首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus sphaericus JG-A12 is a natural isolate recovered from a uranium mining waste pile near the town of Johanngeorgenstadt in Saxony, Germany. The cells of this strain are enveloped by a highly ordered crystalline proteinaceous surface layer (S-layer) possessing an ability to bind uranium and other heavy metals. Purified and recrystallized S-layer proteins were shown to be phosphorylated by phosphoprotein-specific staining, inductive coupled plasma mass spectrometry analysis, and a colorimetric method. We used extended X-ray absorption fine-structure (EXAFS) spectroscopy to determine the structural parameters of the uranium complexes formed by purified and recrystallized S-layer sheets of B. sphaericus JG-A12. In addition, we investigated the complexation of uranium by the vegetative bacterial cells. The EXAFS analysis demonstrated that in all samples studied, the U(VI) is coordinated to carboxyl groups in a bidentate fashion with an average distance between the U atom and the C atom of 2.88 +/- 0.02 A and to phosphate groups in a monodentate fashion with an average distance between the U atom and the P atom of 3.62 +/- 0.02 A. Transmission electron microscopy showed that the uranium accumulated by the cells of this strain is located in dense deposits at the cell surface.  相似文献   

2.
Uranium mining waste piles, heavily polluted with radionuclides and other toxic metals, are a reservoir for bacteria that have evolved special strategies to survive in these extreme environments. Understanding the mechanisms of bacterial adaptation may enable the development of novel bioremediation strategies and other technological applications. Cell isolates of Bacillus sphaericus JG-A12 from a uranium mining waste pile in Germany are able to accumulate high amounts of toxic metals such as U, Cu, Pb, Al, and Cd as well as precious metals. Some of these metals, i.e. U, Cu, Pd(II), Pt(II) and Au(III), are also bound by the highly orderd paracrystalline proteinaceous surface layer (S-layer) that envelopes the cells of this strain. These special capabilities of the cells and the S-layer proteins of B. sphaericus JG-A12 are highly interesting for the clean-up of uranium contaminated waste waters, for the recovery of precious metals from electronic wastes, and for the production of metal nanoclusters. The fabricated nanoparticles are promising for the development of novel catalysts. This work reviews the molecular biology of the S-layer of the strain JG-A12 and the S-layer dependent interactions of the bacterial cells with metals. It presents future perspectives for their application in bioremediation and nanotechnology.  相似文献   

3.
The functional S-layer protein gene slfB of the uranium mining waste pile isolate Bacillus sphaericus JG-A12 was cloned as a polymerase chain reaction product into the expression vector pET Lic/Ek 30 and heterologously expressed in Escherichia coli Bl21(DE3). The addition of His tags to the N and C termini enabled the purification of the recombinant protein by Ni-chelating chromatography. The Ni binding capacity of the His-tagged recombinant S-layer protein was compared with that of the wild-type S layer. The inductively coupled plasma mass spectrometry analyses demonstrate a significantly enhanced Ni binding capability of the recombinant protein. In addition, the self-assembling properties of the purified modified S-layer proteins were studied by light microscopy and scanning electron microscopy. Whereas the wild-type S-layer proteins re-assembled into regular cylindric structures, the recombinant S-layer proteins reassembled into regular sheets that formed globular agglomerating structures. The nanoporous structure of the protein meshwork, together with its enhanced Ni binding capacity, makes the recombinant S-layer attractive as a novel self-assembling biological template for the fabrication of metal nanoclusters and construction of nanomaterials that are of technical interest.  相似文献   

4.
The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1) at 0.25 mM sulfate to 5.0 ± 1.1 μmol of sulfate/mg (dry weight) of SRB · h−1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min−1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min−1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source.  相似文献   

5.
Cells of Sphingomonas sp. strain BSAR-1 constitutively expressed an alkaline phosphatase, which was also secreted in the extracellular medium. A null mutant lacking this alkaline phosphatase activity was isolated by Tn5 random mutagenesis. The corresponding gene, designated phoK, was cloned and overexpressed in Escherichia coli strain BL21(DE3). The resultant E. coli strain EK4 overexpressed cellular activity 55 times higher and secreted extracellular PhoK activity 13 times higher than did BSAR-1. The recombinant strain very rapidly precipitated >90% of input uranium in less than 2 h from alkaline solutions (pH, 9 ± 0.2) containing 0.5 to 5 mM of uranyl carbonate, compared to BSAR-1, which precipitated uranium in >7 h. In both strains BSAR-1 and EK4, precipitated uranium remained cell bound. The EK4 cells exhibited a much higher loading capacity of 3.8 g U/g dry weight in <2 h compared to only 1.5 g U/g dry weight in >7 h in BSAR-1. The data demonstrate the potential utility of genetically engineering PhoK for the bioprecipitation of uranium from alkaline solutions.  相似文献   

6.
Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors.  相似文献   

7.
Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity.  相似文献   

8.
The binding affinities and specificities of six truncated S-layer homology domain (SLH) polypeptides of mosquitocidal Bacillus sphaericus strain C3-41 with the purified cell wall sacculi have been assayed. The results indicated that the SLH polypeptide comprised of amino acids 31 to 210 was responsible for anchoring the S-layer subunits to the rigid cell wall layer via a distinct type of secondary cell wall polymer and that a motif of the recombinant SLH polypeptide comprising amino acids 152 to 210 (rSLH152-210) was essential for the stable binding of the S-layer with the bacterial cell walls. The quantitative assays revealed that the KD (equilibrium dissociation constant) values of rSLH152-210 and rSLH31-210 with purified cell wall sacculi were 1.11 × 10−6 M and 1.40 × 10−6 M, respectively. The qualitative assays demonstrated that the SLH domain of strain C3-41 could bind only to the cell walls or the cells treated with 5 M guanidinium hydrochloride of both toxic and nontoxic B. sphaericus strains but not to those from other bacteria, indicating the species-specific binding of the SLH polypeptide of B. sphaericus with bacterial cell walls.Crystalline bacterial cell surface layers (S-layers) cover the cell surfaces of many bacteria and archaea during all stages of growth and division. S-layers are composed of identical protein or glycoprotein subunits, which can assemble into two-dimensional crystalline arrays and exhibit oblique, square, or hexagonal symmetry (27, 28, 30). S-layers play key roles in the interaction between bacterial cells and environment as protective coats, molecular sieves, ion traps, cell adhesion mediators, and attachment structures (4, 21, 26, 29). Many S-layer proteins possess an N-terminal region with highly conserved amino acid sequences, which is called an S-layer homology (SLH) domain. An SLH domain contains one, two, or three repeating SLH motifs (6, 16). Each SLH motif is composed of about 55 amino acids containing 10 to 15 conserved residues (6, 17). It is suggested that the SLH domain of S-layer proteins is responsible for the binding of the S-layer subunits to the rigid cell wall layer (6, 15, 17, 19, 25), while the middle and C-terminal parts include the domains which are involved in the self-assembly process (27). In the case of Bacillaceae, secondary cell wall polymers (SCWP) are responsible for binding with SLH domains (13, 18, 19), but the SLH domains of some other bacteria have an affinity for peptidoglycan (33).Bacillus sphaericus is a gram-positive soil bacterium that represents a strictly aerobic group of mesophilic endospore-forming bacteria. Due to its specific toxicity to target mosquito larvae and the limited environment impact, some strains of this bacterium have been successfully used worldwide in integrated mosquito control programs. Previous studies revealed that some nontoxic strains of B. sphaericus contained S-layer proteins, and the S-layer proteins of B. sphaericus NCTC 9602, JG-A12, P1, and CCM 2177 have been studied in detail elsewhere (3, 7-9, 12, 22).B. sphaericus C3-41, a highly active strain isolated from a mosquito-breeding site in China in 1987, has different levels of toxicity against Culex spp., Anopheles spp., and Aedes spp. This strain belongs to the flagella serotype H5a5b, like strains 2362 and 1593 (32), and it has been developed as a commercial larvicide (JianBao) for mosquito larva control in China during the last decade (31). The genomic analysis of strain C3-41 revealed that an S-layer protein gene (slpC) (GenBank accession no. EF535606) exists on the chromosomal genome and its sequence is identical to the S-layer protein of B. sphaericus 2362 (1, 10), composed of 3,531 bp encoding a protein of 1,176 amino acids with a molecular size of 125 kDa. Although the binding function of S-layers has been identified in some nontoxic B. sphaericus strains (6, 11), it is not well documented in mosquitocidal B. sphaericus strains, and there are few reports on the binding function of each SLH motif and the binding specificity.In this study, the binding affinities and specificities of each SLH motif of S-layer protein from mosquitocidal B. sphaericus C3-41 alone and in combination with the different cell wall preparations have been investigated, and the species-specific binding of SLH polypeptide with bacterial cell walls has been demonstrated.  相似文献   

9.
The main toxicity mechanism of Lysinibacillus sphaericus, which is used in the control of mosquitoes, is its binary toxin produced during sporulation; additionally the Mtx1, Mtx2 and Mtx 3 toxins are expressed in vegetative cells. Mosquito larvicidal potency of the S-layer protein that is expressed in vegetative cells has been determined. The protein is similar to other S-layer proteins of mosquitocidal L. sphaericus strains. The LC50 values of the S-layer protein of the L. sphaericus OT4b25, OT4b26, and III(3)7 strains against third-instar larvae of Culex quinquefasciatus were 8.7, 24 and 0.68 μg/ml, respectively. To our knowledge this is the first study showing the mosquito larvicidal potency of the S-layer protein from Lysinibacillus sphaericus.  相似文献   

10.
Photosynthetic and respiratory rates of two psychrophilic diatoms   总被引:1,自引:0,他引:1       下载免费PDF全文
The photosynthetic rates in two psychrophilic diatoms, Chaetoceros sp. strain K3-10 and Nitzschia sp. K3-3 for cells grown at 0°C were 8 to 10 microliters O2 evolved per milligram dry weight per hour, and 10-fold higher, about 80 for cells grown at 10°C. The respiration rates followed the same pattern, with a value of around 1 microliter dark uptake per milligram dry weight per hour for both organisms grown at 0°C, and 6 to 10 for cells grown at 10°C. When cells grown at 0°C were immediately shifted to 10°C or cells grown at 10°C were shifted to 0°C, the respiratory rates quickly adapted to values characteristic of cells grown at the shift temperature. On the other hand, the light-saturated rate of O2 evolution showed much less immediate adaptation, especially on the up shift, 0° to 10°C. The chlorophyll a content of 0°C grown cells was about 0.5% of dry weight, in 10°C grown cells 1.3% (strain K3-10) and 2.2% (strain K3-3). In addition to a diminished chlorophyll a content in 0°C grown cells, there seemed proportionally (by absorbance and calculation) less c to a than in 10°C grown cells. The relative fluorescence excitation spectra of 680-nm emission also showed a lower contribution by both chlorophyll c and fucoxanthin in 0°C grown cells of Chaetoceros sp. strain K3-10 as compared to 10°C grown cells. The data at hand suggest that in psychrophilic diatoms continuously growing at 0°C there may be problems associated with synthesis of an effective accessory pigment system, and as a working hypothesis it is suggested this is related to restriction of synthesis of one or several accessory pigment proteins.  相似文献   

11.
Geobacter lovleyi strain SZ reduces hexavalent uranium, U(VI), to U(IV) and is the first member of the metal-reducing Geobacter group capable of using tetrachloroethene (PCE) as a growth-supporting electron acceptor. Direct and nested PCR with specific 16S rRNA gene-targeted primer pairs distinguished strain SZ from other known chlorinated ethene-dechlorinating bacteria and closely related Geobacter isolates, including its closest cultured relative, G. thiogenes. Detection limits for direct and nested PCR were approximately 1 × 106 and 1 × 104 16S rRNA gene copies per μl of template DNA, respectively. A quantitative real-time PCR (qPCR) approach increased the sensitivity to as few as 30 16S rRNA gene copies per μl of template DNA but was less specific. Melting curve analysis and comparison of the shapes of amplification plots identified false-positive signals and distinguished strain SZ from G. thiogenes when analyzed separately. These indicators were less reliable when target (strain SZ) DNA and nontarget (G. thiogenes) DNA with high sequence similarity were mixed, indicating that the development of qPCR protocols should not only evaluate specificity but also explore the effects of nontarget DNA on the accuracy of quantification. Application of specific tools detected strain SZ-like amplicons in PCE-dechlorinating consortia, including the bioaugmentation consortium KB-1, and two chlorinated ethene-impacted groundwater samples. Strain SZ-like amplicons were also detected in 13 of 22 groundwater samples following biostimulation at the uranium- and chlorinated solvent-contaminated Integrated Field-Scale Subsurface Research Challenge (IFC) site in Oak Ridge, TN. The numbers of strain SZ-like cells increased from below detection to 2.3 × 107 ± 0.1 × 107 per liter groundwater, suggesting that strain SZ-like organisms contribute to contaminant transformation. The G. lovleyi strain SZ-specific tools will be useful for monitoring bioremediation efforts at uranium- and/or chlorinated solvent-impacted sites such as the Oak Ridge IFC site.  相似文献   

12.
Sll1951 is the surface layer (S-layer) protein of the cyanobacterium Synechocystis sp. strain PCC 6803. This large, hemolysin-like protein was found in the supernatant of a strain that was deficient in S-layer attachment. An sll1951 deletion mutation was introduced into Synechocystis and was easily segregated to homozygosity under laboratory conditions. By thin-section and negative-stain transmission electron microscopy, a ∼30-nm-wide S-layer lattice covering the cell surface was readily visible in wild-type cells but was absent in the Δsll1951 strain. Instead, the Δsll1951 strain displayed a smooth lipopolysaccharide surface as its most peripheral layer. In the presence of chaotropic agents, the wild type released a large (>150-kDa) protein into the medium that was identified as Sll1951 by mass spectrometry of trypsin fragments; this protein was missing in the Δsll1951 strain. In addition, Sll1951 was prominent in crude extracts of the wild type, indicating that it is an abundant protein. The carotenoid composition of the cell wall fraction of the Δsll1951 strain was similar to that of the wild type, suggesting that the S-layer does not contribute to carotenoid binding. Although the photoautotrophic growth rate of the Δsll1951 strain was similar to that of the wild-type strain, the viability of the Δsll1951 strain was reduced upon exposure to lysozyme treatment and hypo-osmotic stress, indicating a contribution of the S-layer to the integrity of the Synechocystis cell wall. This work identifies the S-layer protein in Synechocystis and shows that, at least under laboratory conditions, this very abundant, large protein has a supportive but not a critical role in the function of the cyanobacterium.  相似文献   

13.
Vibrio mimicus (V.mimicus) is a causative agent of ascites disease in aquatic animals. Our previous studies have demonstrated that the outer membrane protein U (OmpU) from V.mimicus is an immunoprotective antigen with six immunodominant linear B-cell epitopes. Although the N-terminus of OmpU contains potential binding motifs, it remained unclear whether OmpU possesses adhesion function. Here, the adhesive capacity of recombinant OmpU and V.mimicus to epithelioma papulosum cyprinid (EPC) cells was determined by immunofluorescence and adherence assay. The results showed that after co-incubated with rOmpU, an obvious visible green fluorescence could be observed on the EPC cell surface and the nuclei exhibited blue fluorescence; while the control cell surface did not show any signal, only nuclei exhibited blue fluorescence. The average number of wild-type strain adhered to each cell was 32.3 ± 4.5. The average adhesion number of OmpU gene deletion mutant was significantly reduced to 10.8 ± 0.5 (P < 0.01) and restored to 31.3 ± 2.8 by complement strain (P >0.05). Pretreatment of cells with rOmpU reduced the average adhesion number of wild-type strain to 9.7 ± 2.9 (P < 0.01). Likewise, binding was significantly decreased to 8.8 ± 3.2 (P < 0.01) due to blocking role of OmpU antibodies. To determine binding motifs of OmpU, six immunodominant B-cell epitope peptides labeled with FITC were employed in flow cytometry-based binding assay. Two FITC-labeled epitope peptides (aa90-101 and aa173-192) showed strong binding to EPC cells (the fluorescence positive cell rate was 99 ± 0.6% and 98 ± 0.3%, respectively), which could be specifically competed by excess corresponding unlabeled peptides, whereas the remaining four showed a low level of background binding. This is the first demonstration that OmpU possesses adhesion function and its N terminal 90–101 and 173–192 amino acid regions are critical sites for cell surface binding.  相似文献   

14.
We have determined the crystal structure of the RNA octamer duplex r(guguuuac)/r(guaggcac) with a tandem wobble pair, G·G/U·U (motif III), to compare it with U·G/G·U (motif I) and G·U/U·G (motif II) and to better understand their relative stabilities. The crystal belongs to the rhombohedral space group R3. The hexagonal unit cell dimensions are a = b = 41.92 Å, c = 56.41 Å, and γ = 120°, with one duplex in the asymmetric unit. The structure was solved by the molecular replacement method at 1.9 Å resolution and refined to a final R factor of 19.9% and Rfree of 23.3% for 2862 reflections in the resolution range 10.0–1.9 Å with F ≥ 2σ(F). The final model contains 335 atoms for the RNA duplex and 30 water molecules. The A-RNA stacks in the familiar head-to-tail fashion forming a pseudo-continuous helix. The uridine bases of the tandem U·G pairs have slipped towards the minor groove relative to the guanine bases and the uridine O2 atoms form bifurcated hydrogen bonds with the N1 and N2 of guanines. The N2 of guanine and O2 of uridine do not bridge the ‘locked’ water molecule in the minor groove, as in motifs I and II, but are bridged by water molecules in the major groove. A comparison of base stacking stabilities of motif III with motifs I and II confirms the result of thermodynamic studies, motif I > motif III > motif II.  相似文献   

15.
Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 μM (CL-B5 strain) and 33.65 μM (Y strain), IC50 (BZ)=25.31 μM (CL-B5) and 22.73 μM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.  相似文献   

16.
The S-layer of Bacillus sphaericus strain JG-A12, isolated from a uranium-mining site, exhibits a high metal-binding capacity, indicating that it may provide a protective function by preventing the cellular uptake of heavy metals and radionuclides. This property has allowed the use of this and other S-layers as self-assembling organic templates for the synthesis of nanosized heavy metal cluster arrays. However, little is known about the molecular basis of the metal-protein interactions and their impact on secondary structure. We have studied the secondary structure, protein stability, and Pd((II)) coordination in S-layers from the B. sphaericus strains JG-A12 and NCTC 9602 to elucidate the molecular basis of their biological function and of the metal nanocluster growth. Fourier transform infrared spectroscopy reveals similar secondary structures, containing approximately 35% beta-sheets and little helical structure. pH-induced infrared absorption changes of the side-chain carboxylates evidence a remarkably low pK < 3 in both strains and a structural stabilization when Pd((II)) is bound. The COO(-)-stretching absorptions reveal a predominant Pd((II)) coordination by chelation/bridging by Asp and Glu residues. This agrees with XANES and EXAFS data revealing oxygens as coordinating atoms to Pd((II)). The additional participation of nitrogen is assigned to side chains rather than to the peptide backbone. The topology of nitrogen- and carboxyl-bearing side chains appears to mediate heavy metal binding to the large number of Asp and Glu in both S-layers at particularly low pH as an adaptation to the environment from which the strain JG-A12 has been isolated. These side chains are thus prime targets for the design of engineered S-layer-based nanoclusters.  相似文献   

17.
18.
A unique gene cluster responsible for kojibiose utilization was identified in the genome of Pyrococcus sp. strain ST04. The proteins it encodes hydrolyze kojibiose, a disaccharide product of glucose caramelization, and form glucose-6-phosphate (G6P) in two steps. Heterologous expression of the kojibiose-related enzymes in Escherichia coli revealed that two genes, Py04_1502 and Py04_1503, encode kojibiose phosphorylase (designated PsKP, for Pyrococcus sp. strain ST04 kojibiose phosphorylase) and β-phosphoglucomutase (PsPGM), respectively. Enzymatic assays show that PsKP hydrolyzes kojibiose to glucose and β-glucose-1-phosphate (β-G1P). The Km values for kojibiose and phosphate were determined to be 2.53 ± 0.21 mM and 1.34 ± 0.04 mM, respectively. PsPGM then converts β-G1P into G6P in the presence of 6 mM MgCl2. Conversion activity from β-G1P to G6P was 46.81 ± 3.66 U/mg, and reverse conversion activity from G6P to β-G1P was 3.51 ± 0.13 U/mg. The proteins are highly thermostable, with optimal temperatures of 90°C for PsKP and 95°C for PsPGM. These results indicate that Pyrococcus sp. strain ST04 converts kojibiose into G6P, a substrate of the glycolytic pathway. This is the first report of a disaccharide utilization pathway via phosphorolysis in hyperthermophilic archaea.  相似文献   

19.
Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m) scales with body mass (M; g) according to the power equation D = 0.35M 0.17±0.08 (95% CI), jump take-off angle (A; degrees) scales as A = 52.5M 0.00±0.06, and jump energy (E; mJ per jump) scales as E = 1.91M 1.14±0.09. Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (L f+t; mm) of the femur and tibia of the hind leg, L f+t = 34.9M 0.37±0.02. The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur''s cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12%) legs and a relatively larger (11%) femur muscle cross-sectional area, which could allow more strain loading into the femur''s cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight.  相似文献   

20.
This study compared the movement demands of elite international Under-20 age grade (U20s) and senior international rugby union players during competitive tournament match play. Forty elite professional players from an U20 and 27 elite professional senior players from international performance squads were monitored using 10Hz global positioning systems (GPS) during 15 (U20s) and 8 (senior) international tournament matches during the 2014 and 2015 seasons. Data on distances, velocities, accelerations, decelerations, high metabolic load (HML) distance and efforts, and number of sprints were derived. Data files from players who played over 60 min (n = 258) were separated firstly into Forwards and Backs, and more specifically into six positional groups; FR–Front Row (prop & hooker), SR–Second Row, BR–Back Row (Flankers & No.8), HB–Half Backs (scrum half & outside half), MF–Midfield (centres), B3 –Back Three (wings & full back) for match analysis. Linear mixed models revealed significant differences between U20 and senior teams in both the forwards and backs. In the forwards the seniors covered greater HML distance (736.4 ± 280.3 vs 701.3 ± 198.7m, p = 0.01) and severe decelerations (2.38 ± 2.2 vs 2.28 ± 1.65, p = 0.05) compared to the U20s, but performed less relative HSR (3.1 ± 1.6 vs 3.2 ± 1.5, p < 0.01), moderate (19.4 ± 10.5 vs 23.6 ± 10.5, p = 0.01) and high accelerations (2.2 ± 1.9 vs 4.3 ± 2.7, p < 0.01) and sprint•min-1 (0.11 ± 0.06 vs 0.11 ± 0.05, p < 0.01). Senior backs covered a greater relative distance (73.3 ± 8.1 vs 69.1 ± 7.6 m•min-1, p < 0.01), greater High Metabolic Load (HML) distance (1138.0 ± 233.5 vs 1060.4 ± 218.1m, p < 0.01), HML efforts (112.7 ± 22.2 vs 98.8 ± 21.7, p < 0.01) and heavy decelerations (9.9 ± 4.3 vs 9.5 ± 4.4, p = 0.04) than the U20s backs. However, the U20s backs performed more relative HSR (7.3 ± 2.1 vs 7.2 ± 2.1, p <0.01) and sprint•min-1 (0.26 ± 0.07 vs 0.25 ± 0.07, p < 0.01). Further investigation highlighted differences between the 6 positional groups of the teams. The positional groups that differed the most on the variables measured were the FR and MF groups, with the U20s FR having higher outputs on HSR, moderate & high accelerations, moderate, high & severe decelerations, HML distance, HML efforts, and sprints•min-1. For the MF group the senior players produced greater values for relative distance covered, HSR, moderate decelerations, HML distance and sprint•min-1. The BR position group was most similar with the only differences seen on heavy accelerations (U20s higher) and moderate decelerations (seniors higher). Findings demonstrate that U20s internationals appear to be an adequate ‘stepping stone’ for preparing players for movement characteristics found senior International rugby, however, the current study highlight for the first time that certain positional groups may require more time to be able to match the movement demands required at a higher playing level than others. Conditioning staff must also bear in mind that the U20s players whilst maintaining or improving match movement capabilities may require to gain substantial mass in some positions to match their senior counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号