首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Plant regeneration of buffalograss `Texoka' was achieved through both somatic embryogenesis and organogenesis by culturing immature male inflorescences collected from field-grown plants. Three passages of subculture for calluses derived from male `Texoka' on medium containing 2.25, 4.5, or 9 M 2,4-D combined with either 0.44 M or 1.32 M BA led to shoot formation via organogenesis. Higher concentrations of 2,4-D (4.5 or 9 M) resulted in higher percentages of embryogenic callus while 2,4-D at 2.25 M generated shoot-producing callus but with a lower percentage of embryogenic callus. Transfer of calluses from medium containing 4.5 M 2,4-D and 0.44 M BA to the somatic embryo initiation medium containing 0.9 M 2,4-D gelled with either 7 g 1–1 agar or 3 g 1–1 Gelrite led to the formation of somatic embryos. Somatic embryo initiation medium gelled with 3 g 1–1 Gelrite led to significantly higher frequency of somatic embryo formation than in medium gelled with 7 g 1–1 agar. Callus of a female genotype `315' generated under similar treatments did not produce shoots or somatic embryos.  相似文献   

2.
钱永强  孙振元  韩蕾  巨关升 《生态学报》2010,30(15):3966-3973
异质环境下,克隆植物通过生理整合机制使资源在分株间实现共享,提高了其对异质性环境的适应能力,具有重要的生态进化意义,研究生理整合机制及其调控机理可为进一步发掘克隆植物应用潜力提供理论依据。以野牛草3个相连分株为材料,对其中一个分株用30%聚乙二醇6000(PEG-6000)模拟水分胁迫,通过Hoagland营养液培养试验,研究了异质水分环境下光合同化物在野牛草相连分株间的生理整合及分株叶片与根系内源激素ABA与IAA含量的变化规律。结果表明,14C-光合同化物在克隆片断内存在双向运输,但以向顶运输为主,异质水分环境下,受胁迫分株光合同化物的输出率明显降低,而与其相邻分株合成的光合同化物向受胁迫分株方向运输率明显增加;异质水分环境下,各分株ABA含量均明显增加,但以受胁迫的分株叶片及根系ABA的含量增加幅度最大,各分株IAA含量较对照均显著下降(P0.05),且以受胁迫分株IAA含量下降幅度最大;各分株叶片与根系ABA/IAA均显著提高(P0.05),相邻分株ABA/IAA增加幅度低于受胁迫分株。异质水分环境影响野牛草克隆分株间光合同化物的生理整合,且ABA与IAA在分株间光合同化物运输与分配过程中具有重要的调节作用。  相似文献   

3.
A procedure was established for the induction of regenerable calli from immature inflorescence segments of high-tannin cultivars of sorghum (Sorghum bicolor (L.) Moench). Murashige & Skoog's medium with several components altered was utilized for inducing, maintaining, and regenerating the cultures. Embryogenic calli formed at a frequency of 8–70% depending on the genotype. During a ten-month period, 3600 plants were regenerated from eight genotypes tested. Among the developmental stages of immature inflorescence tested (from differentiation of secondary branch primordia to floret formation) no critical differences were found in potential for callusing, embryogenesis or regeneration. Genotypic differences were observed in pigment production, embryogenic callus formation, shoot differentiation, and in maintenance of regeneration capacity.Abbreviations 2,4-D dichlorophenoxyacetic acid This is Journal Paper Number 11972 from the Purdue University Agricultural Experiment Station  相似文献   

4.
以盆栽野牛草克隆分株为材料,将克隆分株分别标记为O(姊株)和Y(妹株),设置连接组和断开组两种处理,其中,连接组中O分株和Y分株通过节间子相连,断开组则剪断分株节间子;两组处理的O分株光周期均设置为光照12h/黑暗12h,Y分株光周期均设置为黑暗12h/12h光照(恰好与O分株相反),经过7d的差异光周期处理后进行72h全光照稳定培养,并于全光照条件下在48h内连续测定各分株叶片超氧化物歧化酶(SOD),过氧化物酶(POD),过氧化氢酶(CAT),抗坏血酸过氧化物酶(APX)的活性以及丙二醛(MDA)的含量,探讨野牛草叶片酶促活性氧清除系统对差异光周期的响应特征。结果表明,差异光周期处理1周后,全光照条件下,断开状态的野牛草克隆分株O和Y间叶片中SOD、POD、CAT、APX活性以及MDA含量在24h内基本呈现相反的变化趋势,而野牛草相连克隆分株O和Y间叶片中以上指标在24h内呈现趋于一致的变化规律。研究发现,野牛草酶促活性氧清除系统活性在一天内呈现节律性表达模式,且差异光周期处理下的野牛草相连克隆分株的活性氧清除系统的活性的节律性变化趋于同步。  相似文献   

5.
Summary Efficient shoot regeneration of sugarcane (Saccharum spp. hybrid cv. CP84-1198) from embryogenic callus cultures has been obtained using thidiazuron (TDZ). Callus was placed on modified Murashige and Skoog (MS) medium containing 2.3 μM 2,4-dichlorophenoxyacetic acid (2,4-D), or 9.3 μM kinetin and 22.3 μM naphthaleneacetic acid (NAA) and compared with the same MS medium supplemented with 0.5, 1.0, 2.5, 5.0 or 10.0 μMTDZ, A11 TDZ treatments resulted in faster shoot regeneration than the kinetin/NAA treatment, and more shoot production than either the 2,4-D or kinetin/NAA treatments. Maximum response, as determined by total number of shoots (26 per explant) and number of shoots greater than 1 cm (4 per explant) 4 wk after initiation, was obtained with 1.0 μM TDZ. The shoots rooted efficiently on MS medium supplemented with 19.7 μM indole-3-butyric acid (IBA). These results indicate that TDZ effectively stimulates sugarcane plant regeneration from embryogenic callus, and may be suitable to use in genetic transformation studies to enhance regeneration of transgenic plants.  相似文献   

6.
Incorporation of AgNO3 (1–10 mg1-1) into the culture medium of Brassica oleracea var. gemmifera callus significantly improved growth and allowed long-term callus culture. In the absence of AgNO3, callus died shortly after removal from the hypocotyl explants. Regeneration of shoots from callus on low-hormone medium was also enhanced by AgNO3. Significant differences in shoot production were found between the three genotypes examined. Cv. Aries produced large numbers of shoots even in the absence of AgNO3. Investigation of callus production from the inbred parent lines of cv. Aries indicated that tissue culturability may be determined genetically.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid  相似文献   

7.
In order to evaluate the impact of ethylene in maize tissue culture, silver nitrate has been used as an inhibitor of ethylene action. Type II callus initiation rate was improved when immature embryos were cultured on a modified Murashige & Skoog medium containing various concentrations of silver nitrate (5, 10, 20 mgl-1). Regeneration ability of calli initiated and maintained in presence of silver nitrate was enhanced. No modification of callus growth rate neither of ethylene production has been detected.  相似文献   

8.
Enhanced shoot regeneration from Brassica campestris by silver nitrate   总被引:1,自引:0,他引:1  
Summary The morphogenetic response of Brassica campestris genotype R500 to inhibitors of ethylene biosynthesis and action was investigated. A medium containing 1.0 mg.l–1 NAA, 2.0 mg.l–1 BAP, and 30 or 60 M AgNO3 significantly enhanced both the percentage shoot regeneration and the number of shoots per cotyledon expiant. Although callus proliferation occurred on hypocotyl segments, no shoots were formed in response to AgNO3 with expiants older than five days. Cotyledons older than six days formed shoots only with AgNO3. Cobalt chloride at 20 and 30 M increased cotyledon shoot regeneration but was inferior to AgNO3. Hypocotyl segments were unresponsive. Salicylic acid at 25 and 50 M prevented both shoot regeneration and callusing without any obvious toxic effects. Removal of expiants from AgNO3 after 12 days did not alter the percentage of shoot regeneration but increased the number of shoots per expiant. This response was dependent on the level of BAP. Percentage shoot regeneration and number of shoots per cotyledon explant were not affected by removal of CoCl2. These results indicate that the poor regenerative capacity of this genotype may be related to ethylene biosynthesis or metabolism.Abbreviations NAA Naphthalene Acetic Acid - BAP 6-Benzylamino Purine - MS Murashige and Skoog Medium  相似文献   

9.
Summary Twenty-three independent kanamycin resistant lines were obtained after cocultivation of longterm embryogenic cultures of three Asparagus officinalis L. genotypes with an Agrobacterium tumefaciens strain harboring ß-glucuronidase and neomycin phosphotransferase II genes. All the lines showed ß-glucuronidase activity by histological staining. DNA analysis by Southern blots of the kanamycin resistant embryogenic lines and of a plant regenerated from one of them confirmed the integration of the T-DNA.Abbreviations GUS ß-glucuronidase - X-Gluc 5-bromo-4-chloro-3indolyl ß-D-glucuronic acid - NPT II neomycin phosphotransferase II  相似文献   

10.
Embryogenic calluses of sugarcane capable of regenerating green plants after long-term culture were sought. The largest quantities of embryogenic calluses were produced on Murashige & Skoog medium, but cultures maintained on Chu N6 medium remained embryogenic and totipotent longer. Both media contained 4.5 M 2,4-dichlorophenoxyacetic acid (2,4-d). The effect of supplements on somatic embryogenesis was examined. Kinetin (0.5 M) and 10% (v/v) coconut water in callus initiation medium were inhibitory to subsequent embryogenesis. Embryogenic calluses on N6 medium increased in fresh weight with proline concentration up to 90 mM. Maximum fresh weight was achieved with 5% sucrose. Although genotypic differences were observed, embryogenesis occurred in all 17 sugarcane clones tested. Embryogenic calluses of one cultivar regenerated green plants after 16 months, but suspensions were totipotent for only 8 months. Total number of regenerated plants decreased with time in culture, while the number of pale green plants increased starting after 5 months in culture.Published as Paper No. 785 in the journal series of the Experiment Station, HSPA  相似文献   

11.
Immature zygotic embryos of two wheat (Triticum aestivum L.) genotypes, known for their different ability to generate embryogenic callus, were used as initial explants to establish callus cultures. Embryogenic and non-embryogenic calluses were obtained from the competent genotype (`Combi'), while only non-embryogenic callus was produced by the incompetent one (`Devon'). The morphogenetic competence of each callus type was evaluated by transferring some segments to regeneration conditions. The endogenous hormone concentrations (free indole-3-acetic acid [IAA], abscisic acid [ABA], gibberellins 1, 3 and 20 [GAs], zeatin/zeatin riboside [Z/ZR] and N 6[2-isopentenyl] adenine/ N 6[2-isopentenyl] adenosine; [iP/iPA]) of the initial explants were determined by means of radio-immunoassay and showed that the only difference was the higher concentration of ABA found in the embryos of the most competent genotype; whose embryos showed a reduced rate of precocious germination. When analysing the endogenous hormone concentrations in the various callus types generated in each genotype, it was found that only differences in the free IAA concentrations were associated with variations in the morphogenic properties of the calluses. Higher concentrations of endogenous free IAA were typical of embryogenic callus cultures. It was also observed that a loss in the embryogenic competence of the calluses, due to a prolonged time of culture, occurred concomitantly with a reduction in free IAA concentrations, practically to the concentrations found in the non-embryogenic calluses.  相似文献   

12.
Cucumber (Cucumis sativus L.) leaf explants were cultured either continuously on standard medium containing 4.5 µM 2,4- dichlorophenoxyacetic acid (2,4-d) and 4.4 µM benzylaminopurine, or first cultured for various periods at different levels of 2,4-d, picloram or naphthaleneacetic acid (NAA), and then transferred to standard medium. When cultured continuously on standard medium, less than 10% of the explants formed embryogenic callus. Initial culture on picloram or NAA, or on 2,4-d at a low concentration (1.4 µM) did not result in any embryogenic callus formation. Embryogenic callus formation increased to 40% if during the initial phase of the culture (10 days), the 2,4-d concentration was raised to 14 µM. Prolonged culture on 14 µM 2,4-d resulted in less embryogenic callus formation.Abbreviations BA benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid  相似文献   

13.
The present study demonstrates the establishment of embryogenic tissue from seeds and (seedling-derived hypocotyls) shoot base explants derived from seedlings of Eremochloa ophiuroides. The highest percentage of callus induction obtained from seed and young shoot base explants was 52.0% and 66.6% on Murashige and Skoog (MS) basal media supplemented with 9.0 μM and 18.1 μM 2,4-dichlorophenoxyacetic acid (2,4-D), respectively. The type of callus obtained from both types of explants was off-white to yellow in color and non-friable and shiny in texture. Excised callus from the explants was subcultured onto fresh media of the same recipe for further proliferation. After 10–12 d of subculture, a yellow, globular, friable embryogenic callus was obtained from the initial callus. The highest percentage of embryogenic calli obtained at 40.0% was observed on media containing 2.2 μM 2,4-D. The highest regeneration rate of 46.6% was observed on MS media supplemented with 0.4 μM 2,4-D and 2.2 μM benzylaminopurine (BA). Regenerated shoots were rooted in MS basal medium. Plants with well-developed roots were transferred to pots containing a soil mix and acclimatized in greenhouse conditions. Four weeks post-transfer, acclimatized plants showed 100% survival and remained healthy and green. This is the first report of a successful method for induction of somatic embryogenesis with subsequent plant regeneration in centipede grass and demonstrates the establishment of embryogenic callus and efficient plant regeneration with potential application in the development of genetic transformation systems for centipede grass.  相似文献   

14.
Summary Mature zygotic embryos of eight (open-pollinated) families of loblolly pine (Pinus taeda L.) were cultured on eight different basal salt formulations, each supplemented with 36.2 μM 2,4-dichlorophenoxyacetic acid, 17.8 μM 6-benzyladenine, 18.6 μM kinetin, 500 mg l−1 casein hydrolysate, and 500 mg l−1 l-glutamine for 9 wk; embryogenic tissue was formed on cotyledons, hypocotyls, and radieles of mature zygotic embryos. Callus was subcultured on the callus proliferation medium, the same as the induction medium but with one-fifth concentration of auxin and cytokinin for 9 wk. On this medium a white to translucent, glossy, mucilaginous embryogenic callus containing embryogenic suspensor masses (ESMs) was obtained. The highest frequency of explants forming embryogenic tissue, 17%, occurred on a modified Murashige and Skoog salts basal medium containing the concentration of KNO3, Ca(NO3)2·4H2O, NH4NO3, KCl, ZnSO4·7H2O, and MnSO4·H2O, 720, 1900, 400, 250, 25.8, and 25.35 mg l−1, respectively. Embryogenic suspension cultures were established by culturing embryogenic callus in liquid callus proliferation medium. Liquid cultures containing ESMs were transferred to medium containing abscisic acid, polyethylene glycols, and activated charcoal for stimulating the production of cotyledonary somatic embryos. Mature somatic embryos germinated for 4–12 wk on medium containing indole-butyric acid, gibberellic acid, 6-benzyladenine, activated charcoal, and reduced sucrose concentration (15 g l−1). Two hundred and ninety-one regenerated plantlets were transferred to a perlite:peatmoss:vermiculite (1∶1∶1) mixture, then the plants were transplanted to soil in the earth, and 73 plantlets survived in the field.  相似文献   

15.
Crown and leaf slices of in vitro plantlets of a non-flowering Vetiveria zizanioides from Java were used to induce compact calli and to regenerate plantlets. The influence of different growth regulators (2,4-dichlorophenoxy acetic acid, 6-benzylaminopurine), sucrose concentrations (10–100 g l−1), cultivation in light or dark, and cultivation time on callus induction medium (6 or 12 weeks), on the induction of compact callus and the subsequent regeneration of plantlets was studied. Up to 75% of crown slices cultured on modified Murashige and Skoog medium supplemented with 2.26 μM 2,4-dichlorophenoxy acetic acid, 2.22 μM 6-benzylaminopurine and 75 g l−1 sucrose developed compact callus. For subsequent regeneration of plantlets, callus induction in the light for 6 weeks on the callus induction medium containing 10 g l−1sucrose, and subsequent transfer to the regeneration medium, was the best procedure, regenerating plantlets on around 60% of the crown or leaf slices, with up to 100 plantlets per slice. We have compared the efficiency of the above mentioned procedure with several other methods to regenerate plantlets. Our findings indicate that the procedure developed in this study was best in regenerating plantlets for the used vetiver variant. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Summary The role of ethylene and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey cv. Red Coat) was investigated. Explants were recalcitrant in culture, but exogenous application of ethylene inhibitor [20–30 M aminoethoxyvinylglycine (AVG) or AgNO3] enhanced shoot regeneration of explants grown on medium supplemented with 2 mg/l N6-benzyladenine and 1 mg/l 1-naphthaleneacetic acid. The best regeneration occurred in the medium containing AgNO3 in combination with AVG. Culture medium solidified with agarose in the presence of AgNO3 but not AVG was also beneficial to shoot regeneration. Exogenous putrescine, 2-chloroethylphosphonic acid and 1-aminocyclopropane-1-carboxylate had no effect on shoot regeneration. However, regeneration was greatly promoted by 10–25 mM putrescine in combination with 30 M AgNO3 or AVG. Explants with high regenerability grown in the presence of AgNO3 or in combination with putrescine emanated high levels of ethylene throughout the 21-d culture period. By contrast, AVG or putrescine alone resulted in a decrease in ethylene production. For rooting of shoot cuttings, IAA and IBA at 1–5 mg/l were more effective than NAA.Abbreviations ACC 1-aminocyclopropane-1-carboxylate - AVG aminoethoxyvinylglycine - BA N6-benzyladenine - CEPA 2-chloroethylphosphonic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - MS Murashige and Skoog (1962) medium - NAA 1-naphthaleneacetic acid - PAs polyamines - SAM S-adenosyl-L-methionine  相似文献   

17.
Du L  Bao M 《Plant cell reports》2005,24(8):462-467
An efficient and reproducible protocol is described for the regeneration of Cinnamomum camphora protoplasts isolated from cultured embryogenic suspension cells. Maximum protoplast yield (13.1±2.1×106/g FW) and viability (91.8±3.8%) were achieved using a mixture of 3% (w/v) cellulase Onozuka R10 and 3% (w/v) macerozyme Onozuka R10 in 12.7% (w/v) mannitol solution containing 0.12% (w/v) MES, 0.36% (w/v) CaCl2·2H2O, and 0.011% (w/v) NaH2PO4·2H2O. First divisions occurred 7–10 days following culture initiation. The highest division frequency (24.6±2.9%) and plating efficiency (6.88±0.8%) were obtained in liquid medium (MS) supplemented with 30 g l–1 sucrose, 0.7M glucose, 0.1 mg l–1 NAA, 1.0 mg l–1 BA, and 1.0 mg l–1 GA3. After somatic embryo induction and then shoot induction, the protoplast-derived embryos produced plantlets at an efficiency of 17.5%. Somatic embryos developed into well-rooted plants on MS medium supplemented with 1.0 mg l–1 3-indole butyric acid (IBA). Regenerated plants that transferred to soil have normal morphology.  相似文献   

18.
Embryogenic cell suspensions of rubber derived from immature inflorescences and inner integuments of immature fruits released 3.1 ± 0.2 × 107 protoplasts g-1 f. wt. (mean ± s.e.m, n = 10) and 3.2 ± 0.2 × 107 protoplasts g-1 f. wt., with mean viabilities of 83 ± 2% and 77 ± 8%, respectively. Sustained mitotic division was observed only when protoplasts were cultured in KPR liquid medium on nitrocellulose membranes overlying the same semi-solid medium containing Lolium multiflorum nurse cells. Protoplast-derived cell colonies were produced within 2 months of culture. Protoplast-derived cell colonies proliferated, upon subculture to MS-based regeneration medium, with 40% of the protoplast-derived calli developing somatic embryos. The latter germinated into plants on the same medium after 3 months of culture. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
橡胶树的花药愈伤组织在长期继代过程中,胚性易下降甚至丧失;而AgNO3作为乙烯活性抑制剂,被广泛应用于植物组织培养中.该研究以继代培养4 a以上的热研7-33-97花药愈伤组织为材料,在继代培养基中添加2.5 mg·L-1 AgNO3预培养35 d后,观察预培养前后愈伤组织表形及其细胞形态的变化,并设计不同浓度AgNO3及不同处理时间对其进行体胚诱导,90 d后分别统计胚状体总数和正常胚数.结果表明:浅黄色质地柔软的愈伤组织在含AgNO3的培养基上预培养后能转变成鲜黄色易碎愈伤组织,在倒置显微镜下前者大多表现为不规则多边形,细胞内含物较稀薄;而后者则呈圆形或椭圆形,细胞内含物丰富,属于典型的胚性细胞.在体胚诱导的第1个月添加5 mg·L-1 AgNO3能显著促进体胚的发生,AgNO3浓度升至10 mg·L-1时体胚发生受到抑制,且畸形胚的形成率显著增加;在含5 mg·L-1 AgNO3的培养基中培养2个月以上,体胚发育明显受阻,大部分形成畸形胚.该研究结果在一定程度上恢复了橡胶树长期继代花药愈伤组织的胚性能力,并提高了其体胚发生频率,为橡胶树花药胚性愈伤组织长期继代培养过程中胚性的保持提供了参考.  相似文献   

20.
Summary A protocol for high-frequency callus, somatic embryogenesis, and plant regeneration for Tripsacum is described. Plants were regenerated from complete shoot meristems (3–4 mm) via organogenesis and embryogenesis. In organogenesis, the shoot meristems were cultured directly on a high cytokinin medium comprising 5–10 mgl−1 (22.2–44.4 μM) 6-benzyladenine (BA). The number of multiple shoots varied from six to eight from each meristem. The time required for production of plants from organogenesis was rapid (4–6 wk). In contrast, callus was induced on an auxin medium and continuously cultured on an auxin medium for production of somatic embryos. Prolific callus with numerous somatic embryos developed within 3–4 wk when cultured on an auxin medium containing 5 mgl−1 (22.6μM), 2,4-dichlorophenoxyacetic acid (2,4-D). The number of shoots induced varied from two to five per callus. Regardless of the cultivars used, the frequency of callus induction and plant regeneration was between 48% and 94%. The seed germination procedures also were modified and resulted in a maximum of 60–80% seed germination. Finally, the rate of T-DNA transfer to complete shoot meristems of Tripsacum was high on the auxin medium and was independent of whether super-virulent strains of Agrobacterium were used or not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号