首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia with small platelets, severe eczema, and recurrent infections due to defects in the immune system. The disease arises from mutations in the gene encoding the WAS protein (WASP), which plays a role as an adaptor molecule in signal transduction accompanied by cytoskeletal rearrangement in T cells. To investigate the functional domain of WASP, we developed transgenic mice overexpressing the WASP N-terminal region (exon 1-5) including the Ena/VASP homology 1 (pleckstrin homology/WASP homology 1) domain, in which the majority of mutations in WAS patients have been observed. WASP transgenic mice develop and grow normally under the specific pathogen-free environment, and showed normal lymphocyte development. However, proliferative responses and cytokine production induced by TCR stimulation were strongly inhibited in transgenic mice, whereas Ag receptor capping and actin polymerization were normal. These findings suggest that overexpressed Ena/VASP homology 1 (pleckstrin homology/WASP homology 1) domain of WASP inhibits the signaling from TCR without coupling of cytoskeletal rearrangement. WASP transgenic mice shown here could be valuable tools for further understanding the WASP-mediated processes.  相似文献   

2.
CTLA-4 (CD152) engagement can down-regulate T cell activation and promote the induction of immune tolerance. However, the strategy of attenuating T cell activation by engaging CTLA-4 has been limited by sharing of its natural ligands with the costimulatory protein CD28. In the present study, a CTLA-4-specific single-chain Ab (scFv) was developed and expressed on the cell surface to promote selective engagement of this regulatory molecule. Transfectants expressing anti-CTLA-4 scFv at their surface bound soluble CTLA-4 but not soluble CD28. Coexpression of anti-CTLA-4 scFv with anti-CD3epsilon and anti-CD28 scFvs on artificial APCs reduced the proliferation and IL-2 production by resting and preactivated bulk T cells as well as CD4+ and CD8+ T cell subsets. Importantly, expression of anti-CTLA-4 scFv on the same cell surface as the TCR ligand was essential for the inhibitory effects of CTLA-4-specific ligation. CTLA-4-mediated inhibition of tyrosine phosphorylation of components of the proximal TCR signaling apparatus was similarly dependent on coexpression of TCR and CTLA-4 ligands on the same surface. These findings support a predominant role for CTLA-4 function in the modification of the proximal TCR signal. Using T cells from DO11.10 and 2C TCR transgenic mice, negative regulatory effects of selective CTLA-4 ligation were also demonstrated during the stimulation of Ag-specific CD4+ and CD8+ T cells by MHC/peptide complexes. Together these studies demonstrate that selective ligation of CTLA-4 using a membrane-bound scFv results in attenuated T cell responses only when coengaged with the TCR during T cell/APC interaction and define an approach to harnessing the immunomodulatory potential of CTLA-4-specific ligation.  相似文献   

3.
While Wiskott-Aldrich syndrome protein (WASP) plays critical roles in TCR signaling as an adaptor molecule, how it transduces innate immune signals remains to be elucidated. To investigate the roles of WASP in innate immune cells, we established bone marrow-derived macrophage (BMDM) cell lines from WASP15 transgenic (Tg) mice overexpressing the WASP N-terminal region (exons 1-5). Upon LPS stimulation, WASP15 Tg BMDM cell lines produce lower levels of inflammatory cytokines, such as TNF-α, IL-6, and IL-12p40 than the wild-type BMDM cell line. In addition, the production of nitric oxide by WASP15 Tg BMDM cells in response to LPS and IFN-γ was significantly impaired. Furthermore, we uncovered that the WASP N-terminal domain associates with the Src homology (SH) 3 domain of Bruton's tyrosine kinase (Btk). Overexpression of the WASP N-terminal domain diminishes the extent of tyrosine phosphorylation of endogenous WASP in WASP15 Tg BMDM cells, possibly by interfering with the specific binding between endogenous WASP and Btk during LPS signaling. These observations strongly suggest that the interaction between WASP N-terminal domain and Btk plays important roles in the LPS signaling cascade in innate immunity.  相似文献   

4.
5.
T cell receptor (TCR)-driven activation of helper T cells induces a rapid polarization of their cytoskeleton towards bound antigen presenting cells (APCs). We have identified the Fyn- and SLP-76-associated protein Fyb/SLAP as a new ligand for Ena/ vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Upon TCR engagement, Fyb/SLAP localizes at the interface between T cells and anti-CD3-coated beads, where Evl, a member of the Ena/VASP family, Wiskott-Aldrich syndrome protein (WASP) and the Arp2/3 complex are also found. In addition, Fyb/SLAP is restricted to lamellipodia of spreading platelets. In activated T cells, Fyb/SLAP associates with Ena/VASP family proteins and is present within biochemical complexes containing WASP, Nck, and SLP-76. Inhibition of binding between Fyb/SLAP and Ena/VASP proteins or WASP and the Arp2/3 complex impairs TCR-dependent actin rearrangement, suggesting that these interactions play a key role in linking T cell signaling to remodeling of the actin cytoskeleton.  相似文献   

6.
7.
T lymphocytes are activated by the engagement of their antigen receptors (TCRs) with complexes of peptide and major histocompatibility complex (MHC) molecules displayed on the cell surface of antigen-presenting cells (APCs) [1]. An unresolved question of antigen recognition by T cells is how TCR triggering actually occurs at the cell-cell contact area. We visualized T-cell-APC contact sites using confocal microscopy and three-dimensional reconstruction of z-sections. We show the rapid formation of a specialized signaling domain at the T-cell-APC contact site that is characterized by a broad and sustained area of tyrosine phosphorylation. The T-lymphocyte cell-surface molecule CD2 is rapidly recruited into this signaling domain, whereas TCRs progressively percolate from the entire T-cell surface into the phosphorylation area. Remarkably, the highly expressed phosphatase CD45 is excluded from the signaling domain. Our results indicate that physiological TCR triggering at the T-cell-APC contact site is the result of a localized alteration in the balance between cellular kinases and phosphatases. We therefore provide experimental evidence to support current models of T-cell activation based on CD45 exclusion from the TCR signaling area [2] [3] [4].  相似文献   

8.
IL-7/IL-7R signaling functions in both growth and differentiation during T cell development. In this study, we examined the extent these activities were controlled by signaling associated with distinct IL-7R alpha cytoplasmic domains by transgenic expression of wild-type or cytoplasmic deletion mutants of IL-7R alpha in the thymi of IL-7R alpha(-/-) mice. We show an essential requirement for the tyrosine-containing carboxyl-terminal T domain in restoring thymic cellularity, pro-/pre-T cell progression, and survival. In contrast, the functional differentiation of TCR alpha beta cells and the development of TCR gamma delta cells are partially independent of the T domain. Thus, separate cytoplasmic domains of the IL-7R alpha chain differentially control distinct functions during T cell development, whereas normal IL-7R-dependent thymic development requires the integrated activity of all these domains.  相似文献   

9.
TCR activation of naive T cells in the presence of IL-12 drives polarization toward a Th1 phenotype and synthesis of P- and E-selectin ligands. Fucosyltransferase VII (Fuc-T VII) and core 2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT) are critical for biosynthesis of selectin ligands. P-selectin glycoprotein ligand-1 is the best characterized ligand for P-selectin and also binds E-selectin. The contributions of TCR and cytokine signaling pathways to up-regulate Fuc-T VII and C2GnT during biosynthesis of E- and P-selectin ligands, such as P-selectin glycoprotein ligand 1, are unknown. IL-12 signals via the STAT4 pathway. Here, naive DO11.10 TCR transgenic and STAT4(-/-) TCR transgenic CD4(+) T cells were stimulated with Ag and IL-12 (Th1 condition), IL-4 (Th2), or neutralizing anti-IL-4 mAb only (Th0). The levels of Fuc-T VII and C2GnT mRNA in these cells were compared with their adhesive interactions with P- and E-selectin in vitro under flow. The data show IL-12/STAT4 signaling is necessary for induction of C2GnT, but not Fuc-TVII mRNA, and that STAT4(-/-) Th1 cells do not traffic normally to sites of inflammation in vivo, do not interact with P-selectin, and exhibit a partial reduction of E-selectin interactions under shear stress in vitro. Ag-specific TCR activation in CD4(+) T cells was sufficient to trigger induction of Fuc-TVII, but not C2GnT, mRNA and expression of E-selectin, but not P-selectin, ligands. Thus, Fuc-T VII and C2GnT are regulated by different signals during Th cell differentiation, and both cytokine and TCR signals are necessary for the expression of E- and P-selectin ligands.  相似文献   

10.
Na?ve T helper (Th) cells differentiate in response to antigen stimulation into either Th1 or Th2 effector cells, which are characterized by the secretion of different set of cytokines. Th2 differentiation, which is critical for allergic airway disease, is triggered by signals of the T-cell receptor (TCR) and the cytokines generated during polarization, particularly IL-4. We determine here the potential role of the signaling adapter p62 in T-cell polarization. We report using p62-/- mice and cells that p62 acts downstream TCR activation, and is important for Th2 polarization and asthma, playing a significant role in the control of the sustained activation of NF-kappaB and late synthesis of GATA3 and IL-4 by participating in the activation of the IKK complex.  相似文献   

11.
12.
Coincident production of IL-2 and induction of high-affinity IL-2R upon TCR engagement has precluded a clear distinction for the biological outcome of signaling through TCR/costimulatory molecules vs the IL-2R. Using a novel transgenic mouse on the IL-2Rbeta(-/-) genetic background, this study has separated the relative outcome of signaling through the TCR and IL-2R. We show that stimulation through the TCR and CD28 or CD40 ligand directly leads to T cell activation and several rounds of proliferation in an IL-2-independent fashion. However, this stimulation is insufficient for extended T cell growth to multiple cytokines or differentiation into CTL or IFN-gamma-secreting effector T cells. IL-2 is required for these functions in part by regulation of cyclin D3 and granzyme B. Somewhat less efficiently, IL-4 stimulation of these transgenic T cells redundantly rescued many of these activities. These data demonstrate a fundamental requirement for IL-2 and perhaps other common gamma-chain-dependent cytokines to promote selective gene expression by Ag-activated T cells for their subsequent growth and differentiation into effector T lymphocytes.  相似文献   

13.
We evaluated the concept for protection of plants against virus infection based on the expression of single-chain Fv (scFv) fragments in the apoplasm or cytosol of transgenic plants. Cloned cDNA of a tobacco mosaic virus (TMV)-specific scFv antibody, which binds to intact virions, was integrated into the plant expression vector pSS and used for Agrobacterium-mediated transformation of Nicotiana tabacum cv. Xanthi-nc. Regenerated transgenic tobacco plants were analysed by northern blot, western blot and ELISA to assess expression and functionality of recombinant antibody (rAb) fragments. A significant increase of scFv levels in T1 progeny was obtained for plants secreting apoplastic scFv antibodies but not for scFvs expressed in the cytosol. Bioassays revealed that T1 progeny producing scFvs in different plant cell compartments showed different levels of resistance upon inoculation with TMV. The most dramatic reduction of necrotic local lesion numbers upon virus infection was observed in T1 plants expressing scFv fragments in the cytosol. Infectivity could be reduced by more than 90%, despite the observation that protein expression levels for functional scFv antibodies were very low. Furthermore, upon inactivation of the N-resistance gene at elevated temperature, a significant portion of the T1 progenies inhibited systemic virus spread, indicating that expression of TMV-specific cytosolic scFvs confers virus resistance in these transgenic plants. Moreover, inoculation of protoplasts isolated from transgenic and non-transgenic tobacco plants with TMV-RNA demonstrated that accumulation of virus particles is affected by cytosolic scFv expression.  相似文献   

14.
One of the most commonly used recombinant antibody formats is the single-chain variable fragment (scFv) that consists of the antibody variable heavy chain connected to the variable light chain by a flexible linker. Since disulfide bonds are often necessary for scFv folding, it can be challenging to express scFvs in the reducing environment of the cytosol. Thus, we sought to develop a method for antigen-independent selection of scFvs that are stable in the reducing cytosol of bacteria. To this end, we applied a recently developed genetic selection for protein folding and solubility based on the quality control feature of the Escherichia coli twin-arginine translocation (Tat) pathway. This selection employs a tripartite sandwich fusion of a protein-of-interest with an N-terminal Tat-specific signal peptide and C-terminal TEM1 β-lactamase, thereby coupling antibiotic resistance with Tat pathway export. Here, we adapted this assay to develop intrabody selection after Tat export (ISELATE), a high-throughput selection strategy for the identification of solubility-enhanced scFv sequences. Using ISELATE for three rounds of laboratory evolution, it was possible to evolve a soluble scFv from an insoluble parental sequence. We show also that ISELATE enables focusing of an scFv library in soluble sequence space before functional screening and thus can be used to increase the likelihood of finding functional intrabodies. Finally, the technique was used to screen a large repertoire of naïve scFvs for clones that conferred significant levels of soluble accumulation. Our results reveal that the Tat quality control mechanism can be harnessed for molecular evolution of scFvs that are soluble in the reducing cytoplasm of E. coli.  相似文献   

15.
The production and application of single-chain antibody fragments   总被引:1,自引:0,他引:1  
This review discusses methods for the single-chain antibody fragment ($cFv) generation and scFv expression systems, and describes potential applications of scFv in the therapy of viral diseases and cancer, with emphasis on intracellularly expressed scFvs (intrabodies), application of scFvs in detection and diagnostics, and their use in proteomics.  相似文献   

16.
17.
TSAd/Lad is a T cell adaptor molecule involved in p56 lck -mediated T cell activation. To investigate the functions of TSAd in T cells, we generated transgenic (TG) mice expressing the SH2 domain of TSAd (TSAd-SH2) under the control of the p56 lck proximal promoter. In T cells from TSAd-SH2 TG mice, T cell receptor (TCR)-mediated early signaling events, such as Ca2+ flux and ERK activation, were normal; however, late activation events, such as IL-2 production and proliferation, were significantly reduced. Moreover, TCR-induced cell adhesion to extracellular matrix (ECM) proteins and migration through ECM proteins were defective in T cells from TSAd-SH2 TG mice. Furthermore, the contact hypersensitivity (CHS) reaction, an inflammatory response mainly mediated by T helper 1 (Th1) cells, was inhibited in TSAd-SH2 TG mice. Taken together, these results show that TSAd, particularly the SH2 domain of TSAd, is essential for the effector functions of T cells.  相似文献   

18.
The T-cell receptor (TCR) BV gene of human TCR AV24+ double-negative (DN) T cells, a novel subset of natural killer (NK) T cells, was investigated by single-cell sorting and single-cell polymerase chain reaction (PCR) methods. Seven of eleven TCR AV24+ DN T-cell clones utilized TCR BV8, three BV9, and one BV6. Six of seven TCR AV24/BV8+ DN T-cell clones had identical TCR beta and alpha chains, indicating that they were the same clone. All three TCR AV24/BV9+ DN T-cell clones also demonstrated the same amino acids in the CDR3 region. These findings strongly suggest that the usage of TCR beta and alpha chains on TCR AV24+ DN T cells is extremely restricted, supporting the notion that these cells recognize highly limited T-cell epitopes on antigens. All TCR AV24+ clones expressed the NKR-P1A mRNA, and so were true NK T cells. IL-2 and IL-4 mRNAs were detected in all clones, suggesting that the majority of these cells were Th0-type T cells. Six clones overexpressed Fas-ligand (Fas-L) mRNA and Fas antigen was detected on all clones at the mRNA level. In conclusion, TCR AV24+ DN T cells might recognize restricted T-cell epitopes on antigens and function as Th0-type T cells, inducer cells to Th1- or Th2-type T cells (regulatory T cells), and as Fas-L-positive cytolytic T cells.  相似文献   

19.

Background

T cell migration is essential for immune responses and inflammation. Activation of the T-cell receptor (TCR) triggers a migration stop signal to facilitate interaction with antigen-presenting cells and cell retention at inflammatory sites, but the mechanisms responsible for this effect are not known.

Methodology/Principal Findings

Migrating T cells are polarized with a lamellipodium at the front and uropod at the rear. Here we show that transient TCR activation induces prolonged inhibition of T-cell migration. TCR pre-activation leads to cells with multiple lamellipodia and lacking a uropod even after removal of the TCR signal. A similar phenotype is induced by expression of constitutively active Rac1, and TCR signaling activates Rac1. TCR signaling acts via Rac to reduce phosphorylation of ezrin/radixin/moesin proteins, which are required for uropod formation, and to increase stathmin phosphorylation, which regulates microtubule stability. T cell polarity and migration is partially restored by inhibiting Rac or by expressing constitutively active moesin.

Conclusions/Significance

We propose that transient TCR signaling induces sustained inhibition of T cell migration via Rac1, increased stathmin phosphorylation and reduced ERM phosphorylation which act together to inhibit T-cell migratory polarity.  相似文献   

20.
T cell-specific adapter (TSAd) protein and adapter protein in lymphocytes of unknown function (ALX) are two related Src homology 2 (SH2) domain-containing signaling adapter molecules that have both been shown to regulate TCR signal transduction in T cells. TSAd is required for normal TCR-induced synthesis of IL-2 and other cytokines in T cells and acts at least in part by promoting activation of the LCK protein tyrosine kinase at the outset of the TCR signaling cascade. By contrast, ALX functions as a negative-regulator of TCR-induced IL-2 synthesis through as yet undetermined mechanisms. In this study, we report a novel T cell-expressed adapter protein named SH2D4A that contains an SH2 domain that is highly homologous to the TSAd protein and ALX SH2 domains and that shares other structural features with these adapters. To examine the function of SH2D4A in T cells we produced SH2D4A-deficient mice by homologous recombination in embryonic stem cells. T cell development, homeostasis, proliferation, and function were all found to be normal in these mice. Furthermore, knockdown of SH2D4A expression in human T cells did not impact upon their function. We conclude that in contrast to TSAd and ALX proteins, SH2D4A is dispensable for TCR signal transduction in T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号