首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the major virulence factors of the malaria causing parasite is the Plasmodium falciparum encoded erythrocyte membrane protein 1 (PfEMP1). It is translocated to It the membrane of infected erythrocytes and expressed from approximately 60 var genes in a mutually exclusive manner. Switching of var genes allows the parasite to alter functional and antigenic properties of infected erythrocytes, to escape the immune defense and to establish chronic infections. We have developed an efficient method for isolating VAR genes from telomeric and other genome locations by adapting transformation-associated recombination (TAR) cloning, which can then be analyzed and sequenced. For this purpose, three plasmids each containing a homologous sequence representing the upstream regions of the group A, B, and C var genes and a sequence homologous to the conserved acidic terminal segment (ATS) of var genes were generated. Co-transfection with P. falciparum strain ITG2F6 genomic DNA in yeast cells yielded 200 TAR clones. The relative frequencies of clones from each group were not biased. Clones were screened by PCR, as well as Southern blotting, which revealed clones missed by PCR due to sequence mismatches with the primers. Selected clones were transformed into E. coli and further analyzed by RFLP and end sequencing. Physical analysis of 36 clones revealed 27 distinct types potentially representing 50% of the var gene repertoire. Three clones were selected for sequencing and assembled into single var gene containing contigs. This study demonstrates that it is possible to rapidly obtain the repertoire of var genes from P. falciparum within a single set of cloning experiments. This technique can be applied to individual isolates which will provide a detailed picture of the diversity of var genes in the field. This is a powerful tool to overcome the obstacles with cloning and assembly of multi-gene families by simultaneously cloning each member.  相似文献   

2.
C Magoulas  D A Hickey 《Génome》1992,35(1):133-139
Several cDNA and genomic clones were isolated from Drosophila melanogaster gene libraries by hybridization with a region of a mammalian gene that contains a simple repetitive sequence of six GCN repeats. One of the cDNA clones, E6, was completely sequenced and it was shown that it contains a region of 16 GCN repeats; these repeats encode a polyalanine stretch within a long open reading frame. The sequencing of three different genomic clones (A, B, and D) revealed that all the isolated Drosophila clones are similar to one another in a short region containing variable numbers of the GCN repeat. The genomic clone B was found to be the genomic counterpart of the cDNA clone E6. The other genomic clones, A and D, also hybridize with Drosophila cDNA clones at high stringency. These results indicate that the short GCN repetitive sequences, which we have named ala, are found within transcribed regions of the Drosophila genome. These Drosophila genes containing the ala repeat do not show significant sequence similarity to any presently known gene; we have named these novel genes ala-A, ala-B, and ala-D. The cDNA clone from gene ala-B was named ala-E6.  相似文献   

3.
Var genes encode the major surface antigen (PfEMP1) of the blood stages of the human malaria parasite Plasmodium falciparum. Differential expression of up to 60 diverse var genes in each parasite genome underlies immune evasion. We compared the diversity of the DBLalpha domain of var genes sampled from 30 parasite isolates from a malaria endemic area of Papua New Guinea (PNG) and 59 from widespread geographic origins (global). Overall, we obtained over 8,000 quality-controlled DBLalpha sequences. Within our sampling frame, the global population had a total of 895 distinct DBLalpha "types" and negligible overlap among repertoires. This indicated that var gene diversity on a global scale is so immense that many genomes would need to be sequenced to capture its true extent. In contrast, we found a much lower diversity in PNG of 185 DBLalpha types, with an average of approximately 7% overlap among repertoires. While we identify marked geographic structuring, nearly 40% of types identified in PNG were also found in samples from different countries showing a cosmopolitan distribution for much of the diversity. We also present evidence to suggest that recombination plays a key role in maintaining the unprecedented levels of polymorphism found in these immune evasion genes. This population genomic framework provides a cost effective molecular epidemiological tool to rapidly explore the geographic diversity of var genes.  相似文献   

4.
Expressed sequence tags of Chinese cabbage flower bud cDNA.   总被引:6,自引:0,他引:6       下载免费PDF全文
C O Lim  H Y Kim  M G Kim  S I Lee  W S Chung  S H Park  I Hwang    M J Cho 《Plant physiology》1996,111(2):577-588
We randomly selected and partially sequenced cDNA clones from a library of Chinese cabbage (Brassica campestris L. ssp. pekinensis) flower bud cDNAs. Out of 1216 expressed sequence tags (ESTs), 904 cDNA clones were unique or nonredundant. Five hundred eighty-eight clones (48.4%) had sequence homology to functionally defined genes at the peptide level. Only 5 clones encoded known flower-specific proteins. Among the cDNAs with no similarity to known protein sequences (628), 184 clones had significant similarity to nucleotide sequences registered in the databases. Among these 184 clones, 142 exhibited similarities at the nucleotide level only with plant ESTs. Also, sequence similarities were evident between these 142 ESTs and their matching ESTs when compared using the deduced amino acid sequences. Therefore, it is possible that the anonymous ESTs encode plant-specific ubiquitous proteins. Our extensive EST analysis of genes expressed in floral organs not only contributes to the understanding of the dynamics of genome expression patterns in floral organs but also adds data to the repertoire of all genomic genes.  相似文献   

5.
Song R  Messing J 《Plant physiology》2002,130(4):1626-1635
A new approach has been undertaken to analyze the sequences and linear organization of the 19-kD zein genes in maize (Zea mays). A high-coverage, large-insert genomic library of the inbred line B73 based on bacterial artificial chromosomes was used to isolate a redundant set of clones containing members of the 19-kD zein gene family, which previously had been estimated to consist of 50 members. The redundant set of clones was used to create bins of overlapping clones that represented five distinct genomic regions. Representative clones containing the entire set of 19-kD zein genes were chosen from each region and sequenced. Seven bacterial artificial chromosome clones yielded 1,160 kb of genomic DNA. Three of them formed a contiguous sequence of 478 kb, the longest contiguous sequenced region of the maize genome. Altogether, these DNA sequences provide the linear organization of 25 19-kD zein genes, one-half the number previously estimated. It is suggested that the difference is because of haplotypes exhibiting different degrees of gene amplification in the zein multigene family. About one-half the genes present in B73 appear to be expressed. Because some active genes have only been duplicated recently, they are so conserved in their sequence that previous cDNA sequence analysis resulted in "unigenes" that were actually derived from different gene copies. This analysis also shows that the 22- and 19-kD zein gene families shared a common ancestor. Although both ancestral genes had the same incremental gene amplification, the 19-kD zein branch exhibited a greater degree of far-distance gene translocations than the 22-kD zein gene family.  相似文献   

6.
The Filarial Genome Project (FGP) was initiated in 1994 under the auspices of the World Health Organisation. Brugia malayi was chosen as the model organism due to the availability of all life cycle stages for the construction of cDNA libraries. To date, over 20000 cDNA clones have been partially sequenced and submitted to the EST database (dbEST). These ESTs define approximately 7000 new Brugia genes. Analysis of the EST dataset provides useful information on the expression pattern of the most abundantly expressed Brugia genes. Some highly expressed genes have been identified that are expressed in all stages of the parasite's life cycle, while other highly expressed genes appear to be stage-specific. To elucidate the structure of the Brugia genome and to provide a basis for comparison to the Caenorhabditis elegans genome, the FGP is also constructing a physical map of the Brugia chromosomes and is sequencing genomic BAC clones. In addition to the nuclear genome, B. malayi possesses two other genomes: the mitochondrial genome and the genome of a bacterial endosymbiont. Eighty percent of the mitochondrial genome of B. malayi has been sequenced and is being compared to mitochondrial sequences of other nematodes. The bacterial endosymbiont genome found in B. malayi is closely related to the Wolbachia group of rickettsia-like bacteria that infects many insect species. A set of overlapping BAC clones is being assembled to cover the entire bacterial genome. Currently, half of the bacterial genome has been assembled into four contigs. A consortium has been established to sequence the entire genome of the Brugia endosymbiont. The sequence and mapping data provided by the FGP is being utilised by the nematode research community to develop a better understanding of the biology of filarial parasites and to identify new vaccine candidates and drug targets to aid the elimination of human filariasis.  相似文献   

7.
Large-scale EST sequencing in rice   总被引:39,自引:1,他引:38  
Large-scale cDNA analysis provides several great advantages for genome investigations in rice. Isolated and partially characterized cDNA clones have contributed not only to the construction of an RFLP linkage map and physical maps of the chromosomes but also to investigations of the mechanisms of expression of various isozymes and family genes. The ultimate aim of our large-scale cDNA analysis is to catalogue all the expressed genes of this important cereal, including tissue-specific, developmental stage-specific, and stress-specific genes. As of August 1996, the Rice Genome Research Program (RGP) has isolated and partially sequenced more than 29000 cDNA clones from various tissues and calluses in rice (Nipponbare, a japonica variety). The sequence data were translated into amino acid sequences for the 3 possible reading frames, and the similarity of these amino acid sequences to known proteins registered in PIR were examined. About 25% of the clones had significant similarities to known proteins. Some of the hit clones showed library-specific distributions, indicating that the composition of the clones in each library reflects, to some extent, the regulation of gene expression specific to differentiation, growth condition, or environmental stress. To further characterize the cDNA clones, including unknown clones, nucleotide sequence similarities of 24728 clones were analyzed and the clones were classified into around 10000 independent groups, suggesting that around a half or one third of expressed genes in rice have already been captured. These results obtained from our large-scale cDNA analysis provide useful information related to gene expression and regulation in rice.  相似文献   

8.
X.-Q. Yu  H.-Y. Wang  Y.-F. Lan    X.-P. Zhu    X.-D. Li    Z.-F. Fan    H.-F. Li    Y.-Y. Wang 《Journal of Phytopathology》2008,156(6):346-351
The complete genomic sequence of a Chinese Potato virus X isolate FX21 (PVX‐FX21) was determined from three overlapping cDNA clones. The genome of PVX‐FX21 is 6435 nucleotides in length excluding the poly(A) tail and contains five open reading frames (ORFs). Its entire genomic sequence shares 95.2–96.3% identities with Asian and European isolates, and 77.3–77.8% with American isolates. Phylogenetic analysis of the complete genomic sequence reveals two groups: the Eurasian group and the American group. PVX‐FX21 belongs to the Eurasian group and forms a separate sub‐branch with three Asian isolates. Similar analyses of the coat protein genes of 37 PVX isolates also reveal two major groups. All PVX isolates from Asia are clustered to group I, whereas isolates from Europe and America are clustered to both groups. Nucleotide sequence diversity analyses show that there is no geographical differentiation between PVX isolates and that constraint on the ORF encoding RNA‐dependent RNA polymerase is much higher than those on the other four ORFs.  相似文献   

9.
10.
An expressed sequence tag (EST) is simply a segment of a sequence over 150 bp from a randomly selected cDNA. EST helps to quickly identify functions of expressed genes and to understand the complexity of gene expression with database comparison. Sequencing of random cDNA clones can be applicable to discovery of new genes, mapping of the genome, identification of coding regions in genomic sequences, and antisense method. To accomplish these goals, in this research, randomly selected cDNA sequencing was performed with watermelon plant. Among 30 clones picked up and analyzed, all clones had an insert length over 0.5 kb. The average size of insert was about 1.3 kb. The size range of most cDNA insert was 1.0–2.0 kb. For sequence comparison, data from the coding region at 5′ end of selected cDNA should be much more informative than those from the untranslated 3′ tail. Thirty clones were sequenced from one end (5′ end). Of these, 29 had no poly (A) tail in this direction, while only one was inverted. Thus, this library is over 96% unidirectional. Two clones had homologies to ribulose bisphosphate carboxylase/oxigenase (Rubisco) small subunit precursor gene. Thirteen cDNAs had high degree of sequence similarity to genes from other organisms. The remaining cDNA clones seem to be new genes not only in watermelon but also in all organisms.  相似文献   

11.
In order to isolate genes that may not be represented in current human brain cDNA libraries, we have sequenced about 20,000 sequence tags of cDNA clones derived from cerebellum and parietal lobe of cynomolgus monkeys (Macaca fascicularis). We determined the entire cDNA sequence of approximately 700 clones whose 5'-terminal sequences showed no homology to annotated putative genes or expressed sequence tags in current databases of genetic information. From this, 118 clones with sequences encoding novel open reading frames of more than 100 amino acid residues were selected for further analysis. To localize the genes corresponding to these 118 newly identified cDNA clones on human chromosomes, we performed a homology search using the human genome sequence and fluorescent in situ hybridization. In total, 108 of 118 clones were successfully assigned to specific regions of human chromosomes. This result demonstrates that genes expressed in cynomolgus monkey are highly conserved throughout primate evolution, and that virtually all had human homologs. Furthermore, we will be able to discover novel human genes in the human genome using monkey homologs as probes.  相似文献   

12.
The only natural mechanism of malaria transmission in sub-Saharan Africa is the mosquito, generally Anopheles gambiae. Blocking malaria parasite transmission by stopping the development of Plasmodium in the insect vector would provide a useful alternative to the current methods of malaria control. Toward this end, it is important to understand the molecular basis of the malaria parasite refractory phenotype in An. gambiae mosquito strains. We have selected and sequenced six bacterial artificial chromosome (BAC) clones from the Pen-1 region that is the major quantitative trait locus involved in Plasmodium encapsulation. The sequence and the annotation of five overlapping BAC clones plus one adjacent, but not contiguous clone, totaling 585kb of genomic sequence from the centromeric end of the Pen-1 region of the PEST strain were compared to that of the genome sequence of the same strain produced by the whole genome shotgun technique. This project identified 23 putative mosquito genes plus putative copies of the retrotransposable elements BEL12 and TRANSIBN1_AG in the six BAC clones. Nineteen of the predicted genes are most similar to their Drosophila melanogaster homologs while one is more closely related to vertebrate genes. Comparison of these new BAC sequences plus previously published BAC sequences to the cognate region of the assembled genome sequence identified three retrotransposons present in one sequence version but not the other. One of these elements, Indy, has not been previously described. These observations provide evidence for the recent active transposition of these elements and demonstrate the plasticity of the Anopheles genome. The BAC sequences strongly support the public whole genome shotgun assembly and automatic annotation while also demonstrating the benefit of complementary genome sequences and of human curation. Importantly, the data demonstrate the differences in the genome sequence of an individual mosquito compared to that of a hypothetical, average genome sequence generated by whole genome shotgun assembly.  相似文献   

13.
ABSTRACT: BACKGROUND: Severe malaria has been attributed to the expression of a restricted subset of the var multigene family, which encodes for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 mediates cytoadherence and sequestration of infected erythrocytes into the post-capillary venules of the vital organs such as the brain, lung or placenta. Var genes are highly diverse and can be classified in three major groups (ups A, B and C) and two intermediate groups (B/A and B/C) based on the genomic location, gene orientation and upstream sequences. The genetic diversity of expressed var genes in relation to severity of disease in Tanzanian children was analysed. METHODS: Children with defined severe (SM) and asymptomatic malaria (AM) were recruited. Fulllength var mRNA was isolated and reversed transcribed into var cDNA. Subsequently, the DBL and N-terminal domains, and up-stream sequences were PCR amplified, cloned and sequenced. Sequences derived from SM and AM isolates were compared and analysed. RESULTS: The analysis confirmed that the var family is highly diverse in natural Plasmodium falciparum populations. Sequence diversity of amplified var DBL-1alpha and upstream regions showed minimal overlap among isolates, implying that the var gene repertoire is vast and most probably indefinite in endemic areas. var DBL-1alpha sequences from AM isolates were more diverse with more singletons found (p<0.05) than those from SM infections. Furthermore, few var DBL-1alpha sequences from SM patients were rare and restricted suggesting that certain PfEMP1 variants might induce severe disease. CONCLUSIONS: The genetic sequence diversity of var genes of P. falciparum isolates from Tanzanian children is large and its relationship to disease severity has been studied. Observed differences suggest that different var genes might have fundamentally different roles in the host-parasite interaction. Further research is required to examine clear disease-associations of var gene subsets in different geographical settings. The importance of very strict clinical definitions and appropriate large control groups needs to be emphasized for future studies on disease associations of PfEMP1.  相似文献   

14.
15.
16.
The fathead minnow Pimephales promelas serves as a model organism for assessing the effects of environmental contaminants on early life stage growth and development. Yet, the utilization of genomic tools has been hindered by the lack of genome sequence and genomic information known from this model species. Utilizing published cDNA library sequences, the authors used sequence similarity to compare 4105 cDNAs isolated from fathead minnow fry (<14 days old) with over 250 000 adult cDNA sequences derived from whole body and various tissue types. The objectives of the computational subtraction were to (1) assess the extent of sequence similarity between developing and adult cDNA libraries and (2) predict which cDNA clones are expressed only in developing organisms. The results of the computational predictions were assessed through the construction of a development‐specific DNA microarray targeting all 4105 sequences in the fry cDNA library as well as 56 known mRNAs in P. promelas. Gene expression was determined by comparing total RNA isolated from fry with total RNA isolated from adult samples (whole animal, kidney, liver, brain, ovary and testes). The results showed that 1381 of the targeted fry cDNA sequences (34%) displayed expression across all sample comparisons, and of these, only 166 genes were found to harbour fry‐specific expression (i.e. no expression in adult samples). Of note, 69% of the genes computationally predicted to be fry specific were found across all experimental results; yet, only 27% of the computationally predicted fry‐specific sequences were experimentally confirmed to be fry specific. An important result was the identification of many novel mRNA sequences specific to the developing minnow, which lack homology with any other known sequence. In addition, the study results included tissue‐specific expression in adult samples. These results demonstrate the capabilities and limitations of inter‐library sequence comparisons as a predictor of gene activity in non‐sequenced organisms and tissues, as well as DNA microarray gene expression studies in non‐sequenced organisms.  相似文献   

17.
《DNA research》2008,15(6):333-346
A large collection of full-length cDNAs is essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. We obtained a total of 39 936 soybean cDNA clones (GMFL01 and GMFL02 clone sets) in a full-length-enriched cDNA library which was constructed from soybean plants that were grown under various developmental and environmental conditions. Sequencing from 5′ and 3′ ends of the clones generated 68 661 expressed sequence tags (ESTs). The EST sequences were clustered into 22 674 scaffolds involving 2580 full-length sequences. In addition, we sequenced 4712 full-length cDNAs. After removing overlaps, we obtained 6570 new full-length sequences of soybean cDNAs so far. Our data indicated that 87.7% of the soybean cDNA clones contain complete coding sequences in addition to 5′- and 3′-untranslated regions. All of the obtained data confirmed that our collection of soybean full-length cDNAs covers a wide variety of genes. Comparative analysis between the derived sequences from soybean and Arabidopsis, rice or other legumes data revealed that some specific genes were involved in our collection and a large part of them could be annotated to unknown functions. A large set of soybean full-length cDNA clones reported in this study will serve as a useful resource for gene discovery from soybean and will also aid a precise annotation of the soybean genome.Key words: EST, full-length cDNA, functional annotation, legume, soybean  相似文献   

18.
W Michalek  G Künzel  A Graner 《Génome》1999,42(5):849-853
The "Igri/Franka" (I/F) map ranks among the most comprehensive genetic linkage maps of barley (Hordeum vulgare), containing a large number of markers derived from cDNA and genomic PstI clones. Fourty-three cDNA clones and 259 genomic clones were at least partially sequenced and compared with the major data bases of protein and nucleic acid sequences. Of the cDNA clones, 53% show significant similarity to known sequences in protein data bases. A comparison of sequences from genomic clones to nucleic acid sequence data bases revealed similarities for 9% of the clones. For cDNA sequences analyzed the same way, significant similarities were observed for 35% of the clones. These results show that genomic PstI clones, although containing genes at a significant frequency, represent an inappropriate source for an efficient, systematic gene identification in barley. Sequence information obtained in the context of the present study provides a resource for the conversion of these markers into sequence-tagged site (STS) markers and their use in PCR assays.  相似文献   

19.
We have accumulated information of the coding sequences of uncharacterized human genes, which are known as KIAA genes, and the number of these genes exceeds 2000 at present. As an extension of this sequencing project, we recently have begun to accumulate mouse KIAA-homologous cDNAs, because it would be useful to prepare a set of human and mouse homologous cDNA pairs for further functional analysis of the KIAA genes. We herein present the entire sequences of 400 mouse KIAA cDNA clones and 4 novel cDNA clones which were incidentally identified during this project. Most of clones entirely sequenced in this study were selected by computer-assisted analysis of terminal sequences of the cDNAs. The average size of the 404 cDNA sequences reached 5.3 kb and that of the deduced amino acid sequences from these cDNAs was 868 amino acid residues. The results of sequence analyses of these clones showed that single mouse KIAA cDNAs bridged two different human KIAA cDNAs in some cases, which indicated that these two human KIAA cDNAs were derived from single genes although they had been supposed to originate from different genes. Furthermore, we successfully mapped all the mouse KIAA cDNAs along the genome using a recently published mouse genome draft sequence.  相似文献   

20.
A number of clones that specifically hybridize to the human hsp60 cDNA (chaperonin protein; GroEL homolog) were isolated from human and Chinese hamster ovary cell genomic libraries. DNA sequence analysis shows that one of these clones, pGem-10, is completely homologous to the human hsp60 cDNA (in both coding and noncoding regions) with no intervening sequences. The other human clones analyzed were all nonfunctional pseudogenes containing numerous small additions, deletions, and base substitutions, but no introns. On the basis of sequence data, six different hsp60 pseudogenes were identified in human cells. In addition, we also cloned and completely sequenced a genomic clone from CHO cells. This clone, which was also a pseudogene, contained a small 87-nucleotide intron near the 3' end. Southern blot analysis of human, mouse, and Chinese hamster DNA, digested with unique restriction enzymes (no sites in cDNA), indicates the presence of about 8-12 genes for hsp60 in the vertebrate genomes. The sequence data, however, suggest that most of these genes, except one (per haploid genome), are likely to be nonfunctional pseudogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号