首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mechanisms are involved in the regulation of the intracellular pH (pHi) of aortic smooth muscle cells: the Na+/H+ antiporter and a Na+-independent HCO3-/Cl- antiporter. The Na+/H+ antiporter acts as a cell alkalinizing mechanism. It is activated by vasopressin and by phorbol esters when cells are incubated in the presence of bicarbonate but is not affected in the absence of bicarbonate. The HCO3-/Cl- antiporter acts as a cell acidifying mechanism. Agents such as forskolin, 8-Br-cAMP, and isoproterenol which raise intracellular cAMP levels inhibit the HCO3-/Cl- antiporter by shifting its pHi dependence in the alkaline direction. Thus, within the same cell type, different hormones control pHi variations by acting on different pHi regulating systems. An increase in pHi can be achieved either by a stimulation of a cell alkalinizing mechanism or by inhibition of a cell acidifying mechanism. A change of the activity of one pHi regulating mechanism modifies the responsiveness of the other to regulatory agents. Bicarbonate turns on the HCO3-/Cl- antiporter, decreases pHi and allows its regulation by protein kinase C through the Na+/H+ antiporter. Inhibition of the HCO3-/Cl- antiporter by cAMP increases the pHi and switches off the protein kinase C-mediated regulation.  相似文献   

2.
It has previously been shown (Baroin, A., F. Garcia-Romeu, T. Lamarre, and R. Motais. 1984a, b. Journal of Physiology. 350:137, 356:21; Mahé, Y., F. Garcia-Romeu, and R. Motais. 1985. European Journal of Pharmacology. 116:199) that the addition of catecholamines to an isotonic suspension of nucleated red blood cells of the rainbow trout first stimulates a cAMP-dependent, amiloride-sensitive Na+/H+ exchange. This stimulation seems to be transient. It is followed by a more permanent activation of a coupled entry of Na+ and Cl-, which is inhibited by amiloride but also by inhibitors of band 3 protein (DIDS, furosemide, niflumic acid). The coupled entry of Na+ and Cl- could therefore result from the parallel and simultaneous exchange of Na+out for H+in (via the cAMP-dependent Na+/H+ antiporter) and Cl- out for HCO3- in (via the anion exchange system located in band 3 protein). However, in view of the following arguments, it had been proposed that NaCl uptake does not proceed by the double-exchanger system but via an NaCl cotransport: (a) Na+ entry requires Cl- as anion (in NO3- medium, the Na uptake is strongly inhibited, whereas NO3- is an extremely effective substitute for Cl- in the anion exchange system); (b) Na uptake is not significantly affected by the presence of HCO3- in the suspension medium despite the fact that in red cells, Cl-/HCO3- exchange occurs more readily than the exchanges of Cl- for basic equivalents in a theoretically CO2-free medium (the so-called Cl-/OH- exchanges). The purpose of the present paper was a reassessment of the two models by using monensin, an ionophore allowing Na+/H+ exchange. From this study, it appears that NaCl entry results from the simultaneous functioning of the Na+/H+ antiporter and the anion exchange system. The apparent Cl dependence is explained by the fact that, in these erythrocytes, NO3- clearly inhibits the turnover rate of the Na+/H+ antiporter. As Na+/H+ exchange is the driving component in the salt uptake process, this inhibition explains the Cl requirement for Na entry. The lack of stimulation of cell swelling by bicarbonate is explained by the fact that the rate of anion exchange in a CO2-free medium (Cl-/OH- exchange) is roughly equivalent to that of Na+/H+ exchange and thus in practice is not limiting to the net influx of NaCl through the two exchangers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Regulation of intracellular pH (pHi) in single cultured rat hippocampal neurons was investigated using the fluorescent pHi indicator dye bis-carboxyethylcarboxyfluorescein. Resting pHi was dependent on the presence of bicarbonate and external Na+ but was not altered significantly by removal of Cl- or treatment with the anion exchange inhibitor diisothiocyanatostilbene-2,2'-disulfonate. Recovery of pHi from acute acid loading was due, in large part, to a pharmacologically distinct variant of the Na+/H+ antiporter. In nominally HCO3(-)-free solutions, this recovery exhibited a saturable dose dependence on extracellular Na+ (Km = 23-26 mM) or Li+. The antiporter was activated by decreasing pHi and was unaffected by collapse of the membrane potential with valinomycin. Like the Na+/H+ antiporter described in other cell systems, the hippocampal activity was inhibited by harmaline, but in sharp contrast, neither amiloride nor its more potent 5-amino-substituted analogues were able to prevent the recovery from an acid load. These data indicate that Na(+)-dependent mechanisms dominate pHi regulation in hippocampal neurons and suggest a role for a novel variant of the Na+/H+ antiporter.  相似文献   

4.
The role of plasma membrane Cl(-)-HCO-3-exchange in regulating intracellular pH (pHi) was examined in Madin-Darby canine kidney cell monolayers. In cells bathed in 25 mM HCO-3, pH 7.4, steady state pHi was 7.10 +/- 0.03 (n = 14) measured with the fluorescent pH probe 2',7'-biscarboxyethyl-5,6-carboxyfluorescein. Following acute alkaline loading, pHi recovered exponentially in approximately 4 min. The recovery rate was significantly decreased by Cl- or HCO-3 removal and in the presence of 50 microM 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS). Na+ removal or 10(-3) M amiloride did not inhibit the pHi recovery rate after an acute alkaline load. Following acute intracellular acidification, the pHi recovery rate was significantly inhibited by 10(-3) M amiloride but was not altered by Cl- removal or 50 microM DIDS. At an extracellular pH (pHo) of 7.4, pHi remained unchanged when the cells were bathed in either Cl- free media, HCO-3 free media, or in the presence of 50 microM DIDS. As pHo was increased to 8.0, steady state pHi was significantly greater than control in Cl(-)-free media and in the presence of 50 microM DIDS. It is concluded that Madin-Darby canine kidney cells possess a Na+-independent Cl(-)-HCO-3 exchanger with a Km for external Cl- of approximately 6 mM. The exchanger plays an important role in pHi regulation following an elevation of pHi above approximately 7.1. Recovery of pHi following intracellular acidification is mediated by the Na+/H+ antiporter and not the anion exchanger.  相似文献   

5.
The effects of elevating intracellular cAMP levels on Na+ transport across the apical membrane of Necturus gallbladder epithelium were studied by intracellular and extracellular microelectrode techniques. Intracellular cAMP was raised by serosal addition of the phosphodiesterase inhibitor theophylline (3 mM) or mucosal addition of either 8-Br-cAMP (1 mM) or the adenylate cyclase activator forskolin (10 microM). During elevation of intracellular cAMP, intracellular Na+ activity (alpha Nai) and intracellular pH (pHi) decreased significantly. In addition, acidification of the mucosal solution, which contained either 100 or 10 mM Na+, was inhibited by approximately 50%. The inhibition was independent of the presence of Cl- in the bathing media. The rates of change of alpha Nai upon rapid alterations of mucosal [Na+] from 100 to 10 mM and from 10 to 100 mM were both decreased, and the rate of pHi recovery upon acid loading was also reduced by elevated cAMP levels. Inhibition was approximately 50% for all of these processes. These results indicate that cAMP inhibits apical membrane Na+/H+ exchange. The results of measurements of pHi recovery at 10 and 100 mM mucosal [Na+] and a kinetic analysis of recovery as a function of pHi suggest that the main or sole mechanism of the inhibitory effect of cAMP is a reduction in the maximal rate of acid extrusion. In conjunction with the increase in apical membrane electrodiffusional Cl- permeability, produced by cAMP, which causes a decrease in net Cl- entry (Petersen, K.-U., and L. Reuss, 1983, J. Gen. Physiol., 81:705), inhibition of Na+/H+ exchange contributes to the reduction of fluid absorption elicited by this agent. Similar mechanisms may account for the effects of cAMP in other epithelia with similar transport properties. It is also possible that inhibition of Na+/H+ exchange by cAMP plays a role in the regulation of pHi in other cell types.  相似文献   

6.
The effects of extracellular anions (10-150 mM, added as Na salts to normal growth medium) on the growth of Chinese hamster V-79 cells were examined. Additions of NaCl and NaNO3 at concentrations greater than 60 mM reduced the growth rate dose-dependently. Several other anions also inhibited cell growth in the decreasing order of potency, SCN- greater than NO2- greater than NO3- greater than Br- greater than Cl- greater than gluconate- glutamate- greater than Mes-. When the added anions were removed, the growth rate was restored to the control rate. Cell survival was markedly reduced by the addition of SCN-, but was less affected by other anions (Cl-,NO3- and NO2-) of comparable potency. The respective syntheses of cellular DNA and protein, as estimated from the incorporation of [3H]-thymidine and [14C]leucine, also decreased with the increase in the concentration (60-120 mM) of anions added, the order of potency being SCN- greater than NO2- greater than NO3- greater than Cl-. After anion-treatment, the cellular Na+ concentration increased and the cellular Cl- concentration decreased in the order of SCN- greater than NO2- greater than NO3-, Cl-, but, the cellular K+ concentration did not change significantly. These data suggest that changes in extracellular anions affect cell growth and survival, probably through changes in the intracellular Na+ or Cl- concentration and in the rates of protein and/or DNA synthesis.  相似文献   

7.
Agonist-specific regulation of [Na+]i in pancreatic acinar cells   总被引:1,自引:1,他引:0  
In a companion paper (Zhao, H., and S. Muallem. 1995), we describe the relationship between the major Na+,K+, and Cl- transporters in resting pancreatic acinar cells. The present study evaluated the role of the different transporters in regulating [Na+]i and electrolyte secretion during agonist stimulation. Cell stimulation increased [Na+]i and 86Rb influx in an agonist-specific manner. Ca(2+)-mobilizing agonists, such as carbachol and cholecystokinin, activated Na+ influx by a tetraethylammonium-sensitive channel and the Na+/H+ exchanger to rapidly increase [Na+]i from approximately 11.7 mM to between 34 and 39 mM. As a consequence, the NaK2Cl cotransporter was largely inhibited and the activity of the Na+ pump increased to mediate most of the 86Rb(K+) uptake into the cells. Secretin, which increases cAMP, activated the NaK2Cl cotransporter and the Na+/H+ exchanger to slowly increase [Na+]i from approximately 11.7 mM to an average of 24.6 mM. Accordingly, secretin increased total 86Rb uptake more than the Ca(2+)- mobilizing agonists and the apparent coupling between the NaK2Cl cotransport and the Na+ pump. All the effects of secretin could be attributed to an increase in cAMP, since forskolin affected [Na+]i and 86Rb fluxes similar to secretin. The signaling pathways mediating the effects of the Ca(2+)-mobilizing agonists were less clear. Although an increase in [Ca2+]i was required, it was not sufficient to account for the effect of the agonists. Activation of protein kinase C stimulated the NaK2Cl cotransporter to increase [Na+]i and 86Rb fluxes without preventing the inhibition of the cotransporter by Ca(2+)-mobilizing agonists. The effects of the agonists were not mediated by changes in cell volume, since cell swelling and shrinkage did not reproduce the effect of the agonists on [Na+]i and 86Rb fluxes. The overall findings of the relationships between the various Na+,K+, and Cl- transporters in resting and stimulated pancreatic acinar cells are discussed in terms of possible models of fluid and electrolyte secretion by these cells.  相似文献   

8.
The purpose of this study is to assess the effect of an apparent alteration in intracellular pH and the effect of amiloride on the activity of the Na+/H+ antiporter in perfused rat kidney. Rat kidney-Na+ retention was determined using tracer 22Na in perfusate composed of HCl-glycine buffer (pH 3.80 to pH 5.92) or NH4OH-glycine buffer (pH 6.22-7.95) containing Na+ to match physiologic concentrations. Plotting renal Na+ retention for 10 min versus pH in absence of amiloride showed two classical uncompetitive activator curves for H+, one curve from pH 4.19 to 5.10 and another from pH 6.22 to 7.95. H+ acts as an uncompetitive reversible binding substrate with the receptor triggering activation of the exchanger already sequestered with Na+, thus yielding two Ka values for the exchanger suggesting non-first order kinetics. Using an equation derived for uncompetitive-activation binding of Nao+ and Hi+, plotting [mM Na+ mg protein-1 10 min-1]-1 versus [H+], two linear plots are observed on Cartesian coordinates with abscissa intersecting at 47 +/- 1 microM, pKa = 4.32 +/- 0.02 (pH 4.19-5.10) and 4.21 +/- 0.02 microM, pKa = 5.38 +/- 0.01 (pH 6.22-7.95), respectively. Perfusing buffer containing 2 mM amiloride, completely inactivated the antiporter showing stronger inhibition between pH 3.80 and 5.92. Results suggest the presence of two uncompetitive binding sites for H+ with the Na+/H+ exchanger. One is a high affinity binding site at physiological intracellular apparent pH, and another is a low affinity binding site at ischaemic apparent pH, implying the existence of two titration sites for intracellular pH regulation.  相似文献   

9.
A covalently binding label for muscarinic acetylcholine receptors, propylbenzilylcholine mustard (PrBCM), irreversibly inhibits the Na+/H+ exchanger in rat renal brush-border membrane vesicles. Substrates of the antiporter, Na+ and Li+, as well as inhibitors, amiloride, 5-(N-ethyl-N-isopropyl)amiloride (EIPA) and propranolol, protect the antiporter from inactivation by PrBCM. With [3H]PrBCM a band with an app. Mr of 65 kDa is predominantly labeled. Amiloride protects this band from labeling with [3H]PrBCM and [14C]-N,N'-dicyclohexylcarbodiimide (DCCD) proving its identity with the renal Na+/H+ exchanger. Our data reveal a specific interaction of PrBCM with the Na+/H+ exchanger and suggest structural relations between antiporter and receptors.  相似文献   

10.
K-Cl cotransport activity in frog erythrocytes was estimated as a Cl- -dependent component of K+ efflux from cells incubated in Cl- - or NO3- -containing medium at 20 degrees C. Decreasing the osmolality of the medium resulted in an increase in K+ efflux from the cells in a Cl- medium but not in an NO3- medium. Treatment of red cells with 5 mM NaF caused a significant decrease (approximately 50%) in K+ loss from the cells in iso- and hypotonic Cl- media but only a small decrease in K+ loss in isotonic NO3- medium. Addition of 1 mM vanadate to an isotonic Cl- medium also led to a significant reduction in K+ efflux. Similar inhibitory effects of NaF and vanadate on K+ efflux in a Cl- medium, but not in an NO3- medium were observed when the incubation temperature was decreased from 20 to 5 degrees C. Thus, under various experimental conditions, NaF and vanadate inhibited about 50% of Cl- -dependent K+ efflux from frog red cells probably due to inhibition of protein phosphatases. Cl- -dependent K+ (86Rb) influx into frog erythrocytes was nearly completely blocked (approximately 94%) by 5 mM NaF. In a NO3- medium, K+ influx was mainly mediated by the Na+,K+ pump and was unchanged in the presence of 5 mM NaF, 0.03 mM Al3+ or their combination. These data indicate that G proteins or cAMP are not involved in the regulation of Na+,K+ pump activity which is activated by catecholamines and phosphodiesterase blockers in these cells.  相似文献   

11.
This study examines the routes by which Mg2+ leaves cultured ovine ruminal epithelial cells (REC). Mg2+-loaded (6 mM) REC were incubated in completely Mg2+-free solutions with varying Na+ concentrations, and the Mg2+ extrusion rate was calculated from the increase of the Mg2+ concentration in the incubation medium determined with the aid of the fluorescent probe mag-fura 2 (Na+ salt). In other experiments, REC were also studied for the intracellular free Mg2+ concentration ([Mg2+]i; using mag-fura 2), the intracellular Na+ concentration (using Na+-binding benzofuran isophthalate), the intracellular cAMP concentration ([cAMP]i; using an enzyme-linked immunoassay), and Na+/Mg2+ exchanger existence [using a monoclonal antibody (mAb) raised against the porcine red blood cell Na+/Mg2+ exchanger]. Mg2+-loaded REC show a Mg2+ efflux that was strictly dependent on extracellular Na+. The Mg2+ extrusion rate increased from 0.018+/-0.009 in a Na+-free medium to 0.73+/-0.3 mM.l cells-1.min-1 in a 145 mM Na+ medium and relates to extracellular Na+ concentration ([Na+]e) according to a typical saturation kinetic (Km value for [Na+]e=24 mM; maximal velocity=11 mM.l cells-1.min-1). Mg2+ efflux was reduced by imipramine (48%) and increased after application of dibutyryl-cAMP (55%) or PGE2 (17%). These effects are completely abolished in Na+-free media. Furthermore, an elevation of [cAMP]i led to an [Mg2+]i decrease that amounted to 375+/-105 microM. The anti-Na+/Mg2+ exchanger mAb inhibits Mg2+ extrusion; moreover, it detects a specific 70-kDa immunoreactive band in protein lysates of ovine REC. The data clearly demonstrate that a Na+/Mg2+ exchanger is existent in the cell membrane of REC. The transport protein is the main pathway (97%) for Mg2+ extrusion and can be assumed to play a considerable role in the process of Mg2+ absorption as well as the maintenance of the cellular Mg2+ homeodynamics.  相似文献   

12.
Net H+ fluxes across the plasma membrane of Chinese hamster lung fibroblasts (CC139) were monitored by pH-stat titration. Na+-depleted cells release H+ upon addition of Na+. Conversely Na+- or Li+-loaded cells take up H+ from the medium when shifted to a Na+,Li+-free medium. This reversible Na+ (or Li+)-dependent H+ flux is inhibited by amiloride and does not occur in digitonin-permeabilized cells. A similar Na+/H+ exchanger was identified in vascular smooth muscle cells, corneal and aortic endothelial cells, lens epithelial cells of bovine origin, and human platelets. Kinetic studies carried out with CC139 cells indicate the following properties: 1) half-saturation of the system is observed at pH = 7.8, in the absence of Na+; 2) external Na+ stimulates H+ release and inhibits H+ uptake in a competitive manner (Ki = 2-3 mM); 3) amiloride is a competitive inhibitor for Na+ (Ki congruent to 1 microM) and a noncompetitive inhibitor for H+; 4) a coupling ratio of 1.3 +/- 0.3 for the H+/Li+ exchange suggests a stoichiometry of 1:1. We conclude that CC139 cells possess in their plasma membrane a reversible, electroneutral, and amiloride-sensitive Na+/H+ antiporter, with two distinct and mutually exclusive binding sites for Na+ and H+. The rapid stimulation of the Na+/H+ antiporter in G0/G1-arrested CC139 cells upon addition of growth factors, together with the fact that intracellular H+ concentration is, under physiological conditions, around the apparent K0.5 of the system, strongly suggests a key role of this antiport in pHi regulation and mitogen action.  相似文献   

13.
ATP-dependent Cl- uptake by membrane vesicles from the rat brain plasma membrane fractions was not affected by the addition of 40 mM of K+, Na+ or HCO3- to the assay medium. Na+ and K+ did not alter the uptake even in the presence of a K+ ionophore, valinomycin (10 microM), or a H+/K+ exchanger, nigericin (10 microM), whereas in the presence of both of these ionophores, K+, but not Na+, reduced the Cl- uptake. Inhibitors of proton pump activity, N,N'-dicyclohexylcarbodiimide (1 mM) and 5-(N,N-hexamethylene)amiloride (40 microM), however, did not affect the Cl- uptake. These findings suggest the presence of a primary Cl- transport system probably associated with passive H+ flux in the brain plasma membranes.  相似文献   

14.
In our routine screening of chemicals that would inhibit cardiac sarcolemmal Na+/H+ antiporter, we discovered that some of the opioids produced inhibition of cardiac sarcolemmal Na+/H+ antiporter in micromolar concentrations. Using U-50,488H, a selective kappa-opioid agonist, we characterized the nature of interaction between opioids and the Na+/H+ antiporter. The inhibitory effect of U-50,488H on Na+/H+ antiporter was immediate and reversible, and was not mediated through the interaction with the opioid receptors but due to the direct interaction of U-50,488H with the Na+/H+ antiporter. The kinetic data show that in the presence of U-50,488H the Km for Na+ was increased from 2.5 +/- 0.2 to 5.0 +/- 0.3 mM, while the Vmax (52.0 +/- 5.0 nmol.mg-1.min-1) remained the same. These results suggest that U-50,488H and Na+ compete for the same site on the antiporter. When testing the effect of U-50,488H on other transport systems of cardiac sarcolemma, we found that U-50,488H also inhibited Na+/Ca2+ antiporter and Na+/K+ pump but at much higher concentrations suggesting that U-50,488H shows some degree of selectivity for cardiac sarcolemmal Na+/H+ antiporter. When we compared the inhibitory potency of U-50,488H with amiloride and its analog, namely 5-(N,N-hexamethylene)amiloride, we found that U-50,488H (IC50 = 100 +/- 15 microM) was threefold more potent than amiloride (IC50 = 300 +/- 20 microM) but it was three-fold less potent than the amiloride analog (IC50 = 30 +/- 10 microM) in inhibiting cardiac sarcolemmal Na+/H+ antiporter. These results show that although U-50,488H is more potent than amiloride, the inhibitory characteristics of U-50,488H on cardiac sarcolemmal Na+/H+ antiporter are similar to amiloride.  相似文献   

15.
Na+, K+, and Cl- transport in resting pancreatic acinar cells   总被引:2,自引:1,他引:1  
To understand the role of Na+, K+, and Cl- transporters in fluid and electrolyte secretion by pancreatic acinar cells, we studied the relationship between them in resting and stimulated cells. Measurements of [Cl-]i in resting cells showed that in HCO3(-)-buffered medium [Cl- ]i and Cl- fluxes are dominated by the Cl-/HCO3- exchanger. In the absence of HCO3-, [Cl-]i is regulated by NaCl and NaK2Cl cotransport systems. Measurements of [Na+]i showed that the Na(+)-coupled Cl- transporters contributed to the regulation of [Na+]i, but the major Na+ influx pathway in resting pancreatic acinar cells is the Na+/H+ exchanger. 86Rb influx measurements revealed that > 95% of K+ influx is mediated by the Na+ pump and the NaK2Cl cotransporter. In resting cells, the two transporters appear to be coupled through [K+]i in that inhibition of either transporter had small effect on 86Rb uptake, but inhibition of both transporters largely prevented 86Rb uptake. Another form of coupling occurs between the Na+ influx transporters and the Na+ pump. Thus, inhibition of NaK2Cl cotransport increased Na+ influx by the Na+/H+ exchanger to fuel the Na+ pump. Similarly, inhibition of Na+/H+ exchange increased the activity of the NaK2Cl cotransporter. The combined measurements of [Na+]i and 86Rb influx indicate that the Na+/H+ exchanger contributes twice more than the NaK2Cl cotransporter and three times more than the NaCl cotransporter and a tetraethylammonium-sensitive channel to Na+ influx in resting cells. These findings were used to develop a model for the relationship between the transporters in resting pancreatic acinar cells.  相似文献   

16.
The intracellular pH (pHi) of a rat parotid acinar preparation was monitored using the pH-sensitive fluorescent dye, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Under resting (unstimulated) conditions both Na+/H+ exchange and CO2/HCO3- buffering contribute to the regulation of pHi. Muscarinic stimulation (carbachol) of the acini produced a gradual rise in pHi (approximately 0.1 unit by 10 min) possibly due to activation of the Na+/H+ exchanger. When the exchanger was blocked by amiloride or sodium removal, carbachol induced a dramatic (atropine inhibitable) decrease in pHi (approximately 0.4 pH unit with t1/2 approximately 0.5 min at 1 mM carbachol). The rate of this acidification was reduced by removal of exogenous HCO3- and by the carbonic anhydrase inhibitor methazolamide. Also, acini stimulated with carbachol in Cl- -free solutions showed a more pronounced acidification than in the corresponding Cl- -replete media. Taken together, these data indicate that the carbachol-induced acidification of rat parotid acinar cells unmasked by inhibition of the Na+/H+ exchanger is due to a rapid loss of intracellular HCO3-. Carbachol induced acidification was inhibited by the Cl- channel blocker diphenylamine 2-carboxylate but not by 4-acetomido-4'-isothiocyanostilbene-2,2'-disulfonic acid, an inhibitor of Cl-/HCO3- exchange. In addition, this acidification could not be sustained in Ca2+-free media and was totally blocked by chelation of intracellular Ca2+. Interpreted in terms of HCO3- loss, these results closely parallel the pattern of carbachol-induced Cl- release from this same preparation and indicate that HCO3- is secreted in response to muscarinic stimulation via the same or a very similar exit pathway, presumably an apical anion channel. Under normal physiological conditions the intracellular acidification resulting from HCO3- secretion is buffered by the Na+/H+ exchanger.  相似文献   

17.
The trophectoderm of the mouse blastocyst is a fluid transporting epithelium that is responsible for generating a fluid-filled cavity called the blastocoel. Vectorial transport of ions from the medium into the blastocoel generates an osmotic gradient that drives fluid across this epithelium. We report here that substitution of Na+ or Cl-, but not K+, in the medium halves the rate of blastocoel expansion in the mouse blastocyst. Entrance of Na+ into the trophectoderm may involve several routes, since both blastocoel expansion and 22Na+ uptake are decreased in the presence of the highly specific Na+/H+ exchanger inhibitor, 5-(N-ethyl-N-isopropyl)amiloride, and to a lesser extent with the amiloride-sensitive Na+-channel blocker, benzamil. Uptake of 22Na+ manifests saturation kinetics as a function of extracellular Na+ concentration, whereas uptake of 36Cl- is linear. Furthermore, neither 4,4-diisothiocyanostilbene-2,2-disulfonic acid, which is an inhibitor of the Cl-/HCO3- exchanger, nor 2-(3,4-dichlorobenzyl)-5-nitrobenzoic acid, which is a Cl- -channel blocker, affect either blastocoel expansion or 36Cl- uptake. These results suggest that Na+ entry into the mouse blastocyst is carrier-mediated and probably involves several routes that include the Na+/H+ exchanger and possibly the Na+-channel. Chloride entry, however, may not be carrier-mediated and may occur through a paracellular route, i.e., between the trophectodermal cells.  相似文献   

18.
Ion-sensitive microelectrodes and current-voltage analysis were used to study intracellular pH (pHi) regulation and its effects on ionic conductances in the isolated epithelium of frog skin. We show that pHi recovery after an acid load is dependent on the operation of an amiloride-sensitive Na+/H+ exchanger localized at the basolateral cell membranes. The antiporter is not quiescent at physiological pHi (7.1-7.4) and, thus, contributes to the maintenance of steady state pHi. Moreover, intracellular sodium ion activity is also controlled in part by Na+ uptake via the exchanger. Intracellular acidification decreased transepithelial Na+ transport rate, apical Na+ permeability (PNa) and Na+ and K+ conductances. The recovery of these transport parameters after the removal of the acid load was found to be dependent on pHi regulation via Na+/H+ exchange. Conversely, variations in Na+ transport were accompanied by changes in pHi. Inhibition of Na+/K+ ATPase by ouabain produced covariant decreases in pHi and PNa, whereas increases in Na+ transport, occurring spontaneously or after aldosterone treatment, were highly correlated with intracellular alkalinization. We conclude that cytoplasmic H+ activity is regulated by a basolateral Na+/H+ exchanger and that transcellular coupling of ion flows at opposing cell membranes can be modulated by the pHi-regulating mechanism.  相似文献   

19.
Hyperosmolality has been known to increase ANP release. However, its physiological role in the regulation of atrial myocytic ANP release and the mechanism by which hyperosmolality increases ANP release are to be defined. The purpose of the present study was to define these questions. Experiments were performed in perfused beating rabbit atria. Hyperosmolality increased atrial ANP release, cAMP efflux, and atrial dynamics in a concentration-dependent manner. The osmolality threshold for the increase in ANP release was as low as 10 mosmol/kgH2O (approximately 3%) above the basal levels (1.55 +/- 1.71, 17.19 +/- 3.11, 23.15 +/- 5.49, 54.04 +/- 11.98, and 62.00 +/- 13.48% for 10, 20, 30, 60, and 100 mM mannitol, respectively; all P < 0.01). Blockade of sarcolemmal L-type Ca2+ channel activity, which increased ANP release, attenuated hyperosmolality-induced increases in ANP release (-13.58 +/- 4.68% vs. 62.00 +/- 13.48%, P < 0.001) and cAMP efflux but not atrial dynamics. Blockade of the Ca2+ release from the sarcoplasmic reticulum, which increased ANP release, attenuated hyperosmolality-induced increases in ANP release (13.44 +/- 7.47% vs. 62.00 +/- 13.48%, P < 0.01) and dynamics but not cAMP efflux. Blockades of Na+-K+-2Cl- cotransporter, Na+/H+ exchanger, and Na+/Ca2+ exchanger had no effect on hyperosmolality-induced increase in ANP release. The present study suggests that hyperosmolality regulates atrial myocytic ANP release and that the mechanism by which hyperosmolality activates ANP release is closely related to the cross-talk between the sarcolemmal L-type Ca2+ channel activity and sarcoplasmic reticulum Ca2+ release, possibly inactivation of the L-type Ca2+ channels.  相似文献   

20.
T Günther  J Vormann 《FEBS letters》1992,297(1-2):132-134
Mg2+ efflux from Mg(2+)-loaded rat thymocytes was stimulated by 0.1 mM dibutyryl cAMP (db cAMP). The activation of Mg2+ efflux by db cAMP was more expressed at lower Mg(2+)-loading. cAMP induced only a very small increase in the concentration of intracellular free Mg2+ which cannot explain the activation of Na+/Mg2+ antiport. From these results it was concluded that cAMP increases the affinity of the Na+/Mg2+ antiporter for intracellular Mg2+, probably by phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号