首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radin JW 《Plant physiology》1984,76(2):392-394
Cotton (Gossypium hirsutum L.) plants were grown in sand culture on nutrient solution containing adequate or growth-limiting levels of P. When water was withheld from the pots, stomata of the most recently expanded leaf closed at leaf water potentials of approximately −16 and −12 bars in the normal and P-deficient plants, respectively. Pressure-volume curves showed that the stomata of P-deficient plants closed when there was still significant turgor in the leaf mesophyll. Leaves of P-deficient plants accumulated more abscisic acid (ABA) in response to water stress, but the difference was evident only at low water potentials, after initiation of stomatal closure. In leaves excised from unstressed plants, P deficiency greatly increased stomatal response to ABA applied through the transpiration stream. Kinetin blocked most of this increase in apparent sensitivity to ABA. The effect of P nutrition on stomatal behavior may be related to alterations of the balance between ABA and cytokinins.  相似文献   

2.
We investigated, under laboratory and field conditions, the possibility that increasing abscisic acid (ABA) concentrations and decreasing water potentials can interact in their effects on stomata. One experiment was carried out with epidermal pieces of Commelina communis incubated in media with a variety of ABA and polyethylene glycol concentrations. In the media without ABA, incubation in solutions with water potentials between −0.3 and −1.5 megapascals had no significant effect on stomatal aperture. Conversely, the sensitivity of stomatal aperture to ABA was trebled in solutions at −1.5 megapascals compared with sensitivity at −0.3 megapascals. The effect of the change in sensitivity was more important than the absolute effect of ABA at the highest water potential. In a field experiment, sensitivity of maize stomatal conductance to the concentration of ABA in the xylem sap varied strongly with the time of the day. We consider that the most likely explanation for this is the influence of a change in leaf or epidermal water potential that accompanies an increase in irradiance and saturation deficit as the day progresses. These observations suggest that epidermal water relations may act as a modulator of the responses of stomata to ABA. We argue that such changes must be taken into account in studies or modeling of plant responses to drought stress.  相似文献   

3.
Stomatal sensitivity to abscisic acid following water deficit stress   总被引:7,自引:3,他引:4  
Short-and medium-term stresses (1 and 24 h, respectively) wereapplied to detached leaves of Commelina communis L., resultingin both cases in a final leaf cell water potential (  相似文献   

4.
J. Janáek 《Photosynthetica》1997,34(3):473-476
A water stress effect on photosynthesis and transpiration of wheat seedlings at 50-500 µmol(CO2) mol-1 was measured in an open gas exchange system. The limitation of photosynthesis by stomatal conductance was quantified by a stomatal control coefficient of the net photosynthetic rate. The stomatal control coefficient increased linearly as the water potential of root media decreased to -1 MPa, and it decreased with increasing CO2 concentration.  相似文献   

5.
Stomatal numbers of soybean and response to water stress   总被引:2,自引:0,他引:2  
The relationship among stomatal density, photosynthetic rate, leaf conductance, plant growth, bean yield and kaempferol triglucoside (K9) in the leaves of soybean (Glycine max (L.) Merr.) was examined in two field tests. K9 in the leaves was associated with reduced stomatal density, reduced photosynthetic rate, reduced stomatal conductance, reduced plant weight and lower bean yield. Plants with high stomatal frequency (lacking K9) were better able to take advantage of increased water supply by increasing stomatal conductance (upper surface), transpiration and bean yield. Plants with low stomatal frequency (with K9) were unresponsive to irrigation and in this sense were more tolerant of water stress, but their overall yield was low.  相似文献   

6.
Stomatal closure in response to xanthoxin and abscisic acid   总被引:1,自引:1,他引:0  
Summary The stomata of detached leaves of Commelina communis L., Hordeum vulgare L., Zea mays L., Vicia faba L., Phaseolus vulgaris L. and Xanthium strumarium L. closed when xanthoxin (XAN) was added to the transpiration stream. XAN was approximately half as active as (+)-abscisic acid (ABA) at an equivalent concentration. XAN, like ABA, sensitized stomata of Xanthium strumarium to CO2. In contrast to ABA, XAN was ineffective in closing stomata of isolated epidermal strips of C. communis or V. faba. This may be because XAN added to the transpiration stream is converted to ABA during passage from the xylem to the epidermis.Abbreviations ABA Abscisic acid - XAN xanthoxin  相似文献   

7.
不同甘蔗品种叶片气孔对水分胁迫的响应   总被引:2,自引:0,他引:2  
干旱是甘蔗面临最主要的环境胁迫之一,为了解不同甘蔗品种在干旱胁迫时的气孔响应,该研究以F172、GT21、YT93/159和 YL6四个抗旱性有显著差异的甘蔗品种为材料,采用桶栽,在伸长期进行四种不同程度的干旱胁迫(不浇水)处理:土壤持水量在①65%~70%为轻度干旱;②45%~50%为中度干旱;③25%~30%为重度干旱;④以土壤含水量为75%为对照(CK).检测不同品种不同处理甘蔗的叶片相对持水量变化,并利用扫描电镜技术观察甘蔗叶片下表皮气孔特性.结果表明:在干旱胁迫下,四个甘蔗品种叶片气孔导度急剧下降,重度干旱时耐旱性强的 F172和 GT21的气孔导度低于耐旱性弱的 YT93/159和 YL6的;复水后3 d,F172和 GT21的气孔导度上升至82.07和88.85 mmol·m-2·s-1,而 YT93/159和 YL6的仅有18.88和33.08 mmol·m-2·s-1.干旱还导致气孔下陷、闭合,气孔器的长、宽明显减小,且品种间气孔器长度变化差异显著;干旱胁迫下气孔密度增大,尤以耐旱性最强的 F172在重度干旱时达到显著差异.重度干旱时 F172与GT21的气孔闭合百分比是 YT93/159和 YL6近3~4倍.在水分胁迫下,叶片相对含水量降低,但 F172和GT21在重度干旱时仍可以保持相对较高的含水量,其它两个品种相对较低,尤以 YT93/159的最低.在复水后叶片含水量都有所恢复.这些研究结果表明不同甘蔗品种抗旱能力与叶片气孔特性和含水量密切相关.  相似文献   

8.
Stomatal response of Engelmann spruce (Picea engelmannii Engelm.) to environmental conditions was studied in the natural subalpine environment and under controlled laboratory conditions. Stomata of naturally occurring trees responded to the difference in absolute humidity from leaf to air. When foliage was exposed to full sunlight, stomatal conductance decreased as the absolute humidity difference increased. In the shade, where photosynthetically active radiation was 10% of that in full sunlight, stomatal closure at large absolute humidity differences was much more complete. No effect of soil or air temperatures on stomatal aperture was observed in the field, nor were differences among three contrasting sites detected. Under growth chamber conditions, stomata responded to photosynthetically active radiation, but conductances were influenced by leaf-to-air differences in absolute humidity. Leaf water potentials below - 15 bars resulted in lower conductances over a range of humidity and light conditions. Because net photosynthesis under shaded conditions in the natural environment must be very low, stomatal closure could result in considerable savings in water while having a minimum effect on net photosynthesis.  相似文献   

9.
Abstract The dynamic response of stomata to changes in atmospheric humidity was investigated in Fragaria × ananassa Duch., Picea engelmannii Parry, and Pseudotsuga menziesii (Mirb.) Franco; and the effect of water stress on this response was determined in Pseudotsuga menziesii. The plants were rotated through three regimes of ambient temperature and vapour pressure deficit: 35°C–3. 5kPa, 35°C–0. 5 kPa, and 20°C–1. 5kPa. Branch and leaflet conductance were measured with a steady-state porometer, first at ambient vapour pressure deficit and then at one of four treatment conditions achieved by increasing or decreasing vapour pressure within the porometer cuvette. All three species showed similar stomatal response: enhanced conductance at low vapour pressure deficit and depressed conductance at high vapour pressure deficit. Engelmann spruce was more sensitive than Douglas fir and strawberry. Plant water status significantly altered stomatal response to vapour pressure deficit. The relationship of conductance of xylem water potential was linear under ambient conditions but became curvilinear when conductance was measured above and below ambient vapour pressure deficit. Between ?0. 5 MPa and ?2. 0 MPa xylem water potential, the stomata were sensitive to vapour pressure deficit, but below ? 2. 0 MPa, the sensitivity decreased.  相似文献   

10.
A steady state model of stomatal response to plant water deficit was developed. It simulates typical stomatal resistance-leaf water potential functions; that is, stomatal resistance remains relatively constant until leaf water potential decreases to a threshold value, at which point stomatal resistance increases abruptly. The model shows that differences in the elastic properties of guard cells and surrounding epidermal cells determine the shape of the stomatal resistance-leaf water potential function. The model also simulates the effects of seasonal osmoregulation. This relatively slow accumulation of osmotically active solutes within plant cells reduces the threshold leaf water potential value. By contrast, the relatively rapid diurnal accumulation of osmotically active photosynthates in non-guard cells raises the threshold leaf water potential. This effect can occur if guard cells have a mechanism such as a sugar-starch conversion which prevents osmotically-active photosynthates from accumulating in their vacuoles.  相似文献   

11.
Xiong L  Wang RG  Mao G  Koczan JM 《Plant physiology》2006,142(3):1065-1074
Drought stress is a common adverse environmental condition that seriously affects crop productivity worldwide. Due to the complexity of drought as a stress signal, deciphering drought tolerance mechanisms has remained a major challenge to plant biologists. To develop new approaches to study plant drought tolerance, we searched for phenotypes conferred by drought stress and identified the inhibition of lateral root development by drought stress as an adaptive response to the stress. This drought response is partly mediated by the phytohormone abscisic acid. Genetic screens using Arabidopsis (Arabidopsis thaliana) were devised, and drought inhibition of lateral root growth (dig) mutants with altered responses to drought or abscisic acid in lateral root development were isolated. Characterization of these dig mutants revealed that they also exhibit altered drought stress tolerance, indicating that this root response to drought stress is intimately linked to drought adaptation of the entire plant and can be used as a trait to access the elusive drought tolerance machinery. Our study also revealed that multiple mechanisms coexist and together contribute to whole-plant drought tolerance.  相似文献   

12.
The effect of water stress on plant water status and net photosynthetic gas exchange (PN) in six barley genotypes (Hordeum vulgare L.) differing in productivity and drought tolerance was studied in a controlled growth chamber. Osmotic adjustment (OA), PN, stomatal conductance (gs), and the ratio intercellular/ambient. CO2 concentration (Ci/Ca) were evaluated at four different levels of soil water availability, corresponding to 75, 35, 25 and 15 % of total available water. Variability in OA capacity was observed between genotypes: the drought tolerant genotypes Albacete and Alpha showed higher OA than drought susceptible genotypes Express and Mogador. The genotype Albacete exhibited also higher PN than the others at low water potential (Ψ). The ratios of PN/gs and Ci/Ca showed that differences in photosynthetic inhibition between genotypes at low Ψ were probably due to nonstomatal effects. In Tichedrett, a landrace genotype with a very extensive root development, OA was not observed, however, it exhibited a capacity to maintain its photosynthetic activity under water stress. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Arnau  G.  Monneveux  P.  This  D.  Alegre  L. 《Photosynthetica》1998,34(1):67-76
The effect of water stress on plant water status and net photosynthetic gas exchange (PN) in six barley genotypes (Hordeum vulgare L.) differing in productivity and drought tolerance was studied in a controlled growth chamber. Osmotic adjustment (OA), PN, stomatal conductance (gs), and the ratio intercellular/ambient. CO2 concentration (Ci/Ca) were evaluated at four different levels of soil water availability, corresponding to 75, 35, 25 and 15 % of total available water. Variability in OA capacity was observed between genotypes: the drought tolerant genotypes Albacete and Alpha showed higher OA than drought susceptible genotypes Express and Mogador. The genotype Albacete exhibited also higher PN than the others at low water potential (Ψ). The ratios of PN/gs and Ci/Ca showed that differences in photosynthetic inhibition between genotypes at low Ψ were probably due to nonstomatal effects. In Tichedrett, a landrace genotype with a very extensive root development, OA was not observed, however, it exhibited a capacity to maintain its photosynthetic activity under water stress.  相似文献   

14.
植物应对干旱胁迫的气孔调节   总被引:1,自引:0,他引:1  
罗丹丹  王传宽  金鹰 《应用生态学报》2019,30(12):4333-4343
气孔是植物控制叶片与大气之间碳、水交换的重要门户,植物的生长和生存都依赖于叶片气孔对碳获取和水散失的调控.因此,气孔调节机理研究与气孔导度模型研发是精确模拟陆地生态系统碳、水循环过程不可或缺的内容.近年来,随着气候变化的加剧,干旱事件愈发频繁,对植物的存活、生长和分布产生深刻影响.为了深入理解植物碳-水耦合机理过程、预测全球变化下植物及群落的动态,开展植物应对干旱胁迫的气孔调节研究尤为重要.本文综述了植物在干旱胁迫条件下气孔调节机制和模型研究进展.首先阐述了植物气孔对干旱胁迫的主动调节与被动调节,讨论了气孔调节的演化过程,包括蕨类和石松类植物的被动水力调节、被子植物的主动调节和裸子植物的双重调节机制,认为裸子植物的气孔调节方式是植物进化过程中介于蕨类、石松类植物和被子植物之间的一种重要过渡类型.然后分析了气孔调节与水力调节的关系,讨论了“植物水势和气孔导度解耦”问题中存在的争议.之后介绍了基于水分利用效率假说和最大碳增益假说所建立的气孔导度优化模型的应用,并指出后者有更强的预测能力和应用前景.最后,为了有效减少植被对气候变化响应预测中的不确定性,提出了2个亟待开展的研究问题:将植物叶片的气孔调节功能研究由个体扩展到生态系统甚至更大尺度,改进陆地生态系统碳水循环机理模型;量化气孔调节的主动水力反馈过程,修正植物气孔功能水力模型.  相似文献   

15.
Available water stored in deep soil layers could increase the photosynthetic capacity of cotton. It was hypothesized that the photosynthesis of cotton would be enhanced by changing the fertilizer application depth under different deep-layer water conditions. We examined two deep-layer water levels, i.e., well-watered (W80) and not watered (W0), combined with surface application (F10) and deep application (F30) of basal fertilizer. Compared to W0, W80 resulted in increased leaf area (LA), photosynthetic pigment contents, maximal PSII efficiency (Fv/Fm), effective quantum yield of PSII (YII) and PSI (YI), electron transport rate of PSII (ETRII) and PSI (ETRI). W80 also increased the aboveground and root dry mass by 39 and 0.6%, respectively, and decreased the root/shoot ratio by 40–73%. Under the W0 condition, higher values of Fv/Fm, YII, YI, ETRII, and ETRI were measured for F10 compared to F30 after 69 d from emergence. Under the W80 condition, cotton plants with F10 showed higher LA, Fv/Fm, YII, YI, ETRII, and ETRI, but there were no significant differences in the photosynthetic pigments compared to F30. Our results suggest that sufficient water in deeper soil layers and the surface application of basal fertilizer could increase photosynthetic activity and efficiency, which promoted aboveground dry mass accumulation and partitioning towards reproductive organs.  相似文献   

16.
Synthesis and movement of abscisic acid (ABA) into the apoplast of water-stressed cotton (Gossypium hirsutum L.) leaves were examined using pressure dehydration techniques. The exudates of leaves dehydrated in a pressure chamber contained ABA. The level of ABA in the exudates was insensitive to the leaf water potential when dehydration occurred over a 3-hour period. When leaves were rapidly dehydrated in the pressure chamber and held at a balance pressure coincident with the point of zero turgor, ABA accumulated in the leaf tissue and then in the apoplast, but only after 2 to 3 hours of zero turgor. Slow dehydration of leaves by equilibration over varying mannitol concentrations resulted in some accumulation of ABA prior to the point of zero turgor, but ABA accumulated in the tissue and apoplast most rapidly after the onset of zero turgor.  相似文献   

17.
Erythrina variegata Lam. seedlings were grown under water stress (Ψ = -3.2 MPa) and subsequently sprayed with triacontanol (Tria). Water stress significantly reduced shoot growth rate, while roots continued to grow. Content of chlorophyll (Chl) a decreased more than that of Chl b. Water stress also reduced photosynthetic activity of chloroplasts as measured by Chl fluorescence induction. Stress effect was identified at the oxidation site of photosystem (PS) 2 prior to the hydroxylamine donating site and perhaps close to or after the diphenylcarbazide donating site. The loss of O2 evolving thylakoid polypeptides (33, 23, 17 kDa) and the large (55 kDa) and small (15 kDa) subunits of ribulose-1,5-bisphosphate carboxylase (RuBPC) were found in water stressed seedlings. The reduction in RuBPC activity was accompanied by reduction of CO2 fixation and stomatal conductance. All photosynthetic parameters were improved by Tria. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
A field experiment was conducted during the summer of 1988 to test the hypothesis that water deficit affects the abscisic acid (ABA) and indole acetic acid (IAA) concentrations in cotton (Gossypium hirsutum L.) flower buds in ways that predispose young fruits (bolls) that subsequently develop from them to increased abscission rates. Water deficit had little effect on the ABA content of flower buds but increased the ABA content of flowers as much as 66%. Water deficit decreased the concentrations of free and conjugated IAA in flower buds during the first irrigation cycle but increased them during the second cycle. Flowers contained much less IAA than buds. Water deficit slightly increased the conjugated IAA content of flowers but had no effect on the concentration of free IAA in flowers. Because water deficit slightly increased the ABA content but did not decrease the IAA content of flowers, any carry-over effect of water deficit on young boll shedding might have been caused by changes in ABA but not from changes in IAA.  相似文献   

19.
Barley (Hordeum vulgare L.) and tomato Lycopersicon esculentum Mill.) were grown hydroponically and examined 2, 5, and 10 d after being deprived of nitrogen (N) supply. Leaf elongation rate declined in both species in response to N stress before there was any reduction in rate of dryweight accumulation. Changes in water transport to the shoot could not explain reduced leaf elongation in tomato because leaf water content and water potential were unaffected by N stress at the time leaf elongation began to decline. Tomato maintained its shoot water status in N-stressed plants, despite reduced water absorption per gram root, because the decline in root hydraulic conductance with N stress was matched by a decline in stomatal conductance. In barley the decline in leaf elongation coincided with a small (8%) decline in water content per unit area of young leaves; this decline occurred because root hydraulic conductance was reduced more strongly by N stress than was stomatal conductance. Nitrogen stress caused a rapid decline in tissue NO 3 - pools and in NO 3 - flux to the xylem, particularly in tomato which had smaller tissue NO 3 - reserves. Even in barley, tissue NO 3 - reserves were too small and were mobilized too slowly (60% in 2 d) to support maximal growth for more than a few hours. Organic N mobilized from old leaves provided an additional N source to support continued growth of N-stressed plants. Abscisic acid (ABA) levels increased in leaves of both species within 2 d in response to N stress. Addition of ABA to roots caused an increase in volume of xylem exudate but had no effect upon NO 3 - flux to the xylem. After leaf-elongation rate had been reduced by N stress, photosynthesis declined in both barley and tomato. This decline was associated with increased leaf ABA content, reduced stomatal conductance and a decrease in organic N content. We suggest that N stress reduces growth by several mechanisms operating on different time scales: (1) increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and (2) a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.Abbreviation and symbols ABA abscisic acid - ci leaf internal CO2 concentration - Lp root hydraulic conductance  相似文献   

20.
Abstract Leaf diffusion resistance and leaf water potential of intact Solanum melongena plants were measured during a period of chilling at 6 °C. Two pretreatments, consisting of a period of water stress or a foliar spraying of abscisic acid (ABA), were imposed upon the plants prior to chilling. The control plants did not receive a pretreatment. In addition to intact plant studies, stomatal responses to water loss and exogenous abscisic acid were investigated using excised leaves, and the influence of the pretreatment observed. Chilled, control plants wilted slowly and maintained open stomata despite a decline in leaf water potential to –2.2 MPa after 2 d of chilling. In contrast plants that had been water stressed or had been sprayed with abscisic acid, prior to chilling, did not wilt and maintained a higher leaf water potential and a greater leaf diffusion resistance. In plants that had not received a pretreatment, abscisic acid caused stomatal closure at 35 °C, but at 6°C it did not influence stomatal aperture. The two pretreatments greatly increased stomatal sensitivity to both exogenous ABA and water stress, at both temperatures. Stomatal response to water loss from excised leaves was greatly reduced at 6°C. These results are discussed in relation to low temperature effects on stomata and the influence of preconditioning upon plant water relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号