首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Recently, light microscopy moved back into the spotlight, which is mainly due to the development of revolutionary technologies for imaging real-time events in living cells. It is truly fascinating to see enzymes “at work” and optically acquired images certainly help us to understand biological processes better than any abstract measurements. This review aims to point out elegant examples of recent cell-biological imaging applications that have been developed with a chemical approach. The discussed technologies include nanoscale fluorescence microscopy, imaging of model membranes, automated high-throughput microscopy control and analysis, and fluorescent probes with a special focus on visualizing enzyme activity, free radicals, and protein–protein interaction designed for use in living cells.  相似文献   

2.
The advent of superresolution microscopy has opened up new research opportunities into dynamic processes at the nanoscale inside living biological specimens. This is particularly true for synapses, which are very small, highly dynamic, and embedded in brain tissue. Stimulated emission depletion (STED) microscopy, a recently developed laser-scanning technique, has been shown to be well suited for imaging living synapses in brain slices using yellow fluorescent protein as a single label. However, it would be highly desirable to be able to image presynaptic boutons and postsynaptic spines, which together form synapses, using two different fluorophores. As STED microscopy uses separate laser beams for fluorescence excitation and quenching, incorporation of multicolor imaging for STED is more difficult than for conventional light microscopy. Although two-color schemes exist for STED microscopy, these approaches have several drawbacks due to their complexity, cost, and incompatibility with common labeling strategies and fluorophores. Therefore, we set out to develop a straightforward method for two-color STED microscopy that permits the use of popular green-yellow fluorescent labels such as green fluorescent protein, yellow fluorescent protein, Alexa Fluor 488, and calcein green. Our new (to our knowledge) method is based on a single-excitation/STED laser-beam pair to simultaneously excite and quench pairs of these fluorophores, whose signals can be separated by spectral detection and linear unmixing. We illustrate the potential of this approach by two-color superresolution time-lapse imaging of axonal boutons and dendritic spines in living organotypic brain slices.  相似文献   

3.
Quantitative imaging of protein interactions in the cell nucleus   总被引:2,自引:0,他引:2  
Voss TC  Demarco IA  Day RN 《BioTechniques》2005,38(3):413-424
Over the past decade, genetically encoded fluorescent proteins have become widely used as noninvasive markers in living cells. The development of fluorescent proteins, coupled with advances in digital imaging, has led to the rapid evolution of live-cell imaging methods. These approaches are being applied to address biological questions of the recruitment, co-localization, and interactions of specific proteins within particular subcellular compartments. In the wake of this rapid progress, however, come important issues associated with the acquisition and analysis of ever larger and more complex digital imaging data sets. Using protein localization in the mammalian cell nucleus as an example, we will review some recent developments in the application of quantitative imaging to analyze subcellular distribution and co-localization of proteins in populations of living cells. In this report, we review the principles of acquiring fluorescence resonance energy transfer (FRET) microscopy measurements to define the spatial relationships between proteins. We then discuss how fluorescence lifetime imaging microscopy (FLIM) provides a method that is independent of intensity-based measurements to detect localized protein interactions with spatial resolution. Finally, we consider potential problems associated with the expression of proteins fused to fluorescent proteins for FRET-based measurements from living cells.  相似文献   

4.
Helmchen F  Denk W 《Nature methods》2005,2(12):932-940
With few exceptions biological tissues strongly scatter light, making high-resolution deep imaging impossible for traditional-including confocal-fluorescence microscopy. Nonlinear optical microscopy, in particular two photon-excited fluorescence microscopy, has overcome this limitation, providing large depth penetration mainly because even multiply scattered signal photons can be assigned to their origin as the result of localized nonlinear signal generation. Two-photon microscopy thus allows cellular imaging several hundred microns deep in various organs of living animals. Here we review fundamental concepts of nonlinear microscopy and discuss conditions relevant for achieving large imaging depths in intact tissue.  相似文献   

5.
Light microscopy enables noninvasive imaging of fluorescent species in biological specimens, but resolution is generally limited by diffraction to ~200–250 nm. Many biological processes occur on smaller length scales, highlighting the importance of techniques that can image below the diffraction limit and provide valuable single-molecule information. In recent years, imaging techniques have been developed which can achieve resolution below the diffraction limit. Utilizing one such technique, fluorescence photoactivation localization microscopy (FPALM), we demonstrated its ability to construct super-resolution images from single molecules in a living zebrafish embryo, expanding the realm of previous super-resolution imaging to a living vertebrate organism. We imaged caveolin-1 in vivo, in living zebrafish embryos. Our results demonstrate the successful image acquisition of super-resolution images in a living vertebrate organism, opening several opportunities to answer more dynamic biological questions in vivo at the previously inaccessible nanoscale.  相似文献   

6.
Intermolecular and intramolecular FRET between two spectrally overlapping green fluorescent protein variants fused to two different host proteins or at two different sites within the same protein offers a unique opportunity to monitor real-time protein-protein interactions or protein conformational changes. By using fluorescence digital imaging microscopy, one can visualize the location of green fluorescent proteins within a living cell and follow the time course of the changes in FRET corresponding to cellular events at a millisecond time resolution. The observation of such dynamic molecular events in vivo provides vital insight into the action of biological molecules.  相似文献   

7.
A new form of super-resolution fluorescence microscopy has emerged in recent years, based on the high accuracy localization of individual photo-switchable fluorescent labels. Image resolution as high as 20 nm in the lateral dimensions and 50 nm in the axial direction has been attained with this concept, representing an order of magnitude improvement over the diffraction limit. The demonstration of multicolor imaging with molecular specificity, three-dimensional (3D) imaging of cellular structures, and time-resolved imaging of living cells further illustrates the exciting potential of this method for biological imaging at the nanoscopic scale.  相似文献   

8.
The use of green fluorescent protein (GFP) fusions as biosensors for examining protein localization and dynamics has revolutionized cell biology. Here, we describe the methods developed for imaging of GFP-fusions in the fission yeast Schizosaccharomyces pombe using fluorescence microscopy, with a focus on the use of time-lapse imaging to analyze the dynamics of microtubules. We discuss the considerations in fluorescence microscopy, cell preparation, data acquisition, and image analysis appropriate for analysis of living cells.  相似文献   

9.
New imaging methodologies in quantitative fluorescence microscopy and nanoscopy have been developed in the last few years and are beginning to be extensively applied to biological problems, such as the localization and quantification of protein interactions. Fluorescence resonance energy transfer (FRET) detected by fluorescence lifetime imaging microscopy (FLIM) is currently employed not only in biophysics or chemistry but also in bio-medicine, thanks to new advancements in technology and also new developments in data treatment. FRET–FLIM can be a very useful tool to ascertain protein interactions occurring in single living cells. In this review, we stress the importance of increasing the acquisition speed when working in vivo employing Time-Domain FLIM. The development of the new mathematical-based non-fitting methods allows the determining of the fraction of interacting donor without the requirement of high count statistics, and thus allows the performing of high speed acquisitions in FRET–FLIM to still be quantitative.  相似文献   

10.
Animal imaging requires the use of reliable long-term fluorescence methods and technology. The application of confocal imaging to in vivo monitoring of transgene expression within internal organs and tissues has been limited by the accessibility to these sites. We aimed to test the feasibility of fibred confocal fluorescence microscopy (FCFM) to image in situ green fluorescent protein (GFP) in cells of living animals. We used transgenic rabbits expressing the enhanced GFP (eGFP) gene. Detailed tissue architecture and cell morphology were visualised and identified in situ by FCFM. Imaging of vasculature by using FCFM revealed a single blood vessel or vasculature network. We also used non-transgenic female rabbits mated with transgenic males to visualise eGFP expression in extra-foetal membranes and the placenta. Expression of the eGFP gene was confirmed by FCFM. This new imaging technology offers specific characteristics: a way to gain access to organs and tissues in vivo, sensitive detection of fluorescent signals, and cellular observations with rapid acquisition at near real time. It allows an accurate visualisation of tissue anatomical structure and cell morphology. FCFM is a promising technology to study biological processes in the natural physiological environment of living animals.  相似文献   

11.
In biological microscopy, the ever expanding range of applications requires quantitative approaches that analyze several distinct fluorescent molecules at the same time in the same sample. However, the spectral properties of the fluorescent proteins and dyes presently available set an upper limit to the number of molecules that can be detected simultaneously with common microscopy methods. Spectral imaging and linear unmixing extends the possibilities to discriminate distinct fluorophores with highly overlapping emission spectra and thus the possibilities of multicolor imaging. This method also offers advantages for fast multicolor time-lapse microscopy and fluorescence resonance energy transfer measurements in living samples. Here we discuss recent progress on the technical implementation of the method, its limitations and applications to the imaging of biological samples.  相似文献   

12.
Two-photon microscopy: shedding light on the chemistry of vision   总被引:2,自引:0,他引:2  
Two-photon microscopy (TPM) has come to occupy a prominent place in modern biological research with its ability to resolve the three-dimensional distribution of molecules deep inside living tissue. TPM can employ two different types of signals, fluorescence and second harmonic generation, to image biological structures with subcellular resolution. Two-photon excited fluorescence imaging is a powerful technique with which to monitor the dynamic behavior of the chemical components of tissues, whereas second harmonic imaging provides novel ways to study their spatial organization. Using TPM, great strides have been made toward understanding the metabolism, structure, signal transduction, and signal transmission in the eye. These include the characterization of the spatial distribution, transport, and metabolism of the endogenous retinoids, molecules essential for the detection of light, as well as the elucidation of the architecture of the living cornea. In this review, we present and discuss the current applications of TPM for the chemical and structural imaging of the eye. In addition, we address what we see as the future potential of TPM for eye research. This relatively new method of microscopy has been the subject of numerous technical improvements in terms of the optics and indicators used, improvements that should lead to more detailed biochemical characterizations of the eyes of live animals and even to imaging of the human eye in vivo.  相似文献   

13.
Constant efforts are ongoing for the development of new imaging methods that allow the investigation of molecular processes in vivo. Protein-protein interactions, enzymatic activities and intracellular Ca2+ fluxes, have been resolved in cultured cells using a variety of fluorescence resonance energy transfer (FRET) detection methods. However, FRET has not been used so far in conjunction with 3D intravital imaging. We evaluated here a combination of multiphoton microscopy (MPM), method of choice for non-destructive living tissue investigation, and FRET imaging to monitor calpain proteolytic activity in living mice muscle. We show that kinetics of ubiquitous calpains activation can be efficiently and quantitatively monitored in living mouse tissues at cellular level with a FRET-based indicator upon calcium influx. The ability to visualize calpain activity in living tissue offers a unique opportunity to challenge remaining questions on the biological functions of calpains and to evaluate the therapeutic potential of calpain inhibitors in many degenerative conditions.  相似文献   

14.
Optical microscopy is an indispensable tool that is driving progress in cell biology. It still is the only practical means of obtaining spatial and temporal resolution within living cells and tissues. Most prominently, fluorescence microscopy based on dye-labeling or protein fusions with fluorescent tags is a highly sensitive and specific method of visualizing biomolecules within sub-cellular structures. It is however severely limited by labeling artifacts, photo-bleaching and cytotoxicity of the labels. Coherent Raman Scattering (CRS) has emerged in the last decade as a new multiphoton microscopy technique suited for imaging unlabeled living cells in real time with high three-dimensional spatial resolution and chemical specificity. This technique has proven to be particularly successful in imaging unstained lipids from artificial membrane model systems, to living cells and tissues to whole organisms. In this article, we will review the experimental implementations of CRS microscopy and their application to imaging lipids. We will cover the theoretical background of linear and non-linear vibrational micro-spectroscopy necessary for the understanding of CRS microscopy. The different experimental implementations of CRS will be compared in terms of sensitivity limits and excitation and detection methods. Finally, we will provide an overview of the applications of CRS microscopy to lipid biology.  相似文献   

15.
Fluorescence imaging techniques are extremely powerful tools in cell biology, providing valuable insights into the structure and function of biomolecules in their native environments. In particular, the use of Förster resonance energy transfer (FRET) has become increasingly important to obtain information on interactions on the nanoscale, in turn providing insights into molecular behaviour inside living cells. This review describes the basic principles of FRET and fluorescence lifetime imaging microscopy (FLIM) and their application in analyses of protein interactions inside living fungal cells.  相似文献   

16.
It has been possible for several years to study the dynamics of fluorescently labeled proteins by single-molecule microscopy, but until now this technology has been applied only to individual cells in culture. In this study, it was extended to stem cells and living vertebrate organisms. As a molecule of interest we used yellow fluorescent protein fused to the human H-Ras membrane anchor, which has been shown to serve as a model for proteins anchored in the plasma membrane. We used a wide-field fluorescence microscopy setup to visualize individual molecules in a zebrafish cell line (ZF4) and in primary embryonic stem cells. A total-internal-reflection microscopy setup was used for imaging in living organisms, in particular in epidermal cells in the skin of 2-day-old zebrafish embryos. Our results demonstrate the occurrence of membrane microdomains in which the diffusion of membrane proteins in a living organism is confined. This membrane organization differed significantly from that observed in cultured cells, illustrating the relevance of performing single-molecule microscopy in living organisms.  相似文献   

17.
Cellular membranes are fundamental building blocks regulating an extensive repertoire of biological functions. These structures contain lipids and membrane proteins that are known to laterally self-aggregate in the plane of the membrane, forming defined membrane nanoscale domains essential for protein activity. Membrane rafts are described as heterogeneous, dynamic, and short-lived cholesterol- and sphingolipid-enriched membrane nanodomains (10–200 nm) induced by lipid-protein and lipid-lipid interactions. Those membrane nanodomains have been extensively characterized using model membranes and in silico methods. However, despite the development of advanced fluorescence microscopy techniques, undoubted nanoscale visualization by imaging techniques of membrane rafts in the membrane of unperturbed living cells is still uncompleted, increasing the skepticism about their existence. Here, we broadly review recent biochemical and microscopy techniques used to investigate membrane rafts in living cells and we enumerate persistent open questions to answer before unlocking the mystery of membrane rafts in living cells.  相似文献   

18.
In the past few years there has been a veritable explosion in the field of reporter gene imaging, with the aim of determining the location, duration and extent of gene expression within living subjects. An important application of this approach is the molecular imaging of interacting protein partners, which could pave the way to functional proteomics in living animals and might provide a tool for the whole-body evaluation of new pharmaceuticals targeted to modulate protein-protein interactions. Three general methods are currently available for imaging protein-protein interactions in living subjects using reporter genes: a modified mammalian two-hybrid system, a bioluminescence resonance energy transfer (BRET) system, and split reporter protein complementation and reconstitution strategies. In the future, these innovative approaches are likely to enhance our appreciation of entire biological pathway systems and their pharmacological regulation.  相似文献   

19.
Advances in the technologies for labeling and imaging biological samples drive a constant progress in our capability of studying structures and their dynamics within cells and tissues. In the last decade, the development of numerous nonlinear optical microscopies has led to a new prospective both in basic research and in the potential development of very powerful noninvasive diagnostic tools. These techniques offer large advantages over conventional linear microscopy with regard to penetration depth, spatial resolution, three-dimensional optical sectioning, and lower photobleaching. Additionally, some of these techniques offer the opportunity for optically probing biological functions directly in living cells, as highlighted, for example, by the application of second-harmonic generation to the optical measurement of electrical potential and activity in excitable cells. In parallel with imaging techniques, nonlinear microscopy has been developed into a new area for the selective disruption and manipulation of intracellular structures, providing an extremely useful tool of investigation in cell biology. In this review we present some basic features of nonlinear microscopy with regard both to imaging and manipulation, and show some examples to illustrate the advantages offered by these novel methodologies.  相似文献   

20.
Microscopy has become an essential tool for cellular protein investigations. The development of new fluorescent markers such as green fluorescent proteins generated substantial opportunities to monitor protein-protein interactions qualitatively and quantitatively using advanced fluorescence microscope techniques including wide-field, confocal, multiphoton, spectral imaging, lifetime, and correlation spectroscopy. The specific aims of the investigation of protein dynamics in live specimens dictate the selection of the microscope methodology. In this article confocal and spectral imaging methods to monitor the dimerization of alpha enhancer binding protein (C/EBPalpha) in the pituitary GHFT1-5 living cell nucleus have been described. Also outline are issues involved in protein imaging using light microscopy techniques and the advantages of lifetime imaging of protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号