共查询到20条相似文献,搜索用时 0 毫秒
1.
Ether phospholipid molecular species in human platelets 总被引:2,自引:0,他引:2
Molecular species of diacyl, alkenylacyl, and alkylacyl subclasses in human platelet phospholipids were quantitatively analyzed. Dinitrobenzoyldiradylglycerol derivatives prepared from phosphatidylcholine and phosphatidylethanolamine were separated into subclasses by TLC or normal-phase HPLC. Each subclass consisting of more than 20 molecular species was quantified by reverse-phase HPLC with the eluting solvent of acetonitrile-2-propanol (80 : 20). The retention times of molecular species in the alkenylacyl and alkylacyl subclasses were approximately 1.24 and 1.56 times as long as that of the diacyl type. Phosphatidylcholine contained mostly diacyl subclass (94.5%) and small amounts of alkenylacyl (0.8%) and alkylacyl (4.7%) subclasses, while phosphatidylethanolamine was comprised of 44.2% diacyl, 54.4% alkenylacyl, and 1.4% alkylacyl subclasses. The diacyl subclass of phosphatidylcholine mainly consisted of monoenoic and dienoic molecular species, whereas the other subclasses of phosphatidylcholine and all subclasses of phosphatidylethanolamine were mostly comprised of polyenoic molecular species. The distribution of arachidonic acid-containing molecular species in the diacyl, alkenylacyl, and alkylacyl subclasses were 18.7, 48.2, and 47.9%, respectively, in phosphatidylcholine, and 60.1, 63.0, and 46.9% in phosphatidylethanolamine. Hence, the alkylacyl and alkenylacyl subclasses of phosphatidylcholine seem to play physiological roles different from the diacyl subclass in human platelets. 相似文献
2.
3.
Mechanism of collagen activation in human platelets 总被引:4,自引:0,他引:4
The mechanism of collagen-induced human platelet activation was examined using Ca2+, Na+, and the pH-sensitive fluorescent dyes calcium green/fura red, sodium-binding benzofuran isophthalate, and 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Administration of a moderate dose of collagen (10 microg/ml) to human platelets resulted in an increase in [Ca2+](i) and platelet aggregation. The majority of this increase in [Ca2+](i) resulted from the influx of calcium from the extracellular milieu via the Na+/Ca2+ exchanger (NCX) functioning in the reverse mode and was reduced in a dose-dependent manner by the NCX inhibitors 5-(4-chlorobenzyl)-2',4'-dimethylbenzamil (KD(50) = 4.7 +/- 1.1 microm) and KB-R7943 (KD(50) = 35.1 +/- 4.8 microm). Collagen-induced platelet aggregation was dependent on an increase in [Ca2+](i) and could be inhibited by chelation of intra- and extracellular calcium through the administration of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) and EGTA, respectively, or via the administration of BAPTA-AM to platelets suspended in no-Na+/HEPES buffer. Collagen induced an increase in [Ca2+](i) (23.2 +/- 7.6 mm) via the actions of thromboxane A(2) and, to a lesser extent, of the Na+/H+ exchanger. This study demonstrates that the collagen-induced increase in [Ca2+](i) is dependent on the concentration of Na+ in the extracellular milieu, indicating that the collagen-induced increase in [Ca2+](i) causes the reversal of the NCX, ultimately resulting in an increase in [Ca2+](i) and platelet aggregation. 相似文献
4.
Two fluorescent probes, N-carboxymethylisatoic anhydride, which binds to membrane proteins, and 1,6-diphenyl-1,3,5-hexatriene, a lipophilic label, have been used to follow membrane microenvironmental changes. Activation of human platelets by thrombin resulted in a simultaneous increase in values of fluorescence polarization (P) of both probes during the stages of shape change and secretion, which further increased during platelet aggregation. The similar pattern of changes in P for both probes indicates the interdependence of lipids and proteins in the activated platelet membrane. 相似文献
5.
The occupancy of glycoprotein IIb-IIIa complex modulates thrombin activation of human platelets 总被引:3,自引:0,他引:3
Platelet membrane glycoprotein (GP IIb-IIIa), besides its activity as adhesive protein receptor, displays a number of properties supporting its involvement in the mechanisms of transduction of the activation signal. Recently we have observed that GP IIb-IIIa ligands, mostly fibrinogen, inhibit Ca2+ movement and cytoskeleton reorganization caused by mild platelet activation. These findings led us to investigate the effect of GP IIb-IIIa ligands on agonist-induced platelet responses, with particular attention to the two major messenger generating systems, involving the activation of phospholipase C and the inhibition of cAMP production. In this paper we demonstrate that the occupancy of the major adhesive protein receptor on the platelet surface modulates the phosphatidylinositol cycle decreasing the amount of IP3, IP2 and IP produced after mild platelet activation as well as the pattern of protein phosphorylation. The platelet cAMP content of activated platelets was also affected and kept higher when evaluated under the same experimental conditions. Our data provide evidence for a role of fibrinogen binding in regulating the degree of activation of circulating platelets. 相似文献
6.
Thrombin stimulation of human platelets is associated with turnover of inositol phospholipids, mobilization of intracellular Ca2+ stores, and activation of protein kinase C. However, within 5 minutes, the thrombin receptor desensitizes, but can be re-coupled to its effectors by stimulation of alpha 2-adrenergic receptors (Crouch and Lapetina, J. Biol. Chem. 263, 3363-3371, 1988). This effect of epinephrine was found to be inhibited by preincubation of platelets with phorbol ester, suggesting that protein kinase C was inhibitory. However, since thrombin also activated protein kinase C and epinephrine was active following thrombin stimulation of platelets, this implied that thrombin activation of protein kinase C may have been spacially isolated near the thrombin receptor and could not inactivate alpha 2-receptor activity. In the present paper, we have tested this possibility, and we present evidence which strongly favours the possibility that protein kinase C activation by receptors induces its local translocation to the cell membrane. 相似文献
7.
Reciprocal signaling by integrin and nonintegrin receptors during collagen activation of platelets
下载免费PDF全文

Activation of platelets by exposed collagen after vessel wall injury is a primary event in the pathogenesis of stroke and myocardial infarction. Two collagen receptors, integrin alpha2beta1 and glycoprotein VI (GPVI), are expressed at similar levels on human and mouse platelets, but their individual roles during collagen activation remain poorly defined. Recent genetic and pharmacologic experiments have revealed an essential role for GPVI but have failed to define the role of alpha2beta1 or explain how two structurally distinct collagen receptors might function together to mediate platelet collagen responses. Discriminating the roles of these two collagen receptors is complicated by evidence suggesting that GPVI and platelet integrins may activate a common intracellular signaling pathway. To determine how alpha2beta1 and GPVI activate platelets in response to collagen, we have (i) examined collagen signaling conferred by expression of these receptors in hematopoietic cell lines; (ii) determined the effect of blocking each receptor on the activation of human platelets by collagen; (iii) generated low-GPVI mice in which the alpha2beta1/GPVI receptor ratio has been altered from 1:1 to 50:1 to expose alpha2beta1 function; (iv) studied the collagen responses of mouse platelets lacking LAT, an adaptor protein critical for GPVI but not integrin signaling; and (v) addressed the mechanism by which soluble collagens activate wild-type platelets. These studies demonstrate that alpha2beta1 requires inside-out signals to participate in collagen signaling and that alpha2beta1 is required for collagen activation of platelets when GPVI signals are reduced by blocking anti-GPVI antibody, low receptor number, specific disruption of the GPVI signaling pathway, or forms of collagen that bind weakly to GPVI relative to alpha2beta1. We propose a reciprocal two-receptor model of collagen signaling in platelets in which the nonintegrin receptor GPVI provides the primary collagen signal that activates and recruits the integrin receptor alpha2beta1 to further amplify collagen signals and fully activate platelets through a common intracellular signaling pathway. This model explains many of the genetic and pharmacologic observations regarding collagen signaling in platelets and demonstrates a novel mechanism by which hematopoietic cells integrate signaling by structurally distinct receptors that share a common ligand. 相似文献
8.
Vecchini Alba Panagia Vincenzo Binaglia Luciano 《Molecular and cellular biochemistry》1997,172(1-2):129-136
A method is described for analysing molecular species of glycerophospholipids. Diglycerides obtained by phospholipase C-catalysed hydrolysis of the phospholipid are separated into the diacyl- alkylacyl- and alkenylacyl- subclasses by HPLC on silicic acid. The molecular species of diacylglycerol are separated by HPLC of underivatised diglycerides on a reverse phase octadecyl-silica column. 相似文献
9.
Identification of the molecular species of lysophosphatidic acid produced when platelets are stimulated by thrombin 总被引:19,自引:0,他引:19
Platelets, when stirred with 3 U thrombin/10(9) platelets, produced significant quantities of palmitoyllysophosphatidic acid (2.17 ng/10(9) platelets), stearoyllysophosphatidic acid (2.11 ng/10(9) platelets), and arachidonoyllysophosphatidic acid (1.06 ng/10(9) platelets). When platelets were pretreated with 100 microM of the phospholipase A2 inhibitor U10029A, there was a significant decrease in thrombin-stimulated production of stearoyllysophosphatidic acid (to 0.16 ng/10(9) platelets), while arachidonoyllysophosphatidic acid production was unchanged. U10029A concomitantly increased thrombin-stimulated production of stearoyl-containing phosphatidic acid species (primarily stearoylarachidonoylphosphatidic acid) from 5.99 to 9.71 ng/10(9) platelets. The results are consistent with the concept that stearoyllysophosphatidic acid production in platelets occurs via phospholipase A2 degradation of phosphatidic acid. 相似文献
10.
A A Ahmed B Celi K Ronald B J Holub 《Comparative biochemistry and physiology. B, Comparative biochemistry》1989,93(1):119-123
1. Platelet phospholipid compositions were studied in four species of phocid seals consuming herring or herring and shrimp and in human subjects consuming a normal mixed diet. 2. There were no major differences in platelet phospholipid, cholesterol and protein levels between different species of seal nor between seals and human subjects, nor in the relative abundance of the individual types of phospholipid. 3. The seal platelet phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE), were greatly enriched in the omega 3 fatty acid, eicosapentaenoic acid (EPA) and depressed in arachidonic acid (AA) relative to the corresponding human platelet phospholipids. 4. Much less accumulation of EPA in phosphatidylserine (PS) and phosphatidylinositol (PI) was found. 5. The EPA contents of the individual seal platelet phospholipids exhibited considerable differences (including EPA discrimination from PI) but gave patterns which were generally similar to those reported for human volunteers consuming fish/fish oils enriched in EPA. 6. These results suggest that the seal platelet may be a useful model for studying the metabolism and function of the omega 3 fatty acids, such as EPA, in relation to platelet reactivity, phospholipid turnover and the formation of AA- and EPA-derived eicosanoids. 相似文献
11.
T Moriyama H Takamura H Narita K Tanaka T Matsuura M Kito 《Journal of biochemistry》1988,103(6):901-902
The thromboxane A2 antagonist, ONO-3708, completely inhibited the increase in cytosolic free Ca2+ in human platelets during activation with collagen. Half-maximal Ca2+ release and influx required about 3 and 4 nM STA2, a stable thromboxane A2 mimetic, respectively. However, half maximal activation of phospholipase C required about 18 nM STA2. This suggests that thromboxane A2 directly causes Ca2+ mobilization without further activation of phospholipase C during activation of human platelets with collagen. 相似文献
12.
Synergism between thrombin and adrenaline (epinephrine) in human platelets. Marked potentiation of inositol phospholipid metabolism. 总被引:2,自引:0,他引:2
下载免费PDF全文

We have studied synergism between adrenaline (epinephrine) and low concentrations of thrombin in gel-filtered human platelets prelabelled with [32P]Pi. Suspensions of platelets, which did not contain added fibrinogen, were incubated at 37 degrees C to measure changes in the levels of 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidate (PA), aggregation and dense-granule secretion after stimulation. Adrenaline alone (3.5-4.0 microM) did not cause a change in any parameter (phosphoinositide metabolism, aggregation and dense-granule secretion), but markedly enhanced the thrombin-induced responses over a narrow range of thrombin concentrations (0.03-0.08 units/ml). The thrombin-induced hydrolysis of inositol phospholipids by phospholipase C, which was measured as the formation of [32P]PA, was potentiated by adrenaline, as was the increase in the levels of [32P]PIP2 and [32P]PIP. The presence of adrenaline caused a shift to the left for the thrombin-induced changes in the phosphoinositide metabolism, without affecting the maximal levels of 32P-labelled compounds obtained. A similar shift by adrenaline in the dose-response relationship was previously demonstrated for thrombin-induced aggregation and dense-granule secretion. Also, the narrow range of concentrations of thrombin over which adrenaline potentiates thrombin-induced platelet responses is the same for changes in phosphoinositide metabolism and physiological responses (aggregation and dense-granule secretion). Our observations clearly indicate that adrenaline directly or indirectly influences thrombin-induced changes in phosphoinositide metabolism. 相似文献
13.
Activation of V1-receptors by vasopressin stimulates inositol phospholipid hydrolysis and arachidonate metabolism in human platelets. 总被引:1,自引:2,他引:1
下载免费PDF全文

The effects of Mg2+ on the activity of pyruvate dehydrogenase phosphate phosphatase within intact mitochondria prepared from control and insulin-treated rat epididymal adipose tissue was explored by incubating the mitochondria in medium containing the ionophore A23187. The apparent Ka for Mg2+ was approximately halved in the mitochondria derived from insulin-treated tissue in both the absence and the presence of Ca2+. In this system, the major effect of Ca2+ was also to decrease the apparent Ka for Mg2+, rather than to change the Vmax. of the phosphatase. Damuni, Humphreys & Reed [(1984) Biochem. Biophys. Res. Commun. 124, 95-99] have reported that spermine activates ox kidney pyruvate dehydrogenase phosphate phosphatase. Studies were carried out on phosphatase from pig heart and rat epididymal adipose tissue which confirm and extend this observation. The major effect of spermine is shown to be a decrease in the Ka for Mg2+, which is apparent in both the presence and the absence of Ca2+. Spermine did not affect the sensitivity of the phosphatase to Ca2+ at saturating concentrations of Mg2+. Other polyamines tested were not as effective as spermine. No alteration in the maximum activity or Mg2+-sensitivity of pyruvate dehydrogenase phosphate phosphatase was apparent in extracts of mitochondria from insulin-treated tissue. The close similarity of the effects of spermine and the changes in kinetic properties of pyruvate dehydrogenase phosphate phosphatase within mitochondria from insulin-treated adipose tissue suggests that insulin may activate pyruvate dehydrogenase by increasing the concentration of spermine within the mitochondria. However, it is concluded that insulin is more likely to alter the interaction of the pyruvate dehydrogenase system with some other polybasic intramitochondrial component whose action can be mimicked by spermine. 相似文献
14.
15.
Relative degradation of different molecular species of phosphatidylcholine in thrombin-stimulated human platelets 总被引:7,自引:0,他引:7
The relative degradation of the various molecular species of [3H]phosphatidylcholine in response to thrombin was studied in human platelets following prelabeling with [3H]glycerol and compared to results obtained following labeling with [14C]oleic, [14C]linoleic, or [14C]arachidonic acids. This was of interest since previous work using radioactive fatty acids had led to the conclusion that the 1-acyl-2-arachidonoyl species of phosphatidylcholine is exclusively hydrolyzed in thrombin-stimulated platelets. Within 90 s, the thrombin-dependent release of [14C]arachidonic acid from phosphatidylcholine amounted to 25% but only 3 and 6% for oleic and linoleic acids, respectively, in general agreement with previous work. However, for [3H]glycerol-labeled phosphatidylcholine, all molecular species (saturates, monoenes, dienes, trienes, tetraenes, and greater than tetraenes) were subject to significant hydrolysis in the presence of thrombin within 90 s, ranging from 12-24% across the various classes. Furthermore, the degradation of the tetraenoic species (1-acyl-2-arachidonoyl) of [3H]phosphatidylcholine was found to be only 1.5 and 1.4 times that for the monoenoic (predominantly 1-acyl-2-oleoyl) and dienoic (predominantly 1-acyl-2-linoleoyl) species, respectively. A much heavier proportional labeling of plasma membrane relative to whole platelet phosphatidylcholine was observed with [3H]glycerol as compared to [14C] oleate or [14C]arachidonate. These results indicate that the 1-acyl-2-arachidonoyl species of phosphatidylcholine are not exclusively degraded by phospholipase A2 activity in thrombin-stimulated platelets and suggest that the differential compartmentation of molecular species of phosphatidylcholine according to their metabolic origins can influence their apparent susceptibility to hydrolysis. 相似文献
16.
Pavel Májek Zuzana Reicheltová Jana Štikarová Jiří Suttnar Alžběta Sobotková Jan E Dyr 《Proteome science》2010,8(1):56
Background
Platelets are small anucleated blood particles that play a key role in the control of bleeding. Platelets need to be activated to perform their functions and participate in hemostasis. The process of activation is accompanied by vast protein reorganization and posttranslational modifications. The goal of this study was to identify changes in proteins in platelets activated by different agonists. Platelets were activated by three different agonists - arachidonic acid, collagen, and thrombin. 2D SDS-PAGE (pI 4-7) was used to separate platelet proteins. Proteomes of activated and resting platelets were compared with each other by Progenesis SameSpots statistical software; and proteins were identified by nanoLC-MS/MS. 相似文献17.
The serine peptidases, thrombocytin and PA-BJ, isolated from the venom of Bothrops atrox and Bothrops jararaca, respectively, induce platelet aggregation and granule secretion without clotting fibrinogen. The specific platelet aggregation activity of each enzyme was about 15 times lower than that of thrombin. This activity was blocked by monoclonal antibodies recognizing protease activated receptor 1 (PAR1) and by heparin, but not by hirudin nor thrombomodulin. Both enzymes induced calcium mobilization in platelets and desensitized platelets to the action of thrombin and the SFLLRN peptide. We compared the effect of thrombin, PA-BJ, and thrombocytin on the degradation of the soluble N-terminal domain of the PAR1 receptor. The major cleavage site by thrombin and both viper enzymes was Arg41-Ser42. In addition, a rapid cleavage of the peptide bond at Arg46-Asn47 by the viper enzymes was observed, resulting in the inactivation of the tethered ligand. PA-BJ and thrombocytin both cleaved at 41-42 and 46-47 peptide bonds, and fragment 42-103 disappeared rapidly. Both viper enzymes caused calcium mobilization in fibroblasts transfected with PAR4 and desensitized these cells to the thrombin action. In conclusion, both PAR1 and PAR4 mediate the effect of viper venom serine peptidases on platelets. 相似文献
18.
Prothrombin contains two kringle domains that are removed during activation to the blood clotting enzyme alpha-thrombin. By analogy with other kringle-containing proteins the prothrombin kringles may play a role in the protein-protein interactions necessary for prothrombin activation. Four monoclonal antibodies to prothrombin kringle 2 have been produced against human prothrombin, and a fifth monoclonal antibody was produced against a synthetic peptide consisting of amino acid residues 216-231 of kringle 2. Each antibody was tested for its ability to block prothrombin activation by factor Xa. In the presence of phosphatidylcholine/phosphatidylserine vesicles and factor Va, two of the antibodies, alpha HII-3 and alpha HII-4, inhibited prothrombin activation at a 90 and 50% level, respectively. Two other monoclonal antibodies (alpha HII-6 and alpha HII-7) and the antipeptide antibody (alpha HII-5) had no effect on prothrombin activation. When factor Xa was the catalyst alone, antibody alpha HII-3 lost the ability to inhibit prothrombin activation whereas antibody alpha HII-4 again partially inhibited the reaction. When human platelets were the reaction surface, the patterns of inhibition by the anti-fragment 2 antibodies were identical to that observed with phospholipid vesicles. These data suggest a role for prothrombin fragment 2 in activation, possibly by mediating the interaction of substrate prothrombin with factor Xa or factor Va on the phospholipid surface. 相似文献
19.
20.
The composition of human platelet major phospholipids-phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), sphingomyelin (SM), plasmalogenic and diacyl species of phosphatidylethanolamine (PPE and APE, respectively) was quantitatively analyzed by high performance liquid chromatography. Incubation (10 min, 37 degrees C) of washed platelets with lipopolysaccharide B (LPS) of Salmonella typhimurium was found to produce (in the absence of aggregation) marked hydrolysis of PI (ca. 15%) and PPE (ca. 19%) containing the bulk of polyenic fatty acids. PC and APE were less degraded (8-9%), while the amounts of PS and SM were practically unchanged and the level of PA rose by 20%. Addition of thrombin to LPS-pretreated platelets resulted in their more rapid aggregation which was accompanied by a decreased and nearly equal hydrolysis of APE and PPE (7-8%) as compared with control platelets (10 and 12%, respectively). The extent to which PI was degraded (ca. 34%), by the action of thrombin was not affected by preliminary incubation with LPS. It is suggested that thrombin (as well as LPS) activating endogenous phospholipase(s) A2 can liberate from PPE not only arachidonic acid but also other essential polyenic fatty acids present in PPE in relatively high amounts. Besides, the agents studied may activate the intrinsic platelet system of rapid arachidonoyl transfer from diacyl PC and PE to PPE. 相似文献