首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular smooth muscle (SM) cells (VSMC) undergo phenotypic modulation in vivo and in vitro. This process involves coordinated changes in expression of multiple SM-specific genes. In cultured VSMC, arginine vasopressin (AVP) increases and PDGF decreases expression of SM alpha-actin (SMA), the earliest marker of SM cells (SMC). However, it is unknown whether these agents regulate other SM genes in a similar fashion. SM22 alpha appears secondary to SMA during development and is also a marker for SMC. This study examined the regulation of SM22 alpha expression by AVP and PDGF in cultured VSMC. Levels of SM22 alpha mRNA and protein were increased by AVP and suppressed by PDGF. Consistent with these changes, AVP increased SM22 alpha promoter activity, whereas PDGF inhibited basal promoter activity and blocked AVP-induced increase. Activation of both JNK and p38 MAPK pathways was necessary for AVP-mediated induction of SM22 alpha promoter. Expression of constitutively active Ras produced similar suppressions on SM22 alpha promoter activity as PDGF. Signaling relayed from PDGF/Ras activation involved Raf, or a protein that competes for this site, Ral-GDS, and phosphatidylinositol 3-kinase activation. Truncational analysis showed that the proximal location of three CArG boxes in the promoter was sufficient for AVP stimulation. Mutations in this CArG box reduced basal and AVP-stimulated promoter activity without effecting PDGF suppression. Overexpression of serum response factor enhanced basal and AVP-stimulated promoter activity but had no effect on PDGF-BB-induced suppression. These data indicate that AVP and PDGF initiate specific signaling pathways that control expression of multiple SM genes leading to phenotypic modulation.  相似文献   

2.
Some Gq-coupled receptors have been shown to antagonize growth factor activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector, Akt. We used a constitutively active Galphaq(Q209L) mutant to explore the effects of Galphaq activation on signaling through the PI3K/Akt pathway. Transient expression of Galphaq(Q209L) in Rat-1 fibroblasts inhibited Akt activation induced by platelet-derived growth factor or insulin treatment. Expression of Galphaq(Q209L) also attenuated Akt activation promoted by coexpression of constitutively active PI3K in human embryonic kidney 293 cells. Galphaq(Q209L) had no effect on the activity of an Akt mutant in which the two regulatory phosphorylation sites were changed to acidic amino acids. Inducible expression of Galphaq(Q209L) in a stably transfected 293 cell line caused a decrease in PI3K activity in p110alpha (but not p110beta) immunoprecipitates. Receptor activation of Galphaq also selectively inhibited PI3K activity in p110alpha immunoprecipitates. Active Galphaq still inhibited PI3K/Akt in cells pretreated with the phospholipase C inhibitor U73122. Finally, Galphaq(Q209L) co-immunoprecipitated with the p110alpha-p85alpha PI3K heterodimer from lysates of COS-7 cells expressing these proteins, and incubation of immunoprecipitated Galphaq(Q209L) with purified recombinant p110alpha-p85alpha in vitro led to a decrease in PI3K activity. These results suggest that agonist binding to Gq-coupled receptors blocks Akt activation via the release of active Galphaq subunits that inhibit PI3K. The inhibitory mechanism seems to be independent of phospholipase C activation and might involve an inhibitory interaction between Galphaq and p110alpha PI3K.  相似文献   

3.
The discovery that the PTEN tumor suppressor encodes a phosphoinositide 3-phosphatase has raised interest in the effects of constitutive activation of PI 3-kinase. To gain insight into PI 3-kinase function, we have stably expressed a myristoylated form of the catalytic subunit p110alpha (myr-p110) in cells. The myr-p110 associated with the endogenous p85 regulatory subunit and retained lipid and protein kinase activity. Stable lines expressing myr-p110 had 2- to 4-fold more PI 3-kinase activity than controls. Expression of myr-p110 altered cellular morphology and increased the saturation density in culture. These clones were morphologically transformed but Akt and pp70(s6k) were not constitutively activated in contrast to transient assays and from tumor cell lines deficient in PTEN. In addition, the ability of PDGF to induce activation of Akt and pp70(s6k) was diminished. Therefore, expression of a myristoylated PI 3-kinase in murine fibroblasts induces a morphological transformation of the cells.  相似文献   

4.
Isoforms of the serine-threonine kinase Akt coordinate multiple cell survival pathways in response to stimuli such as platelet-derived growth factor (PDGF). Activation of Akt is a multistep process, which relies on the production of 3'-phosphorylated phosphoinositide (PI) lipids by PI 3-kinases. To quantitatively assess the kinetics of PDGF receptor/PI 3-kinase/Akt signaling in fibroblasts, a systematic study of this pathway was performed, and a mechanistic mathematical model that describes its operation was formulated. We find that PDGF receptor phosphorylation exhibits positive cooperativity with respect to PDGF concentration, and its kinetics are quantitatively consistent with a mechanism in which receptor dimerization is initially mediated by the association of two 1:1 PDGF/PDGF receptor complexes. Receptor phosphorylation is transient at high concentrations of PDGF, consistent with the loss of activated receptors upon endocytosis. By comparison, Akt activation responds to lower PDGF concentrations and exhibits more sustained kinetics. Further analysis and modeling suggest that the pathway is saturated at the level of PI 3-kinase activation, and that the p110alpha catalytic subunit of PI 3-kinase contributes most to PDGF-stimulated 3'-PI production. Thus, at high concentrations of PDGF the kinetics of 3'-PI production are limited by the turnover rate of these lipids, while the Akt response is additionally influenced by the rate of Akt deactivation.  相似文献   

5.
Phosphoinositide 3-kinase (PI3K) has been shown to play an essential role in G protein-induced signaling even in non-myeloid cells where few agonists of G protein-coupled receptors are known to activate PI3K. We have identified adherent cell lines where lysophosphatidic acid (LPA) strongly and rapidly activates the accumulation of PI3K lipid products. The process is not modified by expression of a kinase-dead mutant of the Gbetagamma-responsive PI3K p110gamma. In contrast, it is inhibited by genistein or expression of a dominant negative mutant of p85 and potentiated by overexpressing wild-type p110alpha or -beta but not -gamma. By using a specific chemical inhibitor of the epidermal growth factor receptor (EGFR) and expression of a dominant negative mutant, we have observed that recruitment of p85/p110 PI3Ks occurs through transactivation of the EGFR by LPA and downstream mobilization of the docking protein Gab1 that associates with p85 upon LPA stimulation. Finally, we show that LPA cannot activate PI3K in cell lines lacking the EGFR/Gab1 pathway, including cells that transactivate the PDGF receptor. Altogether, these results demonstrate that activation of PI3K by LPA is conditioned by the ability of LPA to transactivate an EGFR/Gab1 signaling pathway.  相似文献   

6.
Phosphoinositide 3'-kinases (PI3Ks) constitute a family of lipid kinases implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. PI3Ks are heterodimers made up of four different 110-kDa catalytic subunits (p110alpha, p110beta, p110gamma, and p110delta) and a smaller regulatory subunit. Despite a clear implication of PI3Ks in survival signaling, the contribution of the individual PI3K isoforms has not been elucidated. To address this issue, we generated Rat1 fibroblasts that co-express c-Myc and membrane targeted derivates of the different p110 isoforms. Here we present data for the first time showing that activation of PI3-kinase signaling through membrane localization of p110beta, p110gamma, and p110delta protects c-Myc overexpressing Rat1 fibroblasts from apoptosis caused by serum deprivation like it has been described for p110alpha. Expression of each p110 isoform reduces significantly caspase-3 like activity in this apoptosis model. Decreased caspase-3 activity correlates with the increase in Akt phosphorylation in cells that contain one of the myristoylated p110 isoforms. p110 isoform-mediated protection from cell death was abrogated upon expression of a kinase-negative version of Akt.  相似文献   

7.
Class IA phosphoinositide (PI) 3-kinase is composed of a p110 catalytic subunit and a p85 regulatory subunit and plays a pivotal role in insulin signaling. To explore the physiological roles of two major regulatory isoforms, p85 alpha and p85 beta, we have established brown adipose cell lines with disruption of the Pik3r1 or Pik3r2 gene. Pik3r1-/- (p85 alpha-/-) cells show a 70% reduction of p85 protein and a parallel reduction of p110. These cells have a 50% decrease in PI 3-kinase activity and a 30% decrease in Akt activity, leading to decreased insulin-induced glucose uptake and anti-apoptosis. Pik3r2-/- (p85 beta-/-) cells show a 25% reduction of p85 protein but normal levels of p85-p110 and PI 3-kinase activity, supporting the fact that p85 is more abundant than p110 in wild type. p85 beta-/- cells, however, exhibit significantly increased insulin-induced Akt activation, leading to increased anti-apoptosis. Reconstitution experiments suggest that the discrepancy between PI 3-kinase activity and Akt activity is at least in part due to the p85-dependent negative regulation of downstream signaling of PI 3-kinase. Indeed, both p85 alpha-/- cells and p85 beta-/- cells exhibit significantly increased insulin-induced glycogen synthase activation. p85 alpha-/- cells show decreased insulin-stimulated Jun N-terminal kinase activity, which is restored by expression of p85 alpha, p85 beta, or a p85 mutant that does not bind to p110, indicating the existence of p85-dependent, but PI 3-kinase-independent, signaling pathway. Furthermore, a reduction of p85 beta specifically increases insulin receptor substrate-2 phosphorylation. Thus, p85 alpha and p85 beta modulate PI 3-kinase-dependent signaling by multiple mechanisms and transmit signals independent of PI 3-kinase activation.  相似文献   

8.
Phosphoinositide (PI) 3-kinase is a key mediator of insulin-dependent metabolic actions, including stimulation of glucose transport and glycogen synthesis. The gene for the p85alpha regulatory subunit yields three splicing variants, p85alpha, AS53/p55alpha, and p50alpha. All three have (i) a C-terminal structure consisting of two Src homology 2 domains flanking the p110 catalytic subunit-binding domain and (ii) a unique N-terminal region of 304, 34, and 6 amino acids, respectively. To determine if these regulatory subunits differ in their effects on enzyme activity and signal transduction from insulin receptor substrate (IRS) proteins under physiological conditions, we expressed each regulatory subunit in fully differentiated L6 myotubes using adenovirus-mediated gene transfer with or without coexpression of the p110alpha catalytic subunit. PI 3-kinase activity associated with p50alpha was greater than that associated with p85alpha or AS53. Increasing the level of p85alpha or AS53, but not p50alpha, inhibited both phosphotyrosine-associated and p110-associated PI 3-kinase activities. Expression of a p85alpha mutant lacking the p110-binding site (Deltap85) also inhibited phosphotyrosine-associated PI 3-kinase activity but not p110-associated activity. Insulin stimulation of two kinases downstream from PI-3 kinase, Akt and p70 S6 kinase (p70(S6K)), was decreased in cells expressing p85alpha or AS53 but not in cells expressing p50alpha. Similar inhibition of PI 3-kinase, Akt, and p70(S6K) was observed, even when p110alpha was coexpressed with p85alpha or AS53. Expression of p110alpha alone dramatically increased glucose transport but decreased glycogen synthase activity. This effect was reduced when p110alpha was coexpressed with any of the three regulatory subunits. Thus, the three different isoforms of regulatory subunit can relay the signal from IRS proteins to the p110 catalytic subunit with different efficiencies. They also negatively modulate the PI 3-kinase catalytic activity but to different extents, dependent on the unique N-terminal structure of each isoform. These data also suggest the existence of a mechanism by which regulatory subunits modulate the PI 3-kinase-mediated signals, independent of the kinase activity, possibly through subcellular localization of the catalytic subunit or interaction with additional signaling molecules.  相似文献   

9.
Qin S  Chock PB 《Biochemistry》2003,42(10):2995-3003
The effect of tyrosine phosphorylation of PI3K on its enzymatic activity is quite controversial, and the molecular mechanism by which ROS trigger PI3K membrane relocation is unclear. Therefore, we investigated the regulatory mechanism of hydrogen peroxide-induced PI3K activation in DT40 cells, utilizing genetic and pharmacological approaches. Our results revealed that hydrogen peroxide induced tyrosine phosphorylation of the p110 but not the p85 subunit of PI3K in DT40 cells. This phosphorylation was intact in Btk- and Cbl-deficient DT40 cells, but was drastically suppressed in Lyn, Syk, or BCAP-deficient DT40 cells. Tyrosine phosphorylation of p110 did not alter its catalytic activity, and hydrogen peroxide stimulation did not cause an increase in the intrinsic PI3K activity; however, hydrogen peroxide stimulation did induce PI(3,4,5)P3 accumulation and activate Akt. The activation of Akt, as monitored by its ability to phosphorylate GSK-3alpha/beta and by its S473 phosphorylation, was strictly dependent on PI3K activity. Under our conditions, hydrogen peroxide-induced PI3K and Akt activation was independent of Lyn, Syk, Cbl, BCAP, or Ras when each was eliminated individually either by mutation or by a specific inhibitor. In comparison, Akt activation by B cell receptor cross-linking was dependent on BCAP. In addition, hydrogen peroxide treatment caused an increase in the amount of p85 PI3K associated with the particulate fraction. Together, these results indicate that the hydrogen peroxide-induced PI3K and Akt activation in DT40 cells was achieved through PI3K membrane recruitment to its substrate site, thereby enabling PI3K to maximize its catalytic efficiency.  相似文献   

10.
Class I of phosphoinositide 3-kinases (PI3Ks) is characterized as a group of intracellular signal proteins possessing both protein and lipid kinase activities. Recent studies implicate class I of PI3Ks acts as indispensable mediators in early development of mouse embryos, but the molecular mechanisms are poorly defined. In this paper, mouse one-cell embryos were used to investigate a possible contribution of the catalytic subunit of PI3K, p110 alpha, to cell cycle progression. The expression level of p110 alpha was determined in four phases of one-cell embryos. Silencing of p110 alpha by microinjection of p110 alpha shRNA into one-cell embryos resulted in a G2/M arrest and prevented the activation of Akt and M-phase promoting factor (MPF). Further, microinjection of the synthesized mRNA coding for a constitutively active p110 alpha into one-cell embryos induced cell cleavage more effectively than microinjection of wild-type p110 alpha mRNA, whereas microinjection of mRNA of kinase-deficient p110 alpha delayed the first mitotic cleavage. Taken together, this study demonstrates that p110 alpha is significant for G2/M transition of mouse one-cell embryos and further emphasizes the importance of Akt in PI3K pathway.  相似文献   

11.
Human vascular smooth muscle cell proliferation and migration contribute to vascular remodeling in pulmonary hypertension and atherosclerosis. The precise mechanisms that regulate structural remodeling of the vessel wall remain unknown. This study tests the hypothesis that phosphatidylinositol 3-kinase (PI3K) activation is both necessary and sufficient to mediate human pulmonary vascular smooth muscle (PVSM) cell proliferation and migration. Microinjection of human PVSM cells with a dominant-negative class IA PI3K inhibited platelet-derived growth factor (PDGF)-induced DNA synthesis by 65% (P < 0.001; chi(2) analysis) compared with cells microinjected with control plasmid, whereas microinjection of cells with a constitutively active class IA PI3K (p110*-CA) was sufficient to induce DNA synthesis (mitotic index of p110*-CA-microinjected cells was 15% vs. 3% in control cells; P < 0.01). Transfection of PVSM cells with p110*-CA was also sufficient to promote human PVSM cell migration. In parallel experiments, stimulation of human PVSM cells with PDGF induced PI3K-dependent activation of Akt, p70 S6 kinase, and ribosomal protein S6 but not mitogen-activated protein kinase. PDGF-induced proliferation and migration was inhibited by LY-294002. These results demonstrate that PI3K signaling is both necessary and sufficient to mediate human PVSM cell proliferation and migration and suggest that the activation of PI3K may play an important role in vascular remodeling.  相似文献   

12.
The ATP-binding cassette transporter A1 (ABCA1) regulates lipid efflux from peripheral cells to High-density lipoprotein. The platelet-derived growth factor (PDGF) is a potent mitogen that enables vascular smooth muscle cells to participate in atherosclerosis. In this report, we showed that PDGF suppressed endogenous expression of ABCA1 in cultured vascular smooth muscle cells. Exposure of CRL-208 cells to PDGF elicited a rapid phosphorylation of a kinase downstream from PI3-K, Akt. The constitutively active form of both p110, a subunit of PI3-K, and Akt inhibited activity of the ABCA1 promoter. In conclusion, PI3-K-Akt pathways participate in PDGF-suppression of ABCA1 expression.  相似文献   

13.
Lipid rafts are membrane microdomains distinct from caveolae, whose functions in polypeptide growth factor signalling remain unclear. Here we show that in small cell lung cancer (SCLC) cells, specific growth factor receptors such as c-Kit associate with lipid rafts and that these domains play a critical role in the activation of phosphoinositide 3-kinase (PI3K) signalling. The class IA p85/p110alpha associated with Src in lipid rafts and was activated by Src in vitro. Lipid raft integrity was essential for Src activation in response to stem cell factor (SCF) and raft disruption selectively inhibited activation of protein kinase B (PKB)/Akt in response to SCF stimulation. Moreover, inhibition of Src kinases blocked PKB/Akt activation and SCLC cell growth. The use of fibroblasts with targeted deletion of the Src family kinase genes confirmed the role of Src kinases in PKB/Akt activation by growth factor receptors. Moreover a constitutively activated mutant of Src also stimulated PI3K/Akt in lipid rafts, indicating that these microdomains play a role in oncogenic signalling. Together our data demonstrate that lipid rafts play a key role in the activation of PI3K signalling by facilitating the interaction of Src with specific PI3K isoforms.  相似文献   

14.
15.
Hepatic resection is associated with rapid proliferation and regeneration of the remnant liver. Phosphatidylinositol 3-kinase (PI3K), composed of a p85alpha regulatory and a p110alpha catalytic subunit, participates in multiple cellular processes, including cell growth and survival; however, the role of PI3K in liver regeneration has not been clearly delineated. In this study, we used the potent PI3K inhibitor wortmannin and small interfering RNA (siRNA) targeting the p85alpha and p110alpha subunits to determine whether total or selective PI3K inhibition would abrogate the proliferative response of the liver after partial hepatectomy in mice. Hepatic resection is associated with an induction in PI3K activity; total PI3K blockade with wortmannin and selective inhibition of p85alpha or p110alpha with siRNA resulted in a significant decrease in hepatocyte proliferation, especially at the earliest time points. Fewer macrophages and Kupffer cells were present in the regenerating liver of mice treated with wortmannin or siRNA to p85alpha or p110alpha, as reflected by a paucity of F4/80-positive cells. Additionally, PI3K inhibition led to an aberrant architecture in the regenerating hepatocytes characterized by vacuolization, lipid deposition, and glycogen accumulation; these changes were not noted in the sham livers. Our data demonstrate that PI3K/Akt pathway activation plays a critical role in the early regenerative response of the liver after resection; inhibition of this pathway markedly abrogates the normal hepatic regenerative response, most likely by inhibiting macrophage infiltration and cytokine elaboration and thus hepatocyte priming for replication.  相似文献   

16.
Following a fibrogenic stimulus, the hepatic stellate cell (HSC) undergoes a complex activation process associated with increased cell proliferation and excess deposition of type I collagen. The focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway is activated by platelet-derived growth factor (PDGF) in several cell types. We investigated the role of the FAK-PI3K-Akt pathway in HSC activation. Inhibition of FAK activity blocked HSC migration, cell attachment, and PDGF-induced PI3K and Akt activation. Both serum- and PDGF-induced Akt phosphorylation was inhibited by LY294002, an inhibitor of PI3K. A constitutively active form of Akt stimulated HSC proliferation in serum-starved HSCs, whereas LY294002 and dominant-negative forms of Akt and FAK inhibited PDGF-induced proliferation. Transforming growth factor-beta, an inhibitor of HSC proliferation, did not block PDGF-induced Akt phosphorylation, suggesting that transforming growth factor-beta mediates its antiproliferative effect downstream of Akt. Expression of type I collagen protein and alpha1(I) collagen mRNA was increased by Akt activation and inhibited when PI3K activity was blocked. Therefore, FAK is important for HSC migration, cell attachment, and PDGF-induced cell proliferation. PI3K is positioned downstream of FAK. Signals for HSC proliferation are transduced through FAK, PI3K, and Akt. Finally, expression of type I collagen is regulated by the PI3K-Akt signaling pathway.  相似文献   

17.
18.
19.
Akt is a key downstream effector of the PI3K signaling pathway and plays a role in cell growth and survival. Expression of a myristoylated constitutively active form of Akt (myr-Akt) in PC12 cells could override cell-growth arrest at G2/M phase and apoptosis that were induced by etoposide treatment. On the other hand, inactivation of Akt by expression of its dominant negative mutant form (km-Akt) inhibited cell proliferation by arresting the cells at G2/M phase. Expression of myr-Akt also led to an increase in the protein and mRNA levels of CDK1 and cyclin B1. Furthermore, EMSA data revealed that expression of myr-Akt promoted the binding of NF-Y to the consensus CCAAT promoter sequence, whereas expression of km-Akt almost completely abolished it. Moreover, the Akt activity was minimal in the cells that were arrested at G2/M phase by nocodazole treatment, but reached to a maximal level as the cells progressed to mitosis and G1 phase upon removal of the drug. Treatment with Akt inhibitors, but not with those of MEK or p70S6K, blocked the release of the cells from the nocodazole-induced G2/M arrest, further revealing that the Akt activity is required for G2/M phase transition. These results suggest that Akt facilitate cell-cycle progression at G2/M phase in PC12 cells and this Akt activity is correlated with upregulation of NF-Y DNA-binding activity and cyclin B1/CDK1 gene expression.  相似文献   

20.
We have demonstrated that T3 increases the expression of ZAKI-4alpha, an endogenous calcineurin inhibitor. In this study we characterized a T3-dependent signaling cascade leading to ZAKI-4alpha expression in human skin fibroblasts. We found that T3-dependent increase in ZAKI-4alpha was greatly attenuated by rapamycin, a specific inhibitor of a protein kinase, mammalian target of rapamycin (mTOR), suggesting the requirement of mTOR activation by T3. Indeed, T3 activated mTOR rapidly through S2448 phosphorylation, leading to the phosphorylation of p70(S6K), a substrate of mTOR. This mTOR activation is mediated through phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) signaling cascade because T3 induced Akt/PKB phosphorylation more rapidly than that of mTOR, and these T3-dependent phosphorylations were blocked by both PI3K inhibitors and by expression of a dominant negative PI3K (Deltap85alpha). Furthermore, the association between thyroid hormone receptor beta1 (TRbeta1) and PI3K-regulatory subunit p85alpha, and the inhibition of T3-induced PI3K activation and mTOR phosphorylation by a dominant negative TR (G345R) demonstrated the involvement of TR in this T3 action. The liganded TR induces the activation of PI3K and Akt/PKB, leading to the nuclear translocation of the latter, which subsequently phosphorylates nuclear mTOR. The rapid activation of PI3K-Akt/PKB-mTOR-p70(S6K) cascade by T3 provides a new molecular mechanism for thyroid hormone action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号