首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study the oxygen mass transfer from the gas to the aqueous phase in a Three-Phase Inverse Fluidized Bed (TPIFB) has been studied. A pilot scale TPIFB has been designed and constructed. For determination of the volumetric oxygen mass transfer coefficient the elegant dynamic method, described by Dang et al. (1977) was used. The influence of hydrodynamic parameters, e.g., superficial velocities of the gas and liquid phases on the mass transfer rate was studied. In the range of variables covered, it was found that the superficial liquid velocity had a weak effect on the mass transfer whereas the gas flowrate affects the mass transfer positively. The results for the volumetric oxygen transfer coefficient in the TPIFB were compared to reported values of that coefficient, measured in a classic three-phase fluidised bed under similar hydrodynamic conditions and solid phase properties. The comparison demonstrated a two-fold increase of the oxygen transfer rate in the inverse bed over that in the classic one.  相似文献   

2.
This review focuses on the hydrodynamic and mass transfer characteristics of various three-phase, gaslift fluidized bioreactors. The factors affecting the mixing and volumetric mass transfer coefficient (k(L)a), such as liquid properties, solid particle properties, liquid circulation velocity, superficial gas velocity, bioreactor geometry, are reviewed and discussed. Measurement methods, modeling and empirical correlations are reviewed and compared. To the authors' knowledge, there is no 'generalized' correlation to calculate the volumetric mass transfer coefficient, instead, only 'type-specific' correlations are available in the literature. This is due to the difficulty in modeling the gaslift bioreactor, caused by the variation in geometry, fluid dynamics, and phase interactions. The most important design parameters reported in the literature are: gas hold-up, liquid circulation velocity, 'true' superficial gas velocity, mixing, shear rate, aeration rate and volumetric mass transfer coefficient, k(L)a.  相似文献   

3.
ABSTRACT:?

This review focuses on the hydrodynamic and mass transfer characteristics of various three-phase, gaslift fluidized bioreactors. The factors affecting the mixing and volumetric mass transfer coefficient (kLa), such as liquid properties, solid particle properties, liquid circulation velocity, superficial gas velocity, bioreactor geometry, are reviewed and discussed. Measurement methods, modeling and empirical correlations are reviewed and compared. To the authors' knowledge, there is no 'generalized' correlation to calculate the volumetric mass transfer coefficient, instead, only 'type-specific' correlations are available in the literature. This is due to the difficulty in modeling the gaslift bioreactor, caused by the variation in geometry, fluid dynamics, and phase interactions. The most important design parameters reported in the literature are: gas hold-up, liquid circulation velocity, 'true' superficial gas velocity, mixing, shear rate, aeration rate and volumetric mass transfer coefficient, kLa.  相似文献   

4.
Liquid-phase mass transfer coefficients in bioreactors   总被引:4,自引:0,他引:4  
Liquid-phase mass transfer coefficient in bioreactors have been examined. A theoretical model based on the surface renewal concept has been devloped. The predicted liquid-phase mass transfer coefficients are compared with the experimental data for a mycelial fermentation broth (Chaetomium cellulolyticum) and model media (carboxymethyl cellulose) in a bench-scale bubble column reactor. The liquid-phase mass transfer coefficient is evaluated by dividing the volumetric mass transfer coefficient obtained experimentally by the specific surface area estimated using the available correlations. The available literature data in bubble column and stirred tank bioreactors is also used to test the validity of the proposed model. A reasonable agreement between the model and the experimental data is found.  相似文献   

5.
三相逆流湍动床气液传质性能的研究   总被引:1,自引:0,他引:1  
由空气-水(清水/废水)-中空玻璃珠构成三相体系,在表观气速0·53~10mm·s-1、固含率为0~0·3、表观液速0~0·2mm·s-1的条件下,采用溶氧仪研究了三相逆流湍动床的气液传质性能,考察了操作参数和液体性质对液相容积传质系数kLa的影响。结果表明,在所试条件下,kLa为0·0456~1·414min-1。kLa随着表观气速和表观液速的增加而增加,随着固含率的增加先增加后减小,0·05~0·08为反应器传质的最优固含率条件。液体性质对kLa有重大影响,高浓度模拟废水和工业废水中的kLa比清水中的kLa分别减小39·0%和50·9%。研究结果可为后续逆流湍动床废水生物处理过程分析与模拟提供传质基础数据。  相似文献   

6.
The Multiple Air-lift Loop reactor (MAL) is a new type of bioreactor, in which a series of airlifts with internal loops is incorporated into one vessel. As such, the MAL is an approximation of an aerated plug-flow fermenter. Gas/liquid oxygen transfer was studied as a function of the gas flow rate in a MAL. The second MAL-compartment in the series was investigated in particular, and a Rectangular Air-lift Loop reactor (RAL) was used as a reference. Both a dynamic and a steady-state method were used for the determination of the overall volumetric oxygen-transfer coefficient. Both methods gave the same results. The oxygen transfer coefficient in the second MAL-compartment was low compared to that of conventional internal-loop reactors. Wall effects probably caused bubble coalescence and a reduction in the oxygen transfer. For the RAL it was found that oxygen transfer was comparable to that in a bubble column.  相似文献   

7.
Volumetric oxygen transfer rates and power inputs were estimated by a model of the formation of primary gas bubbles at the static sparger (sinter plate) of small-scale bubble columns and a common mass-transfer correlation for bubbles rising in a non-coalescent Newtonian electrolyte solution of low viscosity. Estimations were used to assess the dimensioning and possibilities of small-scale bubble column application with an height/diameter ratio of about 1. Estimations of volumetric oxygen transfer rates (<0.16 s-1) and power inputs (<100 W m-3) with a mean pore diameter of the static sparger of 13 µm were confirmed as function of the superficial air velocity (<0.6 cm s-1) by measurements using an Escherichia coli fermentation medium. Small-scale bubble columns are thus to be classified between shaking flasks and stirred-tank reactors with respect to the oxygen transfer rate, but the maximum volumetric power input is more than one magnitude below the power input in shaking flasks, which is of the same order of magnitude as in stirred-tank reactors. A small-scale bubble columns system was developed for microbial process development, which is characterized by handling in analogy to shaking flasks, high oxygen transfer rates and simultaneous operation of up to 16 small-scale reactors with individual gas supply in an incubation chamber.  相似文献   

8.
A glucose–gluconic acid biotransformation system was suggested for the experimental study of oxygen transfer in bioreactors. This biosystem was used for the investigation of the effect of the flow rate and biomass concentration on the volumetric oxygen transfer coefficient kLa in a 10 dm3 internal-loop airlift bioreactor. For this purpose, the fermentation broth of the mycelial strain Aspergillus niger was employed, representing a three-phase system, where bubbles come into contact with dense rigid pellets. The results showed that the presented biotransformation system can be successfully utilised for the determination of the oxygen transfer rate in airlift bioreactors. The experiments showed a strong positive influence of the air flow rate on the rate (rGlu), specific rate of gluconic acid production (kGlu/X) as well as on the volumetric oxygen transfer coefficient (kLa). This confirmed an expected limitation of production rate by the oxygen transport from the gas to the liquid phase in the whole range of air flow rates applied. Moreover, consistent curves of the production rate rGlu and kLa values vs. biomass concentration cX (amount of enzymes) were observed. These exhibited a local maximum for cX equal to 6.68 g dm−3. On the other hand, the specific production rate monotonously decreased with increasing biomass concentration. A decline of kLa values at higher cX values was attributed to a bubble coalescence promoting effect of mycelial pellets.  相似文献   

9.
Differing findings on the volumetric mass transfer coefficients k(L)a in CMC solutions in bubble column bioreactors have been reported in the literature. Therefore, oxygen mass transfer was studied again in CMC solutions in a 14-cm-i.d. x 270-cm-height bubble column using different spargers. The k(L)a values were determined along with the dispersion coefficients by fitting the prediction of the axial dispersed plug model with the experimental oxygen concentration profiles in the liquid phase. Surprisingly, the obtained liquid phase dispersion coefficients for CMC solution are higher than one would expect from correlations. The k(L)a data depend largely on the flow regime. In general, they are lower than those reported in the literature. The data for developing slug and established slug flow are dependent on the gas velocity and the effective viscosity of the solution and can br correlated by a simple correlation. This correlation describes k(L)a values measured on fermentation broth of Penicillium chrysogenum with striking agreement.  相似文献   

10.
Pressure drop, gas hold-up, and oxygen transfer were investigated in a sieve tray column, a column with Koch motionless mixers, and a bubble column. The oxygen transfer experiments were conducted using cocurrent flow of gas and liquid under steady-state conditions with oxygen transfer from the gas to the liquid phase. The oxygen transfer rates and efficiencies of the sieve tray column and the column with Koch mixers were found to be superior to those of the conventional bubble column. Gas hold-up was also greater when sieve trays or Koch mixers were inserted in the tower. The pressure drop was found to be primarily due to the liquid head in all three columns.  相似文献   

11.
A bubble column fitted with an ejector has been tested for its physical and biological performance. The axial diffusion coefficient of the liquid phase in the presence of electrolytes and ethanol was measured by a stimulus-response technique with subsequent evaluation by means of a diffusion model. In contrast to ordinary bubble columns, the coefficient of axial mixing is inversely dependent on the superficial air velocity. The liquid velocity acts in an opposite direction to the backmixing flow in the column. The measurement of volumetric oxygen transfer coefficient in the presence of electrolytes and ethanol was performed using a dynamic gassing-in method adapted for a column. The data were correlated with the superficial air and liquid velocities, total power input, and power for aeration and mixing; the economy coefficient of oxygen transfer was used for finding an optimum ratio of power for aeration and pumping. Growth experiments with Candida utilis on ethanol confirmed some of the above results. Biomass productivity of 2.5 g L(-1) h(-1) testifies about a good transfer capability of the column. Columns fitted with pneumatic and/or hydraulic energy input may be promising for aerobic fermentations considering their mass transfer and mixing characteristics.  相似文献   

12.
13.
Conventional airlift reactors are not adequate to carry out variable volume processes since it is not possible to achieve a proper liquid circulation in these reactors until the liquid height is higher than that of the downcomer. To carry out processes of variable volume, the use of a split-cylinder airlift reactor is proposed, in the interior of which two multi-perforated vertical baffles are installed in order to provide several points of communication between the reactor riser and downcomer. This improves the liquid circulation and mixing at any liquid volume. In fed-batch cultures, it is important to know how liquid height affects the hydrodynamic characteristics and the volumetric oxygen transfer coefficient since this impacts on the kinetic behavior of any fermentation. Thus, in the present work, the effect of the liquid height on the mixing time, the overall gas hold-up, and the volumetric oxygen transfer coefficient of the proposed airlift reactor were determined. The mixing time was increased and the volumetric oxygen transfer coefficient decreased due to the increase of the liquid height in the reactor in all the superficial gas velocities tested, which corresponded to a pseudohomogeneous flow regime. The experimental values of the mixing time and the mass-transfer coefficient were properly described through correlations in which the UGR/HL ratio was used as the independent variable. Thus, this variable might be used to describe the hydrodynamic behavior and the oxygen transfer coefficient of airlift reactors when such reactors are used in processes where the liquid volume changes with time. However, these correlations are useful for the particular device and for the particular operating conditions at which they were obtained. These empirical correlations are useful to understand some factors that influence the mixing time and volumetric oxygen transfer coefficient, but such correlations do not have a sufficient predictive potential for a satisfactory reactor design. The overall gas hold-up values were not significantly affected when the liquid height was lower than the downcomer height. However, the values decreased abruptly when the reactor was operated with liquid heights over the downcomer height, especially at high superficial gas velocities.  相似文献   

14.
Biological phenol degradation in a draft tube gas-liquid-solid fluidized bed (DTFB) bioreactor containing a mixed culture immobilized on spherical activated carbon particles was investigated. The characteristics of biofilms including the biofilm dry density and thickness, the volumetric oxygen mass transfer coefficient, and the phenol removal rates under different operating conditions in the DTFB were evaluated. A phenol degradation rate as high as 18 kg/m(3)-day with an effluent phenol concentration less than 1 g/m(3) was achieved, signifying the high treatment efficiency of using a DTFB.  相似文献   

15.
Summary Mean relative gas holdup, slip velocity, bubble size distribution, mean specific interfacial area, and volumetric mass transfer coefficient of oxygen were estimated in sparged columns 14 cm in diameter and 380 and/or 390 cm high with two different aerator types (porous plate and injector nozzle) in highly viscous Newtonian (glycerol solutions) and non-Newtonian (CMC solutions) fluids.For the Newtonian liquids the above properties were estimated as function of the viscosity of the liquid. For the non-Newtonian liquids they were determined as function of the fluid consistency index and flow behavior index. Significant differences between Newtonian and non-Newtonian systems appear. In Newtonian medium kL a drops with increasing viscosity and already approaches a constant value at =40 cP. In pseudoplastic medium kL a varies with the fluid consistency and flow behavior indexes in the entire investigated range.In both of these systems the primary bubble population changes into two or three populations along the reactor: the medium bubbles gradually disappear and small and large bubbles are formed.  相似文献   

16.
Cells may affect oxygen transfer rates by three mechanisms: respiration of cells accumulated at the gas/liquid interface, physical presence of cells as solid particles, and modification of the medium by cells. These effects were studied experimentally in bubble-aerated bioreactors using baker's yeast at different cell concentrations, agitation speeds, aeration rates, and specific oxygen uptake rates. The overall effect of cells was to enhance oxygen transfer rates. The physical presence of cells as solid particles was found to retard oxygen transfer, presumably due to the lower oxygen permeability in the cell layer accumulated near the bubble surfaces. Cell respiration and medium modification, on the other hand, enhanced oxygen transfer rates. The retardation by nonrespiring cells and the enhancement due to cell respiration were found stronger at higher agitation speeds and lower aeration rates employed. This was attributed to the higher interfacial cell accumulation associated with the smaller bubbles produced under these conditions in the systems studied.  相似文献   

17.
The time-dependent gas hold-up is investigated during the aeration of the Saccharomyces cerevisiae suspension, the aqueous saccharose solutions and the glycerol solutions in the external loop airlift reactor. Due to the time-dependent bubble size distribution the fraction of the small bubble hold-up in the total gas hold-up decreases with an increase of the gas flow rate and with a decrease of the viscosity. The course of the accumulation process of the small bubbles is described by the first-order kinetic equation. The small bubble accumulation rate is investigated in the airlift reactor and the bubble column. It is showed that the small bubbles form and disappear exclusively in the riser of the airlift reactor. It is found that the small bubble-liquid mass transfer coefficient is several times larger than the overall oxygen transfer coefficient.  相似文献   

18.
Gas hold-up (ɛg), sauter mean bubble diameter (d32) and oxygen transfer coefficient (kLa) were evaluated at four different alkane concentrations (0.05, 0.1, 0.3 and 0.5 vol.%) in water over the range of superficial gas velocity (ug) of (1.18–23.52) × 10−3 m/s at 25 °C in a laboratory-scale bubble column bioreactor. Immiscible hydrocarbons (n-decane, n-tridecane and n-hexadecane) were utilized in the experiments as impurity. A type of anionic surfactant was also employed in order to investigate the effect of addition of surfactant to organic-aqueous systems on sauter mean bubble diameter, gas hold-up and oxygen transfer coefficient. Influence of addition of alkanes on oxygen transfer coefficient and gas hold-up, was shown to be dependent on the superficial gas velocity. At superficial gas velocity below 0.5 × 10−3 m/s, addition of alkane in air–water medium has low influence on oxygen transfer coefficient and also gas hold-up, whereas; at higher gas velocities slight addition of alkane increases oxygen transfer coefficient and also gas hold-up. Increase in concentration of alkane resulted in increase in oxygen transfer coefficient and gas hold-up and roughly decrease in sauter mean bubble diameter, which was attributed to an increase in the coalescence-inhibiting tendency in the presence of surface contaminant molecules. Bubbles tend to become smaller with decreasing surface tension of hydrocarbon, thus, oxygen transfer coefficient increases due to increasing of specific gas–liquid interfacial area (a). Empirical correlations were proposed for evaluating gas hold-up as a function of sauter mean bubble diameter, superficial gas velocity and interfacial surface tension as well as evaluating Sherwood number as a function of Schmidt, Reynolds and Bond numbers.  相似文献   

19.
This review paper deals with the effects of non-Newtonian fermentation broth viscosities on gas–liquid mixing and oxygen mass transfer characteristics to provide knowledge for the design and development of gas-lift bioreactors, which can operate satisfactorily with high viscosity fermentation broths. The effect of small bubble segregation is also examined.  相似文献   

20.
The influence of Aspergillus niger broth rheology, bioreactor geometry, and superficial gas velocity on the volumetric liquid phase oxygen transfer coefficient (k(L)a(L)), riser gas holdup (epsilon(GR)), and circulating liquid velocity (u(LR)) was studied in a bubble column (BC) and two external-circulation-loop airlift (ECLAL) bioreactors. The results are compared to those of previous studies on homogeneous fluids and in particular with a recent study on non-Newtonian carboxymethylcellulose (CMC) solutions conducted in the same contactors used for the A. niger fermentations. As expected from the CMC-based studies, in the heterogeneous broths of A. niger epsilon(GR), k(L)a(L), and u(LR) decreased with increasing broth apparent viscosity; epsilon(GR) and k(L)a(L) decreased with increasing downcomer-to-riser cross-sectional area ratio, A(d)/A(r), whereas u(LR) increased with increasing A(d)/A(r). Gas holdup data in the airlift fermentations of A. niger were well predicted by the CMC-based correlation. However, the CMC-based correlations produced conservative estimations of k(L)a(L) and overestimates of u(LR) compared to the observed values in the A. niger broths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号