首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computational modeling has the potential to add an entirely new approach to hypothesis testing in yeast cell biology. Here, we present a method for seamless integration of computational modeling with quantitative digital fluorescence microscopy. This integration is accomplished by developing computational models based on hypotheses for underlying cellular processes that may give rise to experimentally observed fluorescent protein localization patterns. Simulated fluorescence images are generated from the computational models of underlying cellular processes via a "model-convolution" process. These simulated images can then be directly compared to experimental fluorescence images in order to test the model. This method provides a framework for rigorous hypothesis testing in yeast cell biology via integrated mathematical modeling and digital fluorescence microscopy.  相似文献   

2.
In observations by confocal or conventional fluorescence microscopy, important factors should be considered in order to obtain accurate images. One of them, such as the fluorescence bleaching from highest intensity to lowest signal of fluorescence is a common problem with several DNA fluorochromes and especially for DAPI stain. The fluorescence of DAPI fades rapidly when it is exposed to UV light, under optimal conditions of observation. Although the fading process can be retarded using a mounting medium with antifading reagents, the photochemical process underlying the fluorescence decay has not yet been fully explained. In addition, no relationship between fluorescence fading and nuclear DNA content has been tested. In order to test this relationship, we measured by means of image analysis the DAPI-fluorescence intensity in several cellular types (spermatozoa, erythrocytes and haemocytes) during their fluorescence bleaching. An algorithm specifically built in MATLAB software was used for this approach. The correlation coefficient between nuclear DNA content and DAPI-fluorescence fading was found equal to 99%. This study demonstrates the feasibility to measure nuclear DNA content by fluorescence fading quantification, as an alternative method concurrently with image analysis procedures.  相似文献   

3.
Bright microscopic images against a dark background can be originating not only from fluorescence, but also from selective reflection. Selective reflection or scattering of visible light in microscopic preparations can be used for the visualization of sometimes otherwise barely distinguishable material. The images obtained superficially resemble those from fluorescence microscopy. They do not, however, result from huminescence but from selectively reflected light with wavelengths in the region of the absorbance peak of the chromophore present in the stained biological material. The respective backgrounds of the underlying physical phenomena and the conditions under which selective reflection can occur are discussed.  相似文献   

4.
Langmuir-Blodgett (LB) monolayers and bilayers of L-alpha-dipalmitoylphosphatidylcholine (DPPC), fluorescently doped with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (diIC18), are studied by confocal microscopy, atomic force microscopy (AFM), and near-field scanning optical microscopy (NSOM). Beyond the resolution limit of confocal microscopy, both AFM and NSOM measurements of mica-supported lipid monolayers reveal small domains on the submicron scale. In the NSOM studies, simultaneous high-resolution fluorescence and topography measurements of these structures confirm that they arise from coexisting liquid condensed (LC) and liquid expanded (LE) lipid phases, and not defects in the monolayer. AFM studies of bilayers formed by a combination of LB dipping and Langmuir-Schaefer monolayer transfer exhibit complex surface topographies that reflect a convolution of the phase structure present in each of the individual monolayers. NSOM fluorescence measurements, however, are able to resolve the underlying lipid domains from each side of the bilayer and show that they are qualitatively similar to those observed in the monolayers. The observation of the small lipid domains in these bilayers is beyond the spatial resolving power of confocal microscopy and is complicated in the topography measurements taken with AFM, illustrating the utility of NSOM for these types of studies. The data suggest that the small LC and LE lipid domains are formed after lipid transfer to the substrate through a dewetting mechanism. The possible extension of these measurements to probing for lipid phase domains in natural biomembranes is discussed.  相似文献   

5.
Host-pathogen interactions are highly regulated, dynamic processes that take place at the molecular, cellular and organ level. Innovative imaging technologies have emerged recently to investigate the underlying mechanisms of host-pathogen interactions. Innovations in fluorescence microscopy enable functional studies on the single-cell level. New light microscopes have been developed that improve the resolution to less than 100 nm. At the other extreme, intravital microscopy enables the correlation of cellular events on the organ level. This is also achieved by alternatives to microscopy such as bioluminescence, positron-emission tomography and magnetic resonance imaging. The methodologies described here will have a tremendous effect on our understanding of host-pathogen interactions.  相似文献   

6.
Conformational changes of proteins and other biomolecules play a fundamental role in their functional mechanism. Single pair Förster resonance energy transfer (spFRET) offers the possibility to detect these conformational changes and dynamics, and to characterize their underlying kinetics. Using spFRET on microscopes with different modes of detection, dynamic timescales ranging from nanoseconds to seconds can be quantified. Confocal microscopy can be used as a means to analyze dynamics in the range of nanoseconds to milliseconds, while total internal reflection fluorescence (TIRF) microscopy offers information about conformational changes on timescales of milliseconds to seconds. While the existence of dynamics can be directly inferred from the FRET efficiency time trace or the correlation of FRET efficiency and fluorescence lifetime, additional computational approaches are required to extract the kinetic rates of these dynamics, a short overview of which is given in this review.
  相似文献   

7.
Optical mapping of genomic DNA is of relevance for a plethora of applications such as scaffolding for sequencing and detection of structural variations as well as identification of pathogens like bacteria and viruses. For future clinical applications it is desirable to have a fast and robust mapping method based on as few steps as possible. We here demonstrate a single-step method to obtain a DNA barcode that is directly visualized using nanofluidic devices and fluorescence microscopy. Using a mixture of YOYO-1, a bright DNA dye, and netropsin, a natural antibiotic with very high AT specificity, we obtain a DNA map with a fluorescence intensity profile along the DNA that reflects the underlying sequence. The netropsin binds to AT-tetrads and blocks these binding sites from YOYO-1 binding which results in lower fluorescence intensity from AT-rich regions of the DNA. We thus obtain a DNA barcode that is dark in AT-rich regions and bright in GC-rich regions with kilobasepair resolution. We demonstrate the versatility of the method by obtaining a barcode on DNA from the phage T4 that captures its circular permutation and agrees well with its known sequence.  相似文献   

8.
The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite.  相似文献   

9.
The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the duplication of genome in eukaryotes. Here, we describe a single-molecule assay that allows replication of DNA attached to the functionalized surface of a microfluidic flow cell in a soluble Xenopus leavis egg extract replication system and subsequent visualization of replication products via fluorescence microscopy. We also explain a method for detection of replication proteins, through fluorescently labeled antibodies, on partially replicated DNA immobilized at both ends to the surface.  相似文献   

10.
Effects of serotonin precursors on the metabolism of 5-hydroxytryptamine(5-HT) in dumbbell shaped cells of the frog taste buds werestudied using fluorescence microscopy. The injection of DL-tryptophanand 5-hydroxytryptophan (5-HTp) resulted in an increase in thecells' fluorescence intensity and in the number of cells inthe taste bud. Pyromycin, in doses not affecting the taste budstructure, prevented the tryptophan-induced increase in thenumber of fluorescent cells. The participation of specific proteinsin the mechanism underlying this phenomenon is suggested.  相似文献   

11.
Correlative microscopy is a powerful imaging approach that refers to observing the same exact structures within a specimen by two or more imaging modalities. In biological samples, this typically means examining the same sub-cellular feature with different imaging methods. Correlative microscopy is not restricted to the domains of fluorescence microscopy and electron microscopy; however, currently, most correlative microscopy studies combine these two methods, and in this review, we will focus on the use of fluorescence and electron microscopy. Successful correlative fluorescence and electron microscopy requires probes, or reporter systems, from which useful information can be obtained with each of the imaging modalities employed. The bi-functional immunolabeling reagent, FluoroNanogold, is one such probe that provides robust signals in both fluorescence and electron microscopy. It consists of a gold cluster compound that is visualized by electron microscopy and a covalently attached fluorophore that is visualized by fluorescence microscopy. FluoroNanogold has been an extremely useful labeling reagent in correlative microscopy studies. In this report, we present an overview of research using this unique probe.  相似文献   

12.
Confocal laser scanning microscopy (CLSM) was used to non-destructively analyse the changes in the structure and thickness of the cuticle during storage of apples (Malus domestica Borkh.). Interpretation of the confocal images was performed by comparison with scanning electron microscopy and environmental scanning electron microscopy images. The natural reflectance of the wax and the auto-fluorescence of the underlying cells made it possible with CLSM to distinguish the wax from the underlying layers without any pretreatment of the fruit. The thickness of the consecutive layers (wax, cutin, cells) could be estimated from measurements of the reflection and fluorescence intensities as a function of the number of pixels. The mean wax-layer thickness measured in this way amounted to 2.58 microm, 3.41 microm or 4.14 microm for the cultivars Jonagold, Jonagored and Elstar, respectively. Changes in the wax structure and cells of the same important Belgian apple cultivars as mentioned above were monitored during nine months of storage in ultra low oxygen and after exposure to ambient conditions. The changes in the wax ultrastructure and cell morphology are likely related to water losses and specific protection of the apple cultivars against water losses during storage and shelf life.  相似文献   

13.
Despite the fact that thioridazine is used clinically as a neuroleptic drug, little is known about the molecular mechanisms underlying its biological effects, in particular about its interactions with membranes. In the present work we investigate the influence of thioridazine on model and cell membranes, using calorimetry, DPH fluorescence polarization measurements, studies of haemolysis and scanning electron microscopy. The experiments show that thioridazine interacts with lipid bilayers and intercalates into bilayer structure. We found that erythrocyte stomatocytosis induced by the drug might be related to preferential interaction of thioridazine with charged lipids.  相似文献   

14.
In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution.  相似文献   

15.
We combined confocal and live-cell imaging with a novel molecular strategy aimed at revealing mechanisms underlying glucose-regulated insulin vesicle secretion. The 'Ins-C-GFP' reporter monitors secretory peptide targeting, trafficking, and exocytosis without directly tagging the mature secreted peptide. We trapped a green fluorescent protein (GFP) reporter in equimolar quantity within the secretory vesicle by fusing it within the C peptide of proinsulin which only after nascent vesicle sealing and acidification is cleaved from the mature secreted A and B chains of insulin. Ins-C-GFP expression in mouse islets without fail exhibited punctate distribution of green fluorescence by confocal microscopy. Ins-C-GFP colocalized GFP with insulin at vesicle dense cores by immuno-electron microscopy. Glucose stimulation decreased vesicle fluorescence coordinately with enhanced secretion from islets of C-GFP detected by anti-GFP Western blots, and of insulin detected by anti-insulin radioimmunoassay. An insulin secretagogue with a red fluorescent label, glibenclamide BODIPY®TR, was applied to islets expressing Ins-C-GFP. The stimulus response was imaged as a rise in red secretagogue leading to marked loss in green granules. Since neuropeptides as well as peptide hormones are processed from propeptides after sealing of secretory granules, vesicle trapping likely is widely applicable for studies on targeting, trafficking, and regulated release of secretory peptides.  相似文献   

16.
Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets.  相似文献   

17.
Correlative microscopy is a powerful technique that combines the strengths of fluorescence microscopy and electron microscopy. The first enables rapid searching for regions of interest in large fields of view while the latter exhibits superior resolution over a narrow field of view. Routine use of correlative microscopy is seriously hampered by the cumbersome and elaborate experimental procedures. This is partly due to the use of two separate microscopes for fluorescence and electron microscopy. Here, an integrated approach to correlative microscopy is presented based on a laser scanning fluorescence microscope integrated in a transmission electron microscope. Using this approach the search for features in the specimen is greatly simplified and the time to carry out the experiment is strongly reduced. The potential of the integrated approach is demonstrated at room temperature on specimens of rat intestine cells labeled with AlexaFluor488 conjugated to wheat germ agglutinin and on rat liver peroxisomes immunolabeled with anti-catalase antibodies and secondary AlexaFluor488 antibodies and 10nm protein A-gold.  相似文献   

18.
Intravital imaging   总被引:1,自引:0,他引:1  
Pittet MJ  Weissleder R 《Cell》2011,147(5):983-991
Until recently, the idea of observing life deep within the tissues of a living mouse, at a resolution sufficient to pick out cellular behaviors and molecular signals underlying them, remained a much-coveted dream. Now, a new era of intravital fluorescence microscopy has dawned. In this Primer, we review the technologies that made this revolution possible and demonstrate how intravital imaging is beginning to provide quantitative and dynamic insights into cell biology, immunology, tumor biology, and neurobiology.  相似文献   

19.
Jaedicke K  Rösler J  Gans T  Hughes J 《Planta》2011,234(4):759-768
Fluorescent fusion proteins together with transient transformation techniques are commonly used to investigate intracellular protein localisation in vivo. Biolistic transfection is reliable, efficient and avoids experimental problems associated with producing and handling fragile protoplasts. Onion epidermis pavement cells are frequently used with this technique, their excellent properties for microscopy resulting from their easy removal from the underlying tissues and large size. They also have advantages over mesophyll cells for fluorescence microscopy, as they are devoid of chloroplasts whose autofluorescence can pose problems. The arrested plastid development is peculiar to epidermal cells, however, and stands in the way of studies on protein targeting to plastids. We have developed a system enabling studies of in vivo protein targeting to organelles including chloroplasts within a photosynthetically active plant cell with excellent optical properties using a transient transformation procedure. We established biolistic transfection in epidermal pavement cells of the lawn daisy (Bellis perennis L., cultivar “Galaxy red”) which unusually contain a moderate number of functional chloroplasts. These cells are excellent objects for fluorescence microscopy using current reporters, combining the advantages of the ease of biolistic transfection, the excellent optical properties of a single cell layer and access to chloroplast protein targeting. We demonstrate chloroplast targeting of plastid-localised heme oxygenase, and two further proteins whose localisation was equivocal. We also demonstrate unambiguous targeting to mitochondria, peroxisomes and nuclei. We thus propose that the Bellis system represents a valuable tool for protein localisation studies in living plant cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号