missense mutations identified in humans span almost the entire gene for AID resulting in a recessive phenotype. Using high resolution x-ray structures for Apo3G-CD2 as a surrogate for AID, we identify three classes of missense mutants as follows: catalysis (class I), substrate interaction (class II), and structural integrity (class III). Each mutant was expressed and purified from insect cells and compared biochemically to wild type (WT) AID. Four point mutants retained catalytic activity at 1/3rd to 1/200th the level of WT AID. These "active" point mutants mimic the behavior of WT AID for motif recognition specificity, deamination spectra, and high deamination processivity. We constructed a series of C-terminal deletion mutants (class IV) that retain catalytic activity and processivity for deletions ≤18 amino acids, with ΔC(10) and ΔC(15) having 2-3-fold higher specific activities than WT AID. Deleting 19 C-terminal amino acids inactivates AID. WT AID and active and inactive point mutants bind cooperatively to single-stranded DNA (Hill coefficients ~1.7-3.2) with microscopic dissociation constant values (K(A)) ranging between 10 and 250 nm. Active C-terminal deletion mutants bind single-stranded DNA noncooperatively with K(A) values similar to wild type AID. A structural analysis is presented that shows how localized defects in different regions of AID can contribute to loss of catalytic function.  相似文献   

16.

Background

Activation induced deaminase (AID) mediates class switch recombination and somatic hypermutation of immunoglobulin (Ig) genes in germinal centre B cells. In order to regulate its specific activity and as a means to keep off-target mutations low, several mechanisms have evolved, including binding to specific cofactors, phosphorylation and destabilization of nuclear AID protein. Although ubiquitination at lysine residues of AID is recognized as an essential step in initiating degradation of nuclear AID, any functional relevance of lysine modifications has remained elusive.

Methodology/Principal Findings

Here, we report functional implications of lysine modifications of the human AID protein by generating a panel of lysine to arginine mutants of AID and assessment of their catalytic class switch activity. We found that only mutation of Lys22 to Arg resulted in a significant reduction of class switching to IgG1 in transfected primary mouse B cells. This decrease in activity was neither reflected in reduced hypermutation of Ig genes in AID-mutant transfected DT40 B cell lines nor recapitulated in bacterial deamination assays, pointing to involvement of post-translational modification of Lys22 for AID activity in B cells.

Conclusions/Significance

Our results imply that lysine modification may represent a novel level of AID regulation and that Lys22 is important for effective AID activity.  相似文献   

17.
Autoinhibitory domain (AID) of calcineurin (CN) was discovered two decades ago. Fewer investigations are reported to find out shortest possible peptide from the AID for CN inhibition. Hence, this study has focused on screening of nearly 150 peptide fragments derived from the AID using in silico method. Therefore, we have employed docking studies, aiming to analyze the best pose of AID-derived peptides on CN active site. We also analyzed binding free energy (ΔG) of docked complex using molecular mechanics/generalized Born surface area (MM/GBSA). MM/GBSA predicts two short peptides P1 and P2 found to be lowest binding free energy. Two peptides exhibit better binding affinity with CN, suggests that the possible candidates for potential CN inhibition. Further, the stability of the docked complex was analyzed using molecular dynamic (MD) simulation. MD study shows that CNA:P2 is the most stable complex than CN A:P1 and CN A:AID. Besides, we have synthesized and purified P1 and P2 peptides over high performance liquid chromatography (HPLC) found to be 90.31% and 98.93% of purity, respectively. In addition, AID peptides were characterized over mass spectral analysis. Peptides were subjected to CN inhibitory assay using malachite green method. Where, P1 and P2 exhibit CN inhibition better than AID. In particular, shortest peptide P2 shows highest inhibitory activity than AID. Enzyme assay reveals CN inhibitory activity of P2 peptide is consistent within silico results. In silico and in vitro, results corroborated each other to confirm short peptide P2 can be used as a potential CN inhibitor.  相似文献   

18.
19.
20.
The AID/APOBEC family (comprising AID, APOBEC1, APOBEC2, and APOBEC3 subgroups) contains members that can deaminate cytidine in RNA and/or DNA and exhibit diverse physiological functions (AID and APOBEC3 deaminating DNA to trigger pathways in adaptive and innate immunity; APOBEC1 mediating apolipoprotein B RNA editing). The founder member APOBEC1, which has been used as a paradigm, is an RNA-editing enzyme with proposed antecedents in yeast. Here, we have undertaken phylogenetic analysis to glean insight into the primary physiological function of the AID/APOBEC family. We find that although the family forms part of a larger superfamily of deaminases distributed throughout the biological world, the AID/APOBEC family itself is restricted to vertebrates with homologs of AID (a DNA deaminase that triggers antibody gene diversification) and of APOBEC2 (unknown function) identifiable in sequence databases from bony fish, birds, amphibians, and mammals. The cloning of an AID homolog from dogfish reveals that AID extends at least as far back as cartilaginous fish. Like mammalian AID, the pufferfish AID homolog can trigger deoxycytidine deamination in DNA but, consistent with its cold-blooded origin, is thermolabile. The fine specificity of its mutator activity and the biased codon usage in pufferfish IgV genes appear broadly similar to that of their mammalian counterparts, consistent with a coevolution of the antibody mutator and its substrate for the optimal targeting of somatic mutation during antibody maturation. By contrast, APOBEC1 and APOBEC3 are later evolutionary arrivals with orthologs not found in pufferfish (although synteny with mammals is maintained in respect of the flanking loci). We conclude that AID and APOBEC2 are likely to be the ancestral members of the AID/APOBEC family (going back to the beginning of vertebrate speciation) with both APOBEC1 and APOBEC3 being mammal-specific derivatives of AID and a complex set of domain shuffling underpinning the expansion and evolution of the primate APOBEC3s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号