首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The model polynucleotide poly(dG-dC).poly(dG-dC) (polyGC) was titrated with a strong acid (HCl) in aqueous unbuffered solutions and in the quaternary w/o microemulsion CTAB/n-pentanol/n-hexane/water. The titrations, performed at several concentrations of NaCl in the range 0.005 to 0.600 M, were followed by recording the modifications of the electronic absorption and of the CD spectra (210< or = lambda < or =350 nm) upon addition of the acid. In solution, the polynucleotide undergoes two acid-induced transitions, neither of which corresponds to denaturation of the duplex to single coil. The first transition leads to the Hoogsteen type synG.C+ duplex, while the second leads to the C+.C duplex. The initial B-form of polyGC was recovered by back-titration with NaOH. The apparent pKa values were obtained for both steps of the titration, at all salt concentrations. A reasonably linear dependence of pKa1 and pKa2 from p[NaCl] was obtained, with both pKa values decreasing with increasing ionic strength. In microemulsion, at salt concentrations < or = 0.300 M, an acid-induced transition was observed, matching the first conformational transition recorded also in solution. However, further addition of acid led to denaturation of the protonated duplex. Renaturation of polyGC was obtained by back-titration with NaOH. At salt concentrations > 0.300 M, polyGC is present as a mixture of B-form and psi- aggregates, that slowly separate from the microemulsion. The acid titration induces at first a conformational transition similar to the one observed at low salt or in solution, then denaturation occurs, which is however preceded by the appearance of a transient conformation, that has been tentatively classified as a left-handed Z double helix.  相似文献   

2.
A T-jump investigation of the binding of Cyan40 [3-methyl-2-(1,2,6-trimethyl-4(1H)pyridinylidenmethyl)-benzothiazolium ion] and CCyan2 [3-methyl-2-[2-methyl-3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-benzothiazolium ion] with poly(dA-dT) x poly(dA-dT) and poly(dG-dC) x poly(dG-dC) is performed at I = 0.1M (NaCl), 25 degrees C and pH 7. Two kinetic effects are observed for both systems. The binding process is discussed in terms of the sequence D + P <==> P,D <==> PD(I) <==> PD(II), which leads first to fast formation of a precursor complex P,D and then to a partially intercalated complex PD(I) which converts to the fully intercalate complex PD(II). Concerning CCyan2 the rate parameters depend on the polymer nature and their analysis shows that in the case of poly(dG-dC) x poly(dG-dC) the most stable bound form is the fully intercalated complex PD(II), whereas in the case of poly(dA-dT) x poly(dA-dT) the partially intercalated complex PD(I) is the most stable species. Concerning Cyan40, the rate parameters remain unchanged on going from A-T to G-C indicating that this dye is unselective.  相似文献   

3.
The thermal denaturation of the synthetic high molecular weight double stranded polynucleotide poly(dA-dT) x poly(dA-dT) has been studied in aqueous buffered solution (Tris 1.0 mM; pH 7.8+/-0.2) in the presence of increasing concentrations of either Ni(2+) (borderline cation) or Cd(2+) (soft cation) at four different constant ionic strength values (NaCl), making use of UV and circular dichroism (CD) spectroscopies. The experimental results show that the B-type double helix of the polymer is stabilized against thermal denaturation in the presence of both cations at low concentrations, relative to the systems where only NaCl is present, in the same conditions of ionic strength and pH. The effect is more pronounced for Ni(2+) than for Cd(2+). At higher concentrations, both cations start to destabilize the double helix, with Cd cations inducing larger variations of T(m). In many cases, when denaturation starts, interstrand cross-linking occurs with formation of aggregates that precipitate.  相似文献   

4.
The conformational changes induced by the binding of cis-diamminedichloroplatinum(II) to poly(dG-dC).poly(dG-dC) have been studied by reaction with specific antibodies, by circular dichroism and 31P nuclear magnetic resonance. Polyclonal and monoclonal antibodies to Z-DNA bind to platinated poly(dG-dC).poly(dG-dC) at low and high ionic strength. Antibodies elicited in rabbits immunized with the platinated polynucleotide bind to double stranded polynucleotides known to adopt the Z-conformation. At low and high ionic strength the circular dichroism spectrum of platinated poly(dG-dC).poly(dG- dC) does not resemble that of poly(dG-dC).poly(dG-dC) (B or Z conformation). At low ionic strength, the characteristic 31P nuclear magnetic resonance spectrum of the Z-form is not detected. It appears only at high ionic strength, as a component of a more complex spectrum.  相似文献   

5.
Salt-induced conformational changes of poly(dA-dT).   总被引:13,自引:11,他引:2       下载免费PDF全文
Conformational changes of poly(dA-dT) . poly(dA-dT) induced by increasing ionic strength were studied using CD spectroscopy. It was found that a pronounced noncooperative inversion of the long-wavelength part of the CD spectrum of poly(dA-dT) . poly(dA-dT) occurred at high concentrations of CsF in solution. It was suggested that a great difference between the geometries of the purine and pyrimidine residues in the helix was characteristic of the structure of poly(dA-dT) . poly(dA-dT) in concentrated CsF solutions.  相似文献   

6.
T J Thomas  R P Messner 《Biochimie》1988,70(2):221-226
The effects of Ru(NH3)(3+)6 on the conformation of poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC) were studied by circular dichroism (CD) spectroscopy. Ru(NH3)(3+)6 at very low concentrations provokes the Z-DNA conformation in both polynucleotides. In the presence of 50 mM NaCl, the concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) is 4 microM compared to 5 microM for Co(NH3)(3+)6. The half-lives of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of 10 microM Ru(NH3)(3+)6 and Co(NHG3)(3+)6 are at 23 and 30 min, respectively. The concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-dC).poly(dG-dC) is 50 microM. These results demonstrate that Ru(NH3)(3+)6 is a highly efficient trivalent cation for the induction of B to Z transition in poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC). In contrast, Ru(NH3)(3+)6 has no significant effect on the conformation of calf thymus DNA, poly(dA-dT).poly(dA-dT) and poly(dA-dC).poly(dG-dT).  相似文献   

7.
The article reviews data indicating that poly(dA-dT).poly(dA-dT) is able of adopting three distinct double helical structures in solution, of which only the A form conforms to classical notions. The other two structures have dinucleotides as double helical repeats. At low salt concentrations poly(dA-dT).poly(dA-dT) adopts a B-type alternating conformation which is exceptionally variable. Its architecture can gradually move in the limits demarcated by the CD spectra with inverted long wavelength CD bands and the 31P NMR spectra with a very low and a 0.6 ppm separation of two resonances. Contrary to Z-DNA, the 31P NMR spectrum of the limiting alternating B conformation of poly(dA-dT).poly(dA-dT) is characterized by an upfield shift of one resonance. We attribute the exceptional conformational flexibility of the alternating B conformation to the unequal tendency of bases in the dA-dT and dT-dA steps to stack. However, by assuming the limiting alternating B conformation, the variability of the synthetic DNA is not exhausted. Specific agents make it isomerize into another conformation by a fast, two-state mechanism, which is reflected by a further deepening of the negative long wavelength CD band and a downfield shift of the 31P NMR resonance of poly(dA-dT).poly(dA-dT) that was constant in the course of the gradual alterations of the alternating B conformation. These changes are, however, qualitatively different from the way poly(dG-dC).poly(dG-dC) behaves in the course of the B-Z isomerization. Poly(dG-dC).poly(dG-dC) displays purine-pyrimidine (dGpdC) resonance in the characteristic downfield position, while the downfield resonance of poly(dA-dT).poly(dA-dT) belongs to the pyrimidine-purine (dTpdA) phosphodiester linkages. Consequently, phosphodiester linkages in the purine-pyrimidine steps play a similar role in the appearance of the Z form to the pyrimidine-purine phosphodiesters in the course of the isomerization of poly(dA-dT).poly(dA-dT). This excludes that the high-salt structures of poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC) are members of the same conformational family. We call the high-salt conformation of poly(dA-dT).poly(dA-dT) X-DNA. It furthermore follows from the review that synthetic molecules of DNA with alternating purine-pyrimidine sequences of bases can adopt either the Z form or the X form, or even both, depending on the environmental conditions. This introduces a new dimension into the DNA double helix conformational variability. The possible biological relevance of the X form is suggested by experiments with linear molecules of natural DNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The interaction of cis-dichlorodiammine platinum(II) with poly(dG-dC)·poly(dG-dC) and poly(dA-dT) ·poly(dA-dT) was studied by circular dichroism. Significant conformational changes were induced in both alternating polymers: in the case of poly(dG-dC) ·poly(dG-dC) the spectra were not conclusive in terms of a well defined conformation, even if the presence of left-handed helices could be suggested. For poly(dA-dT)·poly(dA-dT) the data were interpreted in terms of a dimer-helix → single hairpin helix transition induced by the metal. The results obtained are discussed with reference to the antitumor activity of the drug.  相似文献   

9.
Using CD measurements we show that the interaction of netropsin to poly(dA-dT).poly(dA-dT) involves two binding modes at low ionic strength. The first and second binding modes are distinguished by a defined shift of the CD maximum and the presence of characteristic isodichroic points in the long wavelength range from 313 nm to 325 nm. The first binding mode is independent of ionic strength and is primarily determined by specific interaction to dA.dT base pairs. Employing a netropsin derivative and different salt conditions it is demonstrated that ionic contacts are essential for the second binding mode. Other alternating duplexes and natural DNA also exhibit more or less a second step in the interaction with netropsin observable at high ratio of ligand per nucleotide. The second binding mode is absent for poly(dA).poly(dT). The presence of a two-step binding mechanism is also demonstrated in the complex formation of poly(dA-dT).poly(dA-dT) with the distamycin analog consisting of pentamethylpyrrolecarboxamide. While the binding mode I of netropsin is identical with its localization in the minor groove, for binding mode II we consider two alternative interpretations.  相似文献   

10.
We have studied the conformation of poly (dG-dC) . poly (dG-dC) in three conditions; i) associated with histones octamers, ii) alone at ionic strength 0.1, and ii) in solutions of over 2.5 M NaCl. The circular dichroism spectrum for the polymer bound to histones differs from that for the free polymer; the difference spectrum is similar to those for native and poly (dA-dT) . poly (dA-dT) core particles. Under the first two conditions, the 31P NMR spectrum is symmetric with line widths of 91 and 41 Hz, respectively, at 109.3 MHz. In high salt, two 31P peaks of equal intensity are observed, confirming recent results of Patel et al. (1) and indicating an alternating geometry for the phosphodiester backbone. Using this highly homogeneous DNA, we confirm that the Pohl-Jovin transition (2) is an intramolecular rearrangement, not requiring complete strand separation.  相似文献   

11.
The interaction between the fluorescent dye YO (oxazole yellow) and the alternating polynucleotides [poly(dA-dT)]2[the duplex of alternating poly(dA-dT)]and [poly(dG-dC)]2[the duplex of alternating poly(dG-dC)] has been studied with optical spectroscopic techniques including absorbance, flow linear dichroism, CD, and fluorescence measurements. The principal features of the spectra are very similar for the two polynucleotide solutions, showing that YO binds quite similarly to AT and GC base pairs. From a strongly negative reduced linear dichroism (LDr) in the dye absorption band, an induced negative CD, and transfer of energy from the bases to bound YO, we conclude that at low mixing ratios YO is intercalated in both [poly(dA-dT)]2 and [poly(dG-dC)]2. At higher mixing ratios an external binding mode starts to contribute, evidenced from the appearance of an exciton CD. The conclusion that YO binds in a similar way to AT and GC base pairs should be valid also for the dimer YOYO since its YO units have been found to bind to double-stranded (dsDNA) in the same way as the YO monomer. The fluorescence properties of YO and YOYO complexed with DNA or the polynucleotides have been characterized by studying the dependence of fluorescence intensity on temperature, mixing ratio, and ionic strength. The fluorescence intensity and fluorescence lifetime of YO-DNA decrease strongly with increasing mixing ratio, whereas the fluorescence intensity of YOYO-DNA shows a weaker dependence, indicating that the quantum yield depends on the distance between the YO chromophores on the DNA chain. Further, the fluorescence intensity of YO depends on the base sequence; the quantum yield and fluorescence lifetime for YO complexed with [poly(dG-dC)]2 are about twice as large as for YO complexed with [poly(dA-dT)]2. Measurements of excitation spectra at different mixing ratios and different emission wavelengths indicate that the fluorescence of the externally bound chromophores is negligible compared to the intercalated ones. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
PolyGC was titrated with a strong base in the presence of increasing concentrations of NaCl (from 0.00 to 0.60M) either in water solution or with the polynucleotide solubilized in the aqueous core of reverse micelles, i.e., the cationic quaternary water-in-oil microemulsion CTAB/n-hexane/n-pentanol/water. The results for matched samples in the two media were compared. CD and UV spectroscopies and, for the solution experiments, pH measurements were used to follow the course of deprotonation. In both media the primary effect of the addition of base was denaturation of the polynucleotide, reversible by back-titration with a strong acid. In solution, the apparent pK(a) of the transition decreases with increasing the salt concentration and a roughly linear dependence of pK(a) on p[NaCl] has been found. A parallel monotonic decay with ionic strength has been found in solution for R(OH), defined as the number of hydroxyl ions required per monomeric unit of polyGC to reach half-transition. By contrast, in microemulsion, R(OH) has been found to be independent of the NaCl concentration (and 10 to 50 times lower than in solution). This result is proposed as an indirect evidence of the independence of pK(a) on the salt concentration in microemulsion, where the pH cannot be measured. A sort of buffering effect of the positive charges on the micellar wall and of their counter-ions on the ionic strength could well explain this discrepancy of behavior in the two media.  相似文献   

13.
Nový J  Urbanová M 《Biopolymers》2007,85(4):349-358
The interactions of two different porphyrins, without axial ligands-5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin-Cu(II) tetrachloride (Cu(II)TMPyP) and with bulky meso substituents-5,10,15,20-tetrakis(N,N,N-trimethylanilinium-4-yl)porphyrin tetrachloride (TMAP), with (dG-dC)10 and (dA-dT)10 were studied by combination of vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectroscopy at different [oligonucleotide]/[porphyrin] ratios, where [oligonucleotide] and [porphyrin] are the concentrations of oligonucleotide per base-pair and porphyrin, respectively. The combination of VCD and ECD spectroscopy enables us to identify the types of interactions, and to specify the sites of interactions: The intercalative binding mode of Cu(II)TMPyP with (dG-dC)(10), which has been well described, was characterized by a new VCD "marker" and it was shown that the interaction of Cu(II)TMPyP with (dA-dT)10 via external binding to the phosphate backbone and major groove binding caused transition from the B to the non-B conformer. TMAP interacted with the major groove of (dG-dC)10, was semi-intercalated into (dA-dT)10, and caused significant variation in the structure of both oligonucleotides at the higher concentration of porphyrin. The spectroscopic techniques used in this study revealed that porphyrin binding with AT sequences caused substantial variation of the DNA structure. It was shown that VCD spectroscopy is an effective tool for the conformational studies of nucleic acid-porphyrin complexes in solution.  相似文献   

14.
The solution properties of the B and Z forms of poly(dG-dC).poly(dG-dC) have been measured by static and dynamic laser light scattering. The radius of gyration, persistence length, translational and segmental diffusion coefficients, and the Rouse-Zimm parameters have been evaluated. The persistence length of the Z form determined at 3 M NaCl is about 200 nm compared to 84 and 61 nm respectively for the B forms of poly(dG-dC).poly(dG-dC), and calf thymus DNA, both determined at 0.1 M NaCl. The data on persistence length, diffusion coefficients and the Rouse-Zimm parameters indicate a large increase in the chain stiffness of Z DNA compared to the B form. These results are opposite to the ionic strength effects on random sequence native DNAs, for which the flexibility increases with ionic strength and levels off at about 1 M NaCl.  相似文献   

15.
Interactions of cationic porphyrins bearing five-membered rings at the meso position, meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (MPzP; M is H2, CuII or ZnII), with synthetic polynucleotides poly(dG-dC)2 and poly(dA-dT)2 have been characterized by viscometric, visible absorption, circular dichroisim and magnetic circular dichroism spectroscopic and melting temperature measurements. Both H2PzP and CuPzP are intercalated into poly(dG-dC)2 and are outside-bound to the major groove of poly(dA-dT)2, while ZnPzP is outside-bound to the minor groove of poly(dA-dT)2 and surprisingly is intercalated into poly(dG-dC)2. The binding constants of the porphyrin and poly(dG-dC)2 and poly(dA-dT)2 are on the order of 106 M−1 and are comparable to those of other cationic porphyrins so far reported. The process of the binding of the porphyrin to poly(dG-dC)2 and poly(dA-dT)2 is exothermic and enthalpically driven for H2PzP, whereas it is endothermic and entropically driven for CuPzP and ZnPzP. These results have revealed that the kind of the central metal ion of metalloporphyrins influences the characteristics of the binding of the porphyrins to DNA.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

16.
It was shown by circular dichroism that the B-Z transition of poly(dG-dC).poly(dG-dC) in high NaCl concentrations occurred more rapidly in the presence of formaldehyde and Tris. The product of formaldehyde and glycine interaction induces changes in the poly(dG-dC).poly(dG-dC) CD spectral characteristics of a 'B-like' conformation. It is supposed that the B-Z transition occurs without large-scale hydrogen bond breakage.  相似文献   

17.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7471-7479
The interaction of actinomycin D and actinomine with poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) under B- and Z-form conditions has been investigated by optical and phase partition techniques. Circular dichroism data show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation. Actinomycin D binds in a cooperative manner to poly(dG-dC).poly(dG-dC) under both B-form and Z-form conditions. Analysis of the circular dichroism data shows that 5 +/- 1 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to a right-handed conformation for each bound actinomycin D. When the left-handed form of poly(dG-dC).poly(dG-dC) is stabilized by the presence of 40 microM [Co(NH3)6]Cl3, 25 +/- 5 base pairs switch from a left-handed to a right-handed conformation for each bound actinomycin D. Actinomine binds cooperatively to left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and to left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. Actinomine does not bind to left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl at concentrations as high as 100 microM. Each bound actinomine converts 11 +/- 3 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and 7 +/- 2 base pairs of left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. The binding isotherm data also indicate that the binding site has a right-handed conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
P A Mirau  R W Behling  D R Kearns 《Biochemistry》1985,24(22):6200-6211
Proton NMR relaxation measurements are used to compare the molecular dynamics of 60 base pair duplexes of B- and Z-form poly(dG-dC).poly(dG-dC). The relaxation rates of the exchangeable guanine imino protons (Gim) in H2O and in 90% D2O show that below 20 degrees C spin-lattice relaxation is exclusively from proton-proton magnetic dipolar interactions while proton-nitrogen interactions contribute about 30% to the spin-spin relaxation. The observation that the spin-lattice relaxation is nonexponential and that the initial spin-lattice relaxation rate of the Gim, G-H8 and C-H6 protons depends on the selectivity of the exciting pulse shows that spin-diffusion dominates the spin-lattice relaxation. The relaxation rates of the Gim, C-H5, and C-H6 in B- and Z-form poly(dG-dC).poly(dG-dC) cannot be explained by assuming the DNA behaves as a rigid rod. The data can be fit by assuming large-amplitude out of plane motions (+/- 30-40 degrees, tau = 1-100 ns) and fast, large-amplitude local torsional motions (+/- 25-90 degrees, tau = 0.1-1.5 ns) in addition to collective torsional motions. The results for the B and Z forms show that the rapid internal motions are similar and large in both conformations although backbone motions are slightly slower, or of lower amplitude, in Z DNA. At high temperatures (greater than 60 degrees C), imino proton exchange with solvent dominates the spin-lattice relaxation of B-form poly(dG-dC).poly(dG-dC), but in the Z form no exchange contribution (less than 2 s-1) is observed at temperatures as high as 85 degrees C. Conformational fluctuations that expose the imino protons to the solvent are strikingly different in the B and Z forms. The results obtained here are compared with those previously reported for poly(dA-dT).poly(dA-dT).  相似文献   

19.
We have synthesized and investigated the DNA binding properties of three fluorinated acridine derivatives—a monomer (I), a short dimer (II) and a long dimer (III). Only III has a sufficiently long chain bridging the two acridine nuclei to permit binding by bisintercalation. Analysis of the equilibrium and kinetic binding properties of these compounds to poly(dA-dT) demonstrates that they behave very similarly to their unfluorinated parent compounds. Helix extension, as determined by viscosity measurements, shows that both compounds I and II bind by monointercalation while III binds by bisintercalation. These results are confirmed by 19F-nmr analysis, which indicates, in particular, that the two chromophores of III share the same molecular environment as that of I in the presence of either calf thymus DNA or poly(dA-dT). Negative nuclear Overhauser effects in the presence of DNA indicate tight binding such that the motion of the ligands is governed by the polynucleotide dynamics. Optical titrations establish that in 4M NaCl, both I and III bind to calf thymus DNA, but no binding was observed with poly(dG-dC). This result is in contrast to those for dimers of ethidium, which show substantial binding to polynucleotides under high salt conditions. Nuclear magnetic resonance experiments, however, carried out at considerably higher concentrations, show that compound I does indeed bind to poly(dG-dC) under these high salt conditions, albeit weakly, and leads to a conversion of the polynucleotide from a left-handed to a right-handed conformation.  相似文献   

20.
F M Chen 《Biochemistry》1984,23(25):6159-6165
Comparative studies on the salt titration and the related kinetics for poly(dG-dC) X poly(dG-dC) in pH 7.0 and 3.8 solutions clearly suggest that base protonation facilitates the kinetics of B-Z interconversion although the midpoint for such a transition in acidic solution (2.0-2.1 M NaCl) is only slightly lower than that of neutral pH. The rates for the salt-induced B to Z and the reverse actinomycin D induced Z to B transitions in pH 3.8 solutions are at least 1 order of magnitude faster than the corresponding pH 7.0 counterparts. The lowering of the B-Z transition barrier is most likely the consequence of duplex destabilization due to protonation as indicated by a striking decrease (approximately 40 degrees C) in melting temperature upon H+ binding in low salt. The thermal denaturation curve for poly(dG-dC) X poly(dG-dC) in a pH 3.8, 2.6 M NaCl solution indicates an extremely cooperative melting at 60.5 degrees C for protonated Z DNA, which is immediately followed by aggregate formation and subsequent hydrolysis to nucleotides at higher temperatures. The corresponding protonated B-form poly(dG-dC) X poly(dG-dC) in 1 M NaCl solution exhibits a melting temperature about 15 degrees C higher, suggesting further duplex destabilization upon Z formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号