首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The use of drugs in the study of excitation-contraction (E-C) coupling in skeletal muscle during the 25-30 years and the role of these studies in the development of the "trigger-calcium" hypothesis was reviewed. In early studies, caffeine was used as a tool to test the function of the intracellular contraction apparatus when the twitch or depolarization contracture was eliminated by a procedure that was thought to block the coupling part of the E-C coupling process. Later it was shown that caffeine produced contractures by releasing Ca2+ ions from intracellular binding sites and then that caffeine produced this effect by sensitizing the sarcoplasmic reticulum to Ca2+-induced Ca2+ release. More recently, organic calcium channel blocking drugs (verapamil, D-600, and nitrendipine) were used to confirm earlier results showing that depolarization contractures but not twitches require the entrance into the cells via the slow Ca2+ channels of extracellular calcium ions for E-C coupling. Most recently, we have investigated the effects of TMB-8 (8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate) on E-C coupling in frog skeletal muscle. This compound was shown by other workers to act in several tissues by stabilizing Ca2+ bound at intracellular sites. It was found that at the appropriate concentration TMB-8 blocked twitches but neither high K+ nor caffeine induced contractures. These results suggest that TMB-8 blocks twitches by preventing the release of Ca2+ ions bound to the intracellular surface of the t-tubular membrane, which is often called the store of "trigger-calcium" ions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The role of inositol trisphosphate as a chemical messenger in excitation-contraction coupling is discussed, both in terms of positive and negative results. The evidence presented includes experiments on the effect of inositol trisphosphate in intact and skinned fibers, in calcium release from isolated sarcoplasmic reticulum vesicles, in activation of single calcium release channels incorporated in planar bilayers, and biochemical experiments that have established the presence of all the intermediate steps involved in the metabolism of phosphoinositides, both in intact muscle and in isolated membranes. From these results, it is clear that a role for inositol triphosphate in skeletal muscle function is highly likely; whether this molecule is the physiological messenger in excitation-contraction coupling remains to be established.  相似文献   

5.
Aromatic monocarboxylic acids are known to significantly potentiate the mechanical response of skeletal muscle fibers. In this study we investigated the effects of enantiomers of 2-(4-chlorophenoxy)propionic acid, chemically one of the simplest aromatic monocarboxylic acids with chiral properties, on mechanical threshold and charge movement in frog skeletal muscle. The R(+), but not the S(-), enantiomer lowered rheobase mechanical threshold and shifted charge movement to more negative potentials. The R(+) enantiomer also significantly slowed charge movement kinetics, with pronounced delays of the OFF charge transitions. These effects required high temperature for their production. The stereospecific actions of the R(+) enantiomer are interpreted in terms of a specific interaction of this compound at an anion-sensitive site involved in excitation-contraction coupling, most likely on the dihydropryidine-sensitive voltage sensor in the T-system.  相似文献   

6.
2H2O (99.8%) Ringer's solution greatly reduces the twitch and tetanus of frog sartorius muscle and, as specially shown here, slows the onset features of the mechanical output of the twitch by: (a) increasing the time (LR) from stimulus to start of latency relaxation; (b) slowing the developmet of the latency relaxation, and (c) greatly decreasing the rate of onset of tension development. These changes reflect effects of 2H2O on excitation-contraction coupling and they represent the critical direct effects of 2H2O on muscle since it does not depress either the action potential or the intrinsic myofibrillar contractility. The increase in LR is attributed to slowed inward electrical propagation in the T-tubule. But the critical effect of 2H2O on frog muscle is to greatly depress mobilization of activator Ca2+. The depression of the Ca2+ mobilization and of its effects on the activation of contraction evidently result from (a) a lowered rate of release of Ca2+ from the sarcoplasmic reticulum, as indicated by the slowed development of the latency relaxation, (b) a decreased amount of Ca2+ released in a twitch, and (c) a reduced speed of diffusion of the Ca2+ to the contractile filaments. The depressed mobilization of Ca2+ is apparently the essential cause of 2H2O's general depression of twitch and tetanus output.  相似文献   

7.
8.
Much recent progress has been made in our understanding of the mechanism of sarcoplasmic reticulum Ca2+ release in skeletal muscle. Vertebrate skeletal muscle excitation-contraction (E-C) coupling is thought to occur by a mechanical coupling mechanism involving protein-protein interactions that lead to activation of the sarcoplasmic reticulum (SR) ryanodine receptor (RyR)/Ca2+ release channel by the voltage-sensing transverse (T–) tubule dihydropyridine receptor (DHPR)/Ca2+ channel. In a subsequent step, the released Ca2+ amplify SR Ca2+ release by activating release channels that are not linked to the DHPR. Experiments with mutant muscle cells have indicated that skeletal muscle specific DHPR and RyR isoforms are required for skeletal muscle E-C coupling. A direct functional and structural interaction between a DHPR-derived peptide and the RyR has been described. The interaction between the DHPR and RyR may be stabilized by other proteins such as triadin (a SR junctional protein) and modulated by phosphorylation of the DHPR.  相似文献   

9.
A new method for excitation-contraction uncoupling in frog skeletal muscle   总被引:11,自引:0,他引:11  
The mechanical activity of frog sartorius muscle fibers can be uncoupled from the electrical activity of their surface membranes by immersing the preparation in Ringer solution containing either 1.5 or 2.0 M of formamide for 15--20 min. This uncoupling is not reversed when the muscle is transferred to normal frog Ringer solution. Formamide does not affect the electrical activity of the sciatic nerve branch, and both endplate potentials and miniature endplate potentials may be recorded from the uncoupled muscles. Prolonged exposure to formamide, beyond the time needed to paralyze, causes neuromuscular block.  相似文献   

10.
The effect of the "chaotropic" anion, perchlorate, on the activation of contraction has been studied in voltage clamped frog skeletal muscle fibers. It was found that the voltage dependence of either the contractile force or the intramembrane charge movement was shifted towards more negative membrane potentials. The maximum values of force or charge movement attained with large depolarizing pulses did not change significantly. It is concluded that a specific perchlorate effect on the movement of charged particles can explain the potentiating effect of perchlorate anions on contractile force, strengthening the view that these charged particles serve as voltage sensors regulating Ca2+ release from the sarcoplasmic reticulum.  相似文献   

11.
12.
The sarcoplasmic reticulum (SR) of skeletal muscle is an intracellular membranous network that controls the myoplasmic Ca2+ concentration and the contraction-relaxation cycle. Ca2+ release from the terminal cisternae (TC) region of the SR evokes contraction. How electrical depolarization of the transverse tubule is linked to Ca2+ release from the junctionally associated TC is still largely unknown. Independent evidence has been recently obtained indicating that either inositol trisphosphate (IP3) or (and) Ca2+ is (are) the chemical transmitter(s) of excitation-contraction coupling. Here we outline the experimental data in support of each transmitter and discuss possible interactive roles of Ca2+ and IP3.  相似文献   

13.
A principal step in the process leading to muscle contraction is the intracellular release of Ca2+. We have detected and compared some physical and chemical events that reflect Ca2+ release in contracting frog skeletal muscle cells, described the effects of some agents that are believed to alter intracellular Ca2+ release during contraction, and speculated about the role of Ca2+ release in influencing some of the mechanical properties of frog muscle. The specific physical features recorded were changes in striation spacing, myofibrillar orientation, and force development. The chemical feature was the relative change in intracellular [Ca2+] recorded as light emission from cells microinjected with the Ca2+-sensitive protein aequorin. The presence or absence of a correlation among these variables has been used (i) to evaluate the action of some agents thought to change intracellular Ca2+ release in excitation--contraction (E--C) coupling, (ii) to further substantiate the effects of cell length on Ca2+ release, and (iii) to examine some details of models for E--C coupling. The results showed that potentiating agents enhance and prolong intracellular Ca2+ release without changing the rate of Ca2+ removal during E--C coupling. This extra Ca2+ does not produce the same effect on contractions at all lengths. Contractility is inversely related to cell length, and Ca2+-induced activation is normally less than maximum not only at short lengths but also at optimal striation spacings.  相似文献   

14.
On exposure (E) of frog semitendinosus muscle to 400 mmol/l urea (U) in sodium chloride Ringer's solution, the tension development to isoK+ solutions decreased, while in choline chloride Ringer it increased. On quick removal (R) of urea, always a block of excitation-contraction (E-C) coupling occurred accompanied by transient or persistent swelling of fibres and a similar but definite decrease of their resting membrane potential (Fig. 2). Muscle contraction could be elicited by caffeine even after UER-treatment but then only the slow tension increase (second phase of normal caffeine contraction) occurred (Fig. 3a). The fast tension increase to caffeine (first phase) could be restored if after UER-treatment 5 mmol/l mannitol (Fig. 3b), a 20 min treatment with choline chloride (Fig. 4a) or sodium isethionate (Fig. 4b) Ringer's solution of double osmolarity were applied. Caffeine contraction could not be elicited when sodium chloride Ringer's solution of double osmolarity was used under similar conditions (Fig. 5). E-C block to isoK+ solution persisted in all these experiments. E-C coupling could partially be restored by short treatment of muscle with caffeine (Figs 6a, b).  相似文献   

15.
The contractile response to acidosis is the final product of a number of different changes in the excitation-contraction coupling pathway: (i) Cai increases and subsequently decreases during acidosis; (ii) the action potential becomes longer; (iii) the sensitivity of the contractile proteins to Ca2+ decreases. The increase of Cai and the lengthening of the action potential may help to maintain contractile function, although this advantage may be offset if spontaneous Ca2– release from the s.r. occurs, secondary to the increase of Cai. The recovery of force shown in figure 1 occurs at a time when the calcium transient is decreasing, and therefore represents an increasing sensitivity of the contractile proteins to Cai, probably due to a recovery of intracellular pH(6), although it is also possible that a disappearance of spontaneous Ca2+ releases from the s.r. may be contributing [2].  相似文献   

16.
17.
The consequences of ionic current flow from the T system to the sarcoplasmic reticulum (SR) of skeletal muscle are examined. The Appendix analyzes a simple model in which the conductance gx, linking T system and SR, is in series with a parallel resistor and capacitor having fixed values. The conductance gx is supposed to increase rapidly with depolarization and to decrease slowly with repolarization. Nonlinear transient currents computed from this model have some of the properties of gating currents produced by intramembrane charge movement. In particular, the integral of the transient current upon depolarization approximates that upon repolarization. Thus, equality of nonlinear charge movement can occur without intramembrane charge movement. A more complicated model is used in the text to fit the structure of skeletal muscle and other properties of its charge movement. Rectification is introduced into gx and the membrane conductance of the terminal cisternae to give asymmetry in the time- course of the transient currents and saturation in the curve relating charge movement to depolarization, respectively. The more complex model fits experimental data quite well if the longitudinal tubules of the sarcoplasmic reticulum are isolated from the terminal cisternae by a substantial resistance and if calcium release from the terminal cisternae is, for the most part, electrically silent. Specific experimental tests of the model are proposed, and the implications for excitation-contraction coupling are discussed.  相似文献   

18.
The effects of the muscle relaxant dantrolene on steps of excitation-contraction coupling were studied on fast twitch muscles of rodents. To identify the site of action of the drug, single fibers for voltage-clamp measurements, heavy SR vesicles for calcium efflux studies and solubilized SR calcium release channels/RYRs for lipid bilayer studies were isolated. Using the double Vaseline-gap or the silicone-clamp technique, dantrolene was found to suppress the depolarization-induced elevation in intracellular calcium concentration ([Ca2+]i) by inhibiting the release of calcium from the SR. The suppression of [Ca2+]i was dose-dependent, with no effect at or below 1 microM and a 53 +/- 8% (mean +/- SEM, n = 9, cut fibers) attenuation at 0 mV with 25 microM of extracellularly applied dantrolene. The drug was not found to be more effective if injected than if applied extracellularly. Calculating the SR calcium release revealed an equal suppression of the steady (53 +/- 8%) and of the early peak component (46 +/- 6%). The drug did not interfere with the activation of the voltage sensor in as much as the voltage dependence of both intramembrane charge movements and the L-type calcium currents (I(Ca)) were left, essentially, unaltered. However, the inactivation of I(Ca) was slowed fourfold, and the conductance was reduced from 200 +/- 16 to 143 +/- 8 SF(-1) (n = 10). Dantrolene was found to inhibit thymol-stimulated calcium efflux from heavy SR vesicles by 44 +/- 10% (n = 3) at 12 microM. On the other hand, dantrolene failed to affect the isolated RYR incorporated into lipid bilayers. The channel displayed a constant open probability for as long as 30-50 min after the application of the drug. These data locate the binding site for dantrolene to be on the SR membrane, but be distinct from the purified RYR itself.  相似文献   

19.
20.
Manifestations of excitation-contraction (EC) coupling of skeletal muscle were studied in the presence of metal ions of the alkaline and alkaline-earth groups in the extracellular medium. Single cut fibers of frog skeletal muscle were voltage clamped in a double Vaseline gap apparatus, and intramembrane charge movement and myoplasmic Ca2+ transients were simultaneously measured. In metal-free extracellular media both charge movement of the charge 1 type and Ca transients were suppressed. Under metal-free conditions the nonlinear charge distribution was the same in depolarized (holding potential of 0 mV) and normally polarized fibers (holding potentials between -80 and -90 mV). The manifestations of EC coupling recovered when ions of groups Ia and IIa of the periodic table were included in the extracellular solution; the extent of recovery depended on the ion species. These results are consistent with the idea that the voltage sensor of EC coupling has a binding site for metal cations--the "priming" site--that is essential for function. A state model of the voltage sensor in which metal ligands bind preferentially to the priming site when the sensor is in noninactivated states accounts for the results. This theory was used to derive the relative affinities of the various ions for the priming site from the magnitude of the EC coupling response. The selectivity sequence thus constructed is: Ca greater than Sr greater than Mg greater than Ba for group IIa cations and Li greater than Na greater than K greater than Rb greater than Cs for group Ia. Ca2+, the most effective of all ions tested, was 1,500-fold more effective than Na+. This selectivity sequence is qualitatively and quantitatively similar to that of the intrapore binding sites of the L-type cardiac Ca channel. This provides further evidence of molecular similarity between the voltage sensor and Ca channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号