首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Settlement timing is often an important factor in interspecific herbivore interactions, as early‐arriving species may encounter higher resource availability and/or avoid induced defences. Despite the general importance of priority effects to the outcome of herbivore interactions, there has been little exploration of such interactions on woody host plants where their impact can only be measured over multiple years. 2. In the eastern U.S.A., two invasive species, the hemlock woolly adelgid Adelges tsugae and the elongate hemlock scale Fiorinia externa, share a native host, eastern hemlock Tsuga canadensis. Their interaction and its consequences were investigated for plant growth – hemlock saplings that had been inoculated with either A. tsugae or F. externa, starting in spring 2007, were cross‐infested with the other insect in spring 2009. A set of uninfested trees was simultaneously infested with A. tsugae, F. externa, both, or neither insect (= control), and insect density and plant growth was assessed in all treatments. 3. Adelges tsugae settlement rates did not differ if it settled alone or simultaneously with F. externa, but were ~45% lower on trees previously infested with F. externa. There was no difference in F. externa settlement rates, and plant growth did not differ substantively between any of the herbivore treatments. 4. At a temporal scale (i.e. multiple growing seasons) appropriate to interactions between woody plants and their herbivores, this work demonstrates that plant‐mediated priority effects can substantially affect herbivore settlement and thus the outcome of interspecific competition.  相似文献   

2.
3.
4.
Summary The presence of numerical self-restraints in populations of the elongate hemlock scale, Fiorinia externa Ferris (Homoptera: Diaspididae), was investigated by determining the effects of scale density on development rate, fecundity, mortality, and dispersal. Evidence indicates that populations are, to some extent, numerically self-regulated on eastern hemlock, Tsuga canadensis (L) Carr. Development rate, fecundity and survival for two consecutive years were all negatively correlated with scale density on 10 hemlocks in a Ridgefield, CT, USA forest. On hemlocks which had supported the higher densities, the summer, 1977 generation developed more slowly, produced significantly fewer eggs, and suffered up to four times greater mortality than it did on less heavily infested trees.Percent parasitism by Aspidiotiphagus citrinus (Craw.) (Hymenoptera: Aphelinidae) was positively correlated with scale density for two years, reconfirming the density-dependent nature of this parasite-host interaction.First instar nymphs (crawlers) readily dispersed on the wind during both the spring and autumn hatching periods. However, the proportion of crawlers which dispersed from trees supporting the higher densities was no greater than from trees supporting lower densities, indicating that dispersal is density-independent.Self-restraints on F. externa populations imposed at high densities are related to changes in the quality and availability of essential resources for feeding nymphs.  相似文献   

5.
Hemlock woolly adelgid, Adelges tsugae Annand (Homoptera: Adelgidae), is native to Japan where it is an innocuous inhabitant of Tsuga diversifolia Masters and T. sieboldii Carriere throughout their natural growing areas. Native adelgid populations are regulated by host resistance and natural enemies, in particular the oribatid mite, Diapterobates humeralis (Hermann) and the coccinellid beetle, Pseudoscymnus tsugae Sasaji and McClure. Invading populations of A. tsugae in western North America on T. heterophylla Sargent and T. mertensiana Carriere are mainly regulated by host resistance. However, invading populations in eastern North America attain damaging levels on T. canadensis (L.) Carriere and T. caroliniana Engelmann and are regulated mainly by weather and negative density-dependent feedback mechanisms related to host deterioration. Although A. tsugae is only passively dispersed by wind, birds, forest-dwelling mammals and humans, it is spreading at an alarming rate and is sufficiently cold hardy to threaten the existence of the two eastern hemlock species throughout their natural ranges. The current hope for suppressing invading populations of hemlock woolly adelgid in eastern North America lies with the exotic predator, P. tsugae. Extensive laboratory studies of the biology and predatory ability of P. tsugae revealed that it feeds on all life stages of its prey, that its multivoltine life cycle is well synchronized with that of the adelgid, and that it has great potential for biological control. We have reared and released nearly 130,000 adults of P. tsugae in forests in Connecticut, New Jersey and Virginia during the past four years. P. tsugae has reproduced, dispersed, overwintered and reduced densities of hemlock woolly adelgid by 47–88% in only five months on release branches at these sites. Current studies are investigating the long-term ability of P. tsugae to regulate invading populations of A. tsugae in eastern North America.  相似文献   

6.
1 The seasonal synchrony between the exotic predator, Pseudoscymnus tsugae and its prey, the hemlock woolly adelgid, Adelges tsugae, was investigated in field cages and in the forest in Connecticut, U.S.A. from 1997–1999. 2 In early spring, egg to adult development took 45 d at 18.7 °C, 39.7 d at 20.2 °C and 31.5 d at 22.7 °C. Earliest emerging F1 adults mated and oviposited in the same year. whereas F1 and F2 females emerging later in the summer mated and reserved most of their egg complement for the following year. 3 A second generation of P. tsugae is possible in Connecticut but may be delayed by cool mid‐spring temperatures. Individuals of three generations of P. tsugae, including overwintering survivors, may coexist in July and August and adults can be found year‐round with A. tsugae in infested hemlock forests. 4 A linear regression model for development from egg to adult under field temperatures gave good agreement with results from constant temperature findings. The model predicted a lower development threshold of 9.5 °C and a sum of effective temperatures of 405 day °C. Development time of P. tsugae is shorter relative to its prey A. tsugae and generation time ratios of predator to prey was 0.16–0.5, with an advantage conferred on the coccinellid. 5 Overwintering ability and behaviour were determined in 1998–1999 and adults remained on infested hemlock branches throughout a mild winter, becoming reproductively active in mid‐April. Peak oviposition period extended from April to July, in synchrony with peak oviposition and developing stages of two generations of A. tsugae.  相似文献   

7.
Although sap-feeding insects are known to negatively affect plant growth and physiology, less is known about sap-feeding insects on woody plants. Adelges tsugae (Annand Hemiptera: Adelgidae), the hemlock woolly adelgid, is an invasive sap-feeding insect in eastern North America that feeds on and kills Tsuga canadensis (L. Carrière), eastern hemlock. Newly hatched adelgid nymphs crawl to young unattacked tissue, settle and immediately enter diapause (aestivation) while attached to hemlock in summer. We assessed the effect of A. tsugae infestation on T. canadensis growth and physiology by analyzing hemlock growth on lateral and terminal branches, water potential, photosynthesis, stomatal conductance, and foliar nitrogen (%N). A. tsugae infestation greatly decreased terminal and lateral growth of eastern hemlock. In addition, A. tsugae presence reduced photosynthesis by 10 % in September and 36 % in October. Adelgid-infested hemlocks also exhibited signs of water stress that included notable reductions in water potential and stomatal conductance. These responses shed light on possible mechanisms of adelgid-induced mortality.  相似文献   

8.
Hemlocks are significant components of temperate forests of Asia and North America, and in eastern North America, they are threatened by an exotic herbivore, the hemlock woolly adelgid, Adelges tsugae. The adelgid is native to Asia and northwestern North America, but is highly invasive in eastern North America where natural enemies are unable to regulate populations and eastern hemlock, Tsuga canadensis, is highly susceptible. In order to gain a better understanding of the metabolic effects of A. tsugae on eastern hemlock, we evaluated its effects on photosynthesis and also evaluated photosynthesis on Tsuga species from various geographic origins. We measured light-saturated photosynthesis (A sat) and dark respiration of T. canadensis that were infested with adelgid and found a significant decrease in A sat and a small but significant increase in dark respiration, suggesting that A. tsugae triggers a physiological response in eastern hemlock by decreasing metabolic activity. In a separate experiment, we also measured A sat of five different hemlock species, including eastern hemlock, the Pacific Northwestern T. heterophylla and T. mertensiana, and the Asian T. diversifolia and T. chinensis. Only weakly significant differences in A sat were found, with the highest rate in the eastern North American T. canadensis and the lowest in the Pacific Northwestern T. mertensiana. The relatively high photosynthetic rate of T. canadensis could possibly play a role in its susceptibility to A. tsugae. A better understanding of this metabolic response could help develop effective management strategies for combating the highly invasive A. tsugae.  相似文献   

9.
Summary The relationship between the reproductive success of two Japanese scale insects, Fiorinia externa Ferris and Nuculaspis tsugae (Marlatt) (Homoptera: Diaspididae) and the concentrations of 15 terpenoids in needles of Tsuga sieboldii, the Japanese host, and T. canadensis, the North American host, was investigated during 1981 and 1982 in a field plot of 8-year-old trees in New Haven, CT, USA. Both scales produced significantly more eggs per female on T. sieboldii than on T. canadensis. Stepwise multiple regression analyses indicated that the variation in fecundity within both scales was strongly associated with variation in the terpenoid profile between tree species.General patterns of phytochemical variation between the two Tsuga species based on differences in the concentration of terpenoids having similar chemical structures were revealed by the multivariate statistical technique, principal components analysis. The volatile leaf oil profile of T. sieboldii was relatively richer in terpene alcohols, while that of T. canadensis was relatively richer in terpene hydrocarbons and terpene acetates. The individual terpenoids were then assigned to one of five groups based on chemical structure and regression analyses were repeated; fecundity of both scales increased with increasing concentration of terpenoid alcohols. Fecundity of F. externa was negatively associated with the relative concentration of acyclic terpenes but the opposite was true for N. tsugae. Analysis of foliar terpenoids may provide a basis for predicting the relative susceptibility of Tsuga species to attack by F. externa and N. tsugae.  相似文献   

10.
Although a range of studies have suggested that competition plays a critical role in determining herbivore assemblages, there has been little work addressing the nature of interactions between competing invasive herbivores. We report the results of research on the hemlock woolly adelgid Adelges tsugae (‘HWA’) and elongate hemlock scale Fiorinia externa (‘EHS’), invasive herbivores that both feed on eastern hemlock (Tsuga canadensis). HWA has been linked to hemlock mortality throughout the East Coast of the US; the loss of hemlock threatens to permanently alter surrounding ecosystems. We assessed the spread and impact of both species by resurveying 142 hemlock stands across a 7,500 km2 latitudinal transect, running from coastal CT to northern MA, for HWA and EHS density as well as hemlock mortality. These stands had been previously surveyed in either 1997–1998 (CT) or 2002–2004 (MA). While the number of HWA-infested stands has increased, per-stand HWA density has substantially decreased. In contrast, EHS distribution and density has increased dramatically since 1997–1998. Hemlock mortality was much more strongly related to HWA density than to EHS density, and many stands remain relatively healthy despite an overall increase in hemlock mortality. There was a positive correlation between HWA and EHS densities in stands with low mean HWA densities, suggesting the potential for host-plant-mediated facilitation of EHS by HWA. Our findings underline the importance of research explicitly addressing interactions between competing invasive species, and of determining the potential consequences of these interactions for the invaded ecosystem.  相似文献   

11.
The hemlock woolly adelgid, Adelges tsugae Annand is an invasive insect that frequently causes hemlock (Tsuga spp.) mortality in the eastern United States. Studies have shown that once healthy hemlocks become infested by the adelgid, nutrients are depleted from the tree, leading to both tree decline and a reduction of the adelgid population. Since A. tsugae is dependent on hemlock for nutrients, feeding on trees in poor health may affect the ability of the insect to obtain necessary nutrients and may consequently affect their physiological and population health. Trees were categorized as lightly or moderately impacted by A. tsugae based on quantitative and qualitative tree health measurements. Population health of A. tsugae on each tree was determined by measuring insect density and peak mean fecundity; A. tsugae physiological health was determined by measuring insect biomass, total carbon, carbohydrate, total nitrogen, and amino nitrogen levels. Adelges tsugae from moderately impacted trees exhibited significantly greater fecundity than from lightly impacted trees. However, A. tsugae from lightly impacted hemlocks contained significantly greater levels of carbohydrates, total nitrogen, and amino nitrogen. While the results of the physiological analysis generally support our hypothesis that A. tsugae on lightly impacted trees are healthier than those on moderately impacted trees, this was not reflected in the population health measurements. Adelges tsugae egg health in response to tree health should be verified. This study provides the first examination of A. tsugae physiological health in relation to standard A. tsugae population health measures on hemlocks of different health levels.  相似文献   

12.
Eastern hemlock in the Great Smoky Mountains National Park is currently threatened by the hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae). As part of a management plan against this invasive insect pest, about 350,000 adults of the predatory beetle Sasajiscymnus tsugae (Sasaji and McClure) (Coleoptera: Coccinellidae) were released at ca. 150 sites in the Park from 2002 to 2007. Of these adult release sites, 33 were sampled in 2008 and 2009 using beat-sheet sampling for 4 man-hours. Sasajiscymnus tsugae adults (n=78) and/or larvae (n=145) were recovered from seven sites (21.2% of the release sites sampled). Recovery of S. tsugae was significantly associated with older release sites, with the most beetles recovered from 2002 release sites. These results indicate that S. tsugae may require more time (i.e., 5–7 years) than anticipated for population densities to reach readily detectable levels in some areas.  相似文献   

13.
Stands of eastern hemlock [(Tsuga canadensis (L.) Carrière] in the northeastern United States are in decline, in part from the attack of elongate hemlock scale, Fiorinia externa Ferris (Hemiptera: Diaspididae). From 2001 to the present, a natural epizootic has been observed in populations of F. externa. Initially discovered at the Mianus River Gorge Preserve in Bedford, New York, the epizootic has also been detected in Pennsylvania, New Jersey and Connecticut. Understanding and assessing the identity of the pathogenic micro‐organisms responsible for this natural mortality is crucial for developing biological controls for this pest. We have isolated and taxonomically and genetically identified entomopathogens, phytopathogens and endophytic fungi associated with F. externa. Isolates of the following were obtained: Colletotrichum sp., Lecanicillium lecanii, Beauveria bassiana, Metarhiziopsis microspora, Myriangium sp., Mycosphaerella sp. anamorph, Nectria sp., Botrytis sp., Phialophora sp. and Fusarium sp.  相似文献   

14.
The coexistence of two introduced predatory species, Laricobius nigrinus Fender and Sasajiscymnus tsugae (Sasaji and McClure), and a native predator, L. rubidus LeConte, on eastern hemlock was documented for the first time. Details of their coexistence and implications to management of hemlock woolly adelgid, Adelges tsugae Annand, are discussed.  相似文献   

15.

Background and Aims

Exotic herbivores that lack a coevolutionary history with their host plants can benefit from poorly adapted host defences, potentially leading to rapid population growth of the herbivore and severe damage to its plant hosts. The hemlock woolly adelgid (Adelges tsugae) is an exotic hemipteran that feeds on the long-lived conifer eastern hemlock (Tsuga canadensis), causing rapid mortality of infested trees. While the mechanism of this mortality is unknown, evidence indicates that A. tsugae feeding causes a hypersensitive response and alters wood anatomy. This study investigated the effect of A. tsugae feeding on biomechanical properties at different spatial scales: needles, twigs and branches.

Methods

Uninfested and A. tsugae-infested samples were collected from a common garden experiment as well as from naturally infested urban and rural field sites. Tension and flexure mechanical tests were used to quantify biomechanical properties of the different tissues. In tissues that showed a significant effect of herbivory, the potential contributions of lignin and tissue density on the results were quantified.

Key Results Adelges tsugae

infestation decreased the abscission strength, but not flexibility, of needles. A. tsugae feeding also decreased mechanical strength and flexibility in currently attacked twigs, but this effect disappeared in older, previously attacked branches. Lignin and twig tissue density contributed to differences in mechanical strength but were not affected by insect treatment.

Conclusions

Decreased strength and flexibility in twigs, along with decreased needle strength, suggest that infested trees experience resource stress. Altered growth patterns and cell wall chemistry probably contribute to these mechanical effects. Consistent site effects emphasize the role of environmental variation in mechanical traits. The mechanical changes measured here may increase susceptibility to abiotic physical stressors in hemlocks colonized by A. tsugae. Thus, the interaction between herbivore and physical stresses is probably accelerating the decline of eastern hemlock, as HWA continues to expand its range.  相似文献   

16.
ABSTRACT

The green lacewing Chrysoperla externa is a widespread species in the Neotropical region that occurs in different habitats. Its presence in Eucalyptus plantations infested with Glycaspis brimblecombei (Hemiptera: Aphalaridae) and Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) suggests that this lacewing might feed on one or both exotic pest species. In order to evaluate C. externa as a potential biocontrol agent of the eucalyptus pests, the prey consumption, development, survival and reproduction of the predator were evaluated under laboratory conditions. C. externa larvae consumed nymphs of both pest species. Developmental time and reproduction parameters of C. externa fed G. brimblecombei were similar to those obtained with the factitious prey Sitotroga cerealella. When fed on T. peregrinus, C. externa showed a delay in its developmental time and the emerged adults were malformed. The results of this study suggest that the green lacewing is a good candidate to be used in augmentative or conservative biological control programmes against G. brimblecombei. Further research is necessary to analyse the potential of this predator as a biocontrol agent under field conditions.  相似文献   

17.
The ability to survive winter temperatures is a key determinant of insect distributional ranges and population dynamics in temperate ecosystems. Although many insects overwinter in a state of diapause, the hemlock woolly adelgid [Adelges tsugae (Annand)] is an exception and instead develops during winter. We studied a low density population of A. tsugae, which undergoes two generations per year, in a forested area in which its only available host plant, eastern hemlock (Tsuga canadensis), was patchy and scarce. In January 2014, this area also experienced an exceptionally cold winter due to a southward shift in the North Polar Vortex. We used 3 years of systematic sampling prior to the 2014 cold wave, and 1 year following, to quantify the effect of the 2014 cold wave on A. tsugae population dynamics. We observed a strong negative correlation between the number of days below sub-zero temperature thresholds and A. tsugae, and estimated that the 2014 cold wave resulted in at least a 238% decrease in its population growth rate. However, we also observed that the detrimental effect of the 2014 cold wave to A. tsugae was short-lived, as populations measured in the late summer of 2014 rebounded to pre-2014 cold wave densities. This study highlights the effect that cold winter weather events can have on a winter active insect species, and the speed at which populations can recover from stochastic mortality events.  相似文献   

18.
Tetraphleps galchanoides Ghauri (Hemiptera: Anthocoridae) nymphs were collected from hemlock woolly adelgid (HWA) Adelges tsugae Annand (Hemiptera: Adelgidae) infested Tsuga sp. in Baoxing, Sichuan, China. First and second stage nymphs collected from foliage shipped from China; were reared to adults and tested for feeding rates and host preferences. They were reared at 5, 8, 12, and 15 ± 1 °C from November to December, January to March, April, and May to June, respectively, in the quarantine laboratory at Virginia Polytechnic Institute and State University. At 8 °C, development time was 15, 20, and 40 days for the N-III, IV, and V nymphal stages, respectively. Adult males lived 83 days with a range of 21–147 days. A single adult female lived for 21 days. At 5 °C, second stage T. galchanoides nymphs consumed 0.8 HWA nymphs per day, and 2.0 HWA nymphs per day at the N-V stage. At 8 °C, consumption of HWA nymphs ranged from 1.3 to 3.4 nymphs per day for the N-III to N-V stages, respectively. Adult T. galchanoides consumed more HWA eggs than HWA adults, pine bark adelgid (PBA) Pineus strobi (Hartig) (Hemiptera: Adelgidae) adults, and eggs in no-choice tests. In choice tests with HWA eggs and PBA eggs, more HWA eggs were eaten. Adult and nymph body measurements are presented for determination of nymphal instars.  相似文献   

19.
Eastern hemlock (Tsuga canadensis [L.] Carr.) is an ecologically important tree species experiencing severe mortality across much of its eastern North American distribution, caused by infestation of the exotic hemlock woolly adelgid (Adelges tsugae Annand). To guide gene conservation strategies for this imperiled conifer, we conducted a range-wide genetic variation study for eastern hemlock, amplifying 13 highly polymorphic nuclear microsatellite loci in 1,180 trees across 60 populations. The results demonstrate that eastern hemlock exhibits moderate inbreeding, possibly a signature of a prehistoric decline associated with a widespread insect outbreak. Contrary to expectations, populations in formerly glaciated regions are not less genetically diverse than in the putative southern refugial region. As expected, peripheral disjunct populations are less genetically diverse than main-range populations, but some are highly genetically differentiated or contain unique alleles. Spatially explicit Bayesian clustering analyses suggest that three or four Pleistocene glacial refuges may have existed in the Southeastern United States, with a main post-glacial movement into the Northeast and the Great Lakes region. Efforts to conserve eastern hemlock genetic material should emphasize the capture of broad adaptability that occurs across the geographic range of the species, as well as genetic variability within regions with the highest allelic richness and heterozygosity, such as the Southern Appalachians and New England, and within disjunct populations that are genetically distinct. Much genetic variation exists in areas both infested and uninfested by the adelgid.  相似文献   

20.
  • 1 Post‐release distributions of Laricobius nigrinus, a biological control predator of hemlock woolly adelgid Adelges tsugae Annand, were evaluated at eight hemlock forests in the eastern U.S.A.
  • 2 Vertical dispersal of F1 and F2L. nigrinus were assessed from within three crown strata (<7, 7–15 and >15 m) at four release sites.
  • 3 Horizontal distributions of L. nigrinus within the forest surrounding central release areas were observed in two separate studies, which included (i) release and monitor to capture parent and F1 movement by sampling the immature life stages of the offspring, and (ii) assessment of F3 to F6 generations where beetles were previously determined to be established.
  • 4 Laricobius nigrinus, released on lower crown branches, oviposited within the upper crown stratum and were slow to disperse from release trees. Monitoring L. nigrinus only from the lower crown would likely underestimate its presence because 86% of the F2 generation were detected above 15 m.
  • 5 By the fifth generation, the frequency distributions of larvae increased at increasing distance from release areas; larvae were recovered at a maximum distance of approximately 400 m and the spread rate was approximately 39 m/year.
  • 6 Slow dispersal of L. nigrinus and uninterrupted recovery of six generations in the presence of fluctuating prey density support its continued release as part of the A. tsugae biological control programme. These data contribute toward improved release strategies and monitoring for this biological control agent.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号