首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The success of using Populus and Salix for phytoremediation has prompted further use of leachate as a combination of irrigation and fertilization for the trees. A common protocol for such efforts has been to utilize a limited number of readily-available genotypes with decades of deployment in other applications, such as fiber or windbreaks. However, it may be possible to increase phytoremediation success with proper genotypic screening and selection, followed by the field establishment of clones that exhibited favorable potential for cleanup of specific contaminants. There is an overwhelming need for testing and subsequent deployment of diverse Populus and Salix genotypes, given current availability of clonal material and the inherent genetic variation among and within these genera. Therefore, we detail phyto-recurrent selection, a method that consists of revising and combining crop and tree improvement protocols to meet the objective of utilizing superior Populus and Salix clones for remediation applications. Although such information is lacking for environmental clean-up technologies, centuries of plant selection success in agronomy, horticulture, and forestry validate the need for similar approaches in phytoremediation. We bridge the gap between these disciplines by describing project development, clone selection, tree establishment, and evaluation of success metrics in the context of their importance to utilizing trees for phytoremediation.  相似文献   

2.
Increased municipal solid waste generation in North America has prompted the use of Populus for phytoremediation of waste waters including landfill leachate. Populus species and hybrids are ideal for such applications because of their high water usage rates, fast growth, and extensive root systems. Adventitious rooting (i.e., lateral rooting from primordia and basal rooting from callus) of Populus is important for phytotechnologies to ensure successful plantation establishment with genotypes that thrive when irrigated with highly variable or specific contaminants. We evaluated differences in root system morphology following establishment with high-salinity municipal solid waste landfill leachate or uncontaminated well water (control). Populus clones (NC13460, NC14018, NC14104, NC14106, DM115, DN5, NM2, and NM6) were irrigated during 2005 and 2006 in northern Wisconsin, USA and tested for differences in morphology of lateral and basal root types, as well as fine (0–2 mm diameter), small (2–5 mm), and coarse (>5 mm) roots. Across treatments and clones, trees averaged five roots per root type. Leachate-irrigated trees had 87% (lateral) and 105% (basal) as many roots as those irrigated with water. Leachate-irrigated trees had 96% as many fine roots as watering with irrigation water, whereas trees with leachate had 112% (small) and 88% (coarse) as many roots versus water. Despite root necrosis and regrowth in 23% of the trees, leachate irrigation did not negatively affect root diameter or dry mass. Given that adequate rooting is necessary for plantation establishment, leachate and similar waste waters are viable irrigation and fertilization sources of Populus crops used as feedstocks for biofuels, bioenergy, and bioproducts.  相似文献   

3.
Soil contaminant levels and early tree growth data are helpful for assessing phytoremediation systems. Populus (DN17, DN182, DN34, NM2, and NM6) and Salix (94003, 94012, S287, S566, and SX61) genotypes were irrigated with landfill leachate or municipal water and tested for differences in (1) element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, and Na) of a topsoil layer and a layer of sand in tanks with a cover crop of trees or no trees and (2) height, diameter, volume, and dry mass of leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Differences in most soil element concentrations were negligible (P > 0.05) for irrigation treatments and cover main effects. Phosphorous, K, Mg, S, Zn, Mn, Fe, and Al concentrations were greater in topsoil than sand (P = 0.0011 for Mg; P < 0.0001 for others). There was broad variation between genera and among clones for all growth traits. The treatment x clone interaction governed height, volume, and root dry mass, with (94012, SX61), (NM2, S566, SX61), and (S287, S566) exhibiting the greatest levels, respectively,following leachate application. Given the broad amount of variability among and within these genera, there is great potential for the identification and selection of specific genotypes with a combination of elevated phytoremediation capabilities and tree yield. From a practical standpoint, these results may be used as a baseline for the development of future remediation systems.  相似文献   

4.
Abstract

Phyto-recurrent selection is an established method for selecting tree genotypes for phytoremediation. To identify promising Populus (poplar) and Salix (willow) genotypes for phytotechnologies, our objectives were to (1) evaluate the genotypic variability in survival, height, and diameter of poplar and willow clones established on soils heavily contaminated with nitrates; and (2) assess the genotypic stability in survival and diameter of selected poplar clones after one and eleven growing seasons. We tested 27 poplar and 10 willow clones planted as unrooted cuttings, along with 15 poplar genotypes planted as rooted cuttings. The trees were tested at an agricultural production facility in the Midwestern, United States. After 11 growing seasons, using phyto-recurrent selection, we surveyed survival and measured the diameter of 27 poplar clones (14 unrooted, 13 rooted) that were selected based on superior survival and growth throughout plantation development. Overall, willow exhibited the greatest survival, while poplar had the greatest height and diameter. At 11 years after planting, superior clones were identified that exhibited above-average diameter growth at the establishment- and rotation-age, most of which had stable genotypic performance over time. Selection of specific clones was favorable to genomic groups, based on the geographic location and soil conditions of the site.  相似文献   

5.
Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy.  相似文献   

6.
Short-rotation willow (Salix sp.) coppice, a commercial crop grown for energy purposes, is used for phytoremediation of landfill leachate in Sweden. However, the leachate's chemical composition can cause plant damage mainly due to high NaCl and NH4 concentrations. A pot experiment was conducted in order to quantify the growth responses of five different willow clones ("78-183", "Jorr", "Loden", "Olof", "Tora") to irrigation with different leachate mixtures (corresponding to 240, 180, and 120 mg Cl l(-1)) and to assess the applicability of leaf length and leaf fluctuating asymmetry as stress indicators. A series of plant traits (shoot, root and leaf dry weight, leaf area, leaf length and leaf fluctuating asymmetry) were measured. The irrigation with leachate resulted in reduced relative growth rates but there were no clear differences between the different concentrations. The clones "Jorr" and "Loden" performed best in terms of differences in relative growth rate between control and leachate treatments. Leaf length appeared to be a useful stress diagnostic tool for use in situ showing a high correlation to growth, whereas fluctuating asymmetry showed no such correlation. Higher N, lower P and higher Na concentrations in plant stems treated with leachate than control plants were observed.  相似文献   

7.
多枝柽柳(Tamarix ramosissima)是塔里木河下游荒漠河岸林中的优势灌木, 对荒漠河岸植被群落的稳定起着重要作用。该文通过研究多枝柽柳幼苗根系形态对不同灌溉处理的响应, 分析人工水分干扰对多枝柽柳幼苗根系生长的影响。实验设计了侧渗分层和地表灌溉两种给水方式和高灌(50 L∙株 -1)、中灌(25 L∙株 -1)、低灌(12.5 L∙株 -1)三个给水水平, 并在整个生长季节监测每个植株的生物量及根系形态参数。结果显示: 与地表灌溉比较, 侧渗分层的灌溉方式显著提高了细根(0.5 mm < d < 2 mm)长、细根表面积和根系生物量, 并使根系生长至160 cm深度的土层, 大于地表灌溉深度(80-100 cm); 侧渗分层灌溉+高灌的组合促进根系生长的效果最显著(p < 0.05); 侧渗分层灌溉方式下总细根(d < 2 mm)的比根长随着给水量的增加显著增大, 而地表灌溉下比根长无显著变化; 侧渗分层灌溉方式下根冠比总体小于地表灌溉方式, 即侧渗分层灌溉使多枝柽柳地上部分发育较好。因此, 侧渗分层灌溉方式有显著促进多枝柽柳幼苗在生长早期快速发育的效果。  相似文献   

8.
采用静态箱法,现场监测黏土和砂土覆盖层生活垃圾填埋场N2O释放通量的春夏季节及昼夜变化,研究渗滤液灌溉、覆土土质对填埋场N2O释放的影响.结果表明:砂土和黏土覆盖层填埋场N2O夏季的释放通量均值分别为(242±576)和(591±767) μg N2ON·m-2·h-1,是春季[分别为(74.4±314)和(269±335) μg N2ON·m-2·h-1]的3.2(P>0.05)和2.2倍(P<0.05).渗滤液灌溉促进了砂土填埋场覆土N2O的释放,填埋场中灌溉区N2O的释放通量为无灌溉区的2倍(P>0.05).渗滤液灌溉的砂土覆盖层填埋场N2O春夏两季释放通量均值[(211±460) μg N2ON·m-2·h-1]仅为无渗滤液灌溉的黏土覆盖层填埋场[(430±605) μg N2ON·m-2·h-1]的1/2(P>0.05).无论渗滤液灌溉与否,选择贫瘠的砂性覆盖土均有助于减少生活垃圾填埋场N2O释放.  相似文献   

9.
采用预设取样器和静态箱气相色谱法,对渗滤液灌溉条件下,土柱土壤不同深度剖面 N2O的浓度以及N2O和CO2的表面释放通量进行了监测.结果表明: 渗滤液灌溉可促进N2O的生成和释放,灌溉后24 h内土柱N2O的释放通量与表土下10 cm(r=0.944,P< 0.01)、20 cm(r=0.799,P<0.01)、30 cm(r=0.666,P<0.01)和40 cm(r=0.482,P<0.05)处所生成的N2O浓度呈显著相关,且相关程度依次递减.渗滤液灌溉还促进了CO2的释放,但N2O与CO2释放通量之间无显著相关性(P>0.05).渗滤液的灌溉负荷主要决定温室气体释放总量的强弱(N2O和CO2,以CO2当量计),灌溉负荷为6 mm·d-1条件下温室气体释放总量为灌溉负荷2 mm·d-1的3倍多.采用表土下20 cm处灌溉方式可比表土下10 cm处灌溉方式削减47%的温室气体释放总量.渗滤液灌溉土壤14 d内,N2O释放量约占温室气体释放总量的57.0%~91.0%.  相似文献   

10.
Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a fifteen year record of monitoring and operational data are presented that can be used by others in managing irrigation of saline water to poplar trees. When salinity is carefully managed, tree systems can help to provide sustainable leachate management solutions for landfills.  相似文献   

11.
There is a need for the identification and selection of specific tree genotypes that can sequester elements from contaminated soils, with elevated rates of uptake. We irrigated Populus (DN17, DN182, DN34, NM2, NM6) and Salix (94003, 94012, S287, S566, SX61) genotypes planted in large soil-filled containers with landfill leachate or municipal water and tested for differences in inorganic element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, Na, and Cl) in the leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Genotype-specific uptake existed. For genera, tissue concentrations exhibited four responses. First, Populus had the greatest uptake of P, K, S, Cu, and Cl. Second, Salix exhibited the greatest uptake of Zn, B, Fe, and Al. Third, Salix had greater concentrations of Ca and Mg in leaves, while Populus had greater concentrations in stems and roots. Fourth, Populus had greater concentrations of Mn and Na in leaves and stems, while Salix had greater concentrations in roots. Populus deltoides x P. nigra clones exhibited better overall phytoremediation than the P. nigra x P. maximowiczii genotypes tested. Phytoremediation for S. purpurea clones 94003 and 94012 was generally less than for other Salix genotypes. Overall, concentrations of elements in the leaves, stems, and roots corroborated those in the plant-sciences literature. Uptake was dependent upon the specific genotype for most elements. Our results corroborated the need for further testing and selecting of specific clones for various phytoremediation needs, while providing a baseline for future researchers developing additional studies and resource managers conducting on-site remediation.  相似文献   

12.
王树芹  赖娟  赵秀兰 《生态学报》2012,32(19):6128-6137
以草本花卉植物一串红和石竹为材料,通过盆栽试验研究了不同浓度垃圾渗滤液灌溉对土壤理化性质及生物学性质、植物生长、氮磷和重金属吸收的影响。渗滤液灌溉提高了土壤有机质、氮含量和电导率,其中,黄壤盐分积累速度大于紫色土,而对土壤磷和重金属含量的影响不明显,土壤脲酶活性随渗滤液浓度的提高呈先升高后降低趋势,紫色土和黄壤在渗滤液灌溉浓度分别为60%和40%时脲酶活性最强;随渗滤液浓度提高紫色土过氧化氢酶活性略为上升,黄壤过氧化氢酶活性降低。渗滤液灌溉使两种花卉根系生长受到抑制,但对植物地上部的生长发育存在低浓度促进高浓度抑制的双重作用。渗滤液灌溉可提高两种植物地上部的氮含量,对一串红磷含量影响不明显,使石竹磷含量降低,对Cu、Zn含量的影响因土壤和植物的不同而异,但高浓度渗滤液灌溉使两种植物Pb、Cr和Cd含量均提高。结果表明,适当浓度渗滤液灌溉具有改善土壤肥力,促进植物地上部生长发育的作用,渗滤液灌溉不会引起土壤和植物体内重金属过量积累,土壤氮过量积累导致的氮磷营养失调和盐分过度积累是高浓度渗滤液抑制植物生长的重要原因。从土壤性质变化和植物生长反应看,渗滤液灌溉浓度以20%—40%为佳。  相似文献   

13.
渗滤液覆盖层灌溉处理对夹竹桃的生理生态效应   总被引:1,自引:0,他引:1  
王如意  何品晶  邵立明  李国建 《生态学报》2006,26(12):4281-4286
以夹竹桃(Nerium indicum Mill.)作为填埋场覆盖层封场植被材料,历时1a现场研究了有无渗滤液灌溉下夹竹桃生长及其生理生化反应。结果表明,10mm/d渗滤液灌溉下夹竹桃持续生长,生长的快慢呈季节性,且生长较对照组略快;渗滤液灌溉组和对照组夹竹桃丙二醛(MDA)、脯氨酸(Pro)含量的动态变化同气温变化规律相似,超氧化物岐化酶(SOD)、过氧化物酶(POD)活性和抗坏皿酸(AsA)、还原型谷胱甘肽(GSH)含量基本呈季节性波动。盛夏(6—8月份)和秋冬(10-4月份)SOD、POD活性明显提高,AsA、GSH积累显著;1a中渗滤液灌溉组各生理生化指标均较对照组变化辐度大,但两组间差异基本不显著;表明有无渗滤液灌溉下,夹竹桃生理生态反应主要受气候的季节性变化调控,渗滤液灌溉处理不会显著加大对夹竹桃胁迫。  相似文献   

14.

Aims

Soil respiration in forest plantations can be greatly affected by management practices such as irrigation. In northwest China, soil water is usually a limiting factor for the development of forest plantations. This study aims to examine the effects of irrigation intensity on soil respiration from three poplar clone plantations in this arid area.

Methods

The experiment included three poplar clones subjected to three irrigation intensities (without, low and high). Soil respiration was measured using a Li-6400-09 chamber during the growing season in 2007.

Results

Mean soil respiration rates were 2.92, 4.74 and 3.49 μmol m?2 s?1 for control, low and high irrigation treatments, respectively. Soil respiration decreased once soil water content was below a lower (14.8 %) or above an upper (26.2 %) threshold. When soil water content ranged from 14.8 % to 26.2 %, soil respiration increased and correlated with soil temperature. Fine root also played a role in the significant differences in soil CO2 efflux among the three treatments. Furthermore, the three poplar hybrid clones responded differently to irrigation regarding fine root production and soil CO2 efflux.

Conclusions

Irrigation intensity had a strong impact on soil respiration of the three poplar clone plantations, which was mainly because fine root biomass and microbial activities were greatly influenced by soil water conditions. Our results suggest that irrigation management is a main factor controlling soil carbon dynamics in forest plantation in arid regions.  相似文献   

15.
The application of a specific species of willow—Salix amygdalina L., marked by high transpiration ability—is a cheap and effective method of landfill leachate disposal. A 2-year study examined the effectiveness of leachate evapotranspiration from soil–plant systems with willow species S. amygdalina L. Evapotranspiration from soil–plant systems planted with willow was from 1.28 up to 5.12 times higher than evaporation from soil surface barren of vegetation. This proves the usefulness of soil–plant systems with willow in landfill leachate treatment through vaporization. Evapotranspiration efficiency, as opposed to total amount of water added into the lysimeter, was not strong enough to vaporize all input of the landfill leachate in the lysimeters. This may indicate that the ground water requires isolation when soil systems remain under landfill leachate irrigation. Linear dependence between willow biomass growth and transpiration was observed to be significant (p < 0.05). Additionally, the research showed that the application of sewage sludge into the soil caused an increase in vaporization efficiency.  相似文献   

16.
Abstract

In the present study, the effectiveness of water hyacinth and water lettuce was tested for the phytoremediation of landfill leachate for the period of 15?days. Fifteen plastic containers were used in experimental setup where aquatic plants were fitted as a floating bed with the help of thermo-pole sheet. It was observed that both plants significantly (p?<?0.05/p?<?0.01/p?<?0.001) reduce the physicochemical parameters pH, TDS, BOD, COD and heavy metals like Zn, Pb, Fe, Cu and Ni from landfill leachate. Maximum reduction in these parameters was obtained at 50% and 75% landfill leachate treatment and their removal rate gradually increased from day 3 to day 15 of the experiment. The maximum removal rate for heavy metals such as for Zn (80–90%), Fe (83–87%) and Pb (76–84%) was attained by Eichhornia crassipes and Pistia stratiotes. Value of bioconcentration and translocation factor was less than 1 which indicates the low transport of heavy metals from roots to the above-ground parts of the plants. Both these plants accumulate heavy metals inside their body without showing much reduction in growth and showing tolerance to all the present metals. Therefore, results obtained from the study suggest that these aquatic plants are suitable candidate for the removal of pollution load from landfill leachate.  相似文献   

17.
The diversity and structure of the archaeal community in the effluent leachate from a full-scale recirculating landfill was characterized by direct 16S rRNA gene (16S rDNA) retrieval. Total-community DNA was extracted from the microbial assemblages in the landfill leachate, and archaeal 16S rDNAs were amplified with a universally conserved primer and an Archaea-specific primer. The amplification product was then used to construct a 16S rDNA clone library, and 70 randomly selected archaeal clones in the library were grouped by restriction fragment length polymorphism (RFLP) analysis. Sequencing and phylogenetic analysis of representatives from each unique RFLP type showed that the archaeal library was dominated by methanogen-like rDNAs. Represented in the kingdom of Euryarchaeota were phylotypes highly similar to the methanogenic genera Methanoculleus, Methanosarcina, Methanocorpusculum, Methanospirillum and Methanogenium, where the clone distribution was 48, 11, 3, 1 and 1, respectively. No sequences related to known Methanosaeta spp. were retrieved. Four rDNA clones were not affiliated with the known methanogenic Archaea, but instead, they were clustered with the uncultured archaeal sequences recently recovered from anaerobic habitats. Two chimeric sequences were identified among the clones analyzed.  相似文献   

18.
Abstract

Landfilling has been widely used for solid waste disposal; however, the generation of leachate can pose a major threat to the surrounding environment in the form of soil salinity. Two native plants of North America Puccinellia nuttalliana (alkaligrass) and Typha latifolia (cattail) were selected in this study to investigate bioaccumulation of sodium (Na+) and chloride (Cl?) under controlled greenhouse conditions. The treatments include irrigation of the plants using fertilizer (F), landfill leachate (LL), and tap water (control, C). Plants cultivated after one season (12?weeks) were harvested by separating aboveground tissues and roots, and soil from each treatment was collected for analysis. The results show that alkaligrass irrigated with LL had 2.13% more biomass yield than control, but 17.63% less than that with F. However, cattail yielded 19.70% more biomass with the irrigation of LL than C and 3.04% less compared to F. Alkaligrass and cattail accumulated 6.85 and 7.00?g Na+/Kg biomass with the irrigation of LL, respectively. Alkaligrass and cattail irrigated with LL accumulated 120.14% and 94.47% more Cl? than C. When alkaligrass and cattail were irrigated with LL, the electrical conductivity of soil was reduced by 71.70% and 45.36%, respectively. This study demonstrated that using North American native halophytes could be a cost-effective and promising approach for phytoremediation of landfill leachate.  相似文献   

19.
垃圾填埋场渗滤液尾水灌溉下百慕大草抗氧化系统的反应   总被引:4,自引:0,他引:4  
通过盆栽试验,研究了渗滤液尾水灌溉下百慕大草的膜脂过氧化及酶促、非酶促抗氧化系统的反应.结果表明,低稀释比的渗滤液尾水(<25%)灌溉下,随着稀释比增大,百慕大草叶绿素a/b提高,丙二醛(MDA)、H2O2含量及膜透性降低,膜脂过氧化水平较轻;但中、高稀释比(>25%)下,随稀释比的增大则显示出一定的负效应,表现为叶绿素a/b降低,MDA、H2O2含量及膜透性提高,从而导致膜脂过氧化水平提高.非酶抗氧化剂抗坏血酸(AsA)、还原型谷胱甘肽(GSH)、类胡萝卜素(Car)含量的变化趋势相同,即低稀释比下含量升高,中高稀释比胁迫下明显降低.抗氧化酶中,超氧化物岐化酶(SOD)和过氧化物酶(POD)的活性变化同抗氧化剂变化趋势相似,但POD对胁迫的反应更敏感;而过氧化氢酶(CAT)活性变化趋势则先减弱后增强;MDA含量和抗氧化剂含量、抗氧化酶SOD、POD活性间的显著负相关,表明3种抗氧化剂和SOD、POD在防止百慕大草膜脂过氧化上可能起到更重要的作用.  相似文献   

20.
杉木幼苗生物量分配格局对氮添加的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
大气氮(N)沉降的急剧增加可能会对植物碳(C)固定和分配产生深远影响。然而, N添加如何影响碳水化合物在植物不同器官之间的分配动态并不十分清楚。该研究利用杉木(Cunninghamia lanceolata)幼苗盆栽试验, 设置N添加处理, 测定分析幼苗非结构性碳水化合物(NSC)与结构性碳水化合物(SC)含量和库的变化, 以探讨N添加后杉木幼苗不同器官中NSC与SC的分配模式及调控机制。结果发现: (1) N添加虽然显著增加叶片净光合速率(143.96%), 但却降低了叶片中的NSC含量和库; N添加导致一年生茎的淀粉含量显著下降, 而可溶性糖含量的变化不显著, 当年生茎的NSC组分含量和库没有显著变化; 幼苗根系的NSC及其组分含量和库也有降低的趋势。(2) N添加后地下与地上生物量的比值降低22.09%, 其中SC库比值降低31.07%, 而NSC库比值无显著变化。(3) N添加使地上部分的磷(P)库显著增加, 使地下与地上P库的比值降低了57.02%, 而N库的比值无显著变化。(4) N添加后土壤pH由(4.94 ± 0.09)显著降低到(4.02 ± 0.04), 铵态N和硝态N含量分别增加7.17倍和11.55倍, 土壤有效P含量也增加了42.86%, 而土壤中脲酶(62.75%)和酸性磷酸酶(56.52%)的活性显著降低。研究表明, 低养分条件下杉木幼苗主要通过构建根系结构增加养分吸收, 而非通过向根系分配更多的NSC, 而N添加驱动的养分缓解使更多的碳水化合物分配到地上器官, 导致地上部分SC积累。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号