首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WbdA (previously MtfA) is one of the mannosyltransferases encoded within the Escherichia coli O9a wb* gene cluster. It is composed of two domains of similar size, connected by an α-helix chain. Elimination of the C-terminal half by transposon insertion or gene deletion caused synthesis of an altered structural O-polysaccharide consisting only of α-1,2-linked mannose. O9a polysaccharide synthesis was restored by the C-terminal half of WbdA in trans . No membrane incorporation of mannose from GDP mannose was observed in a strain carrying only the gene for truncated WbdA. For mannose incorporation, it was necessary to introduce both wbdB and wbdC genes into the strain. Therefore, it is likely that the N-terminal half of truncated WbdA synthesizes the altered O-polysaccharide together with other mannosyltransferases which participate in the initial reactions of the O9a polysaccharide synthesis. Both N- and C-terminal domains of WbdA are required for the synthesis of the complete E. coli O9a polysaccharide. The chi sequence location between the two domains and homology plot analyses of the wbdA and the WbdA protein suggested that the wbdA gene might have arisen by fusion of two independent genes.  相似文献   

2.
The rfb gene, involved in the synthesis of the O-specific polysaccharide (a mannose homopolymer) of Escherichia coli O9 lipopolysaccharide (LPS), was cloned in E. coli K-12 strains. The O9-specific polysaccharide covalently linked to the R core of K-12 was extracted from the K-12 strains harboring the O9 rfb gene. All the other genes required for the synthesis of rfe-dependent LPS are therefore considered to be present in the K-12 strains. It was found that bacteria harboring some clones with deletions of the ca. 20-kilobase-pair (kbp) BglII-StuI fragment no longer synthesized the O9-specific polysaccharide. However, bacteria harboring clones del 21, del 22, and del 25, which carry deletions of the 10-kbp PstI-StuI fragment, synthesized an O-specific polysaccharide antigenically distinct from E. coli O9 LPS. Although this new O-specific polysaccharide consisted solely of mannose and the mannose residues were combined only through alpha-1,2 linkage, it was still composed of a repeating oligosaccharide unit, possibly a trisaccharide unit,----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----. It is therefore likely that this new O-specific polysaccharide was derived from a part of the O9-specific polysaccharide----3)alpha Man-(1----3)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----and that the deleted part of the clones was responsible for the synthesis of alpha-1,3 linkages of the O9-specific polysaccharide.  相似文献   

3.
The rfb gene cluster of Escherichia coli O9 directs the synthesis of the O9-specific polysaccharide which has the structure -->2-alpha-Man-(1-->2)-alpha-Man-(1-->2)-alpha-Man-(1-->3)-alpha- Man-(1-->. The E. coli O9 rfb cluster has been sequenced, and six genes, in addition to the previously described rfbK and rfbM, were identified. They correspond to six open reading frames (ORFs) encoding polypeptides of 261, 431, 708, 815, 381, and 274 amino acids. They are all transcribed in the counter direction to those of the his operon. No gene was found between rfb and his. A higher G+C content indicated that E. coli O9 rfb evolved independently of the rfb clusters from other E. coli strains and from Shigella and Salmonella spp. Deletion mutagenesis, in combination with analysis of the in vitro synthesis of the O9 mannan in membranes isolated from the mutants, showed that three genes (termed mtfA, -B, and -C, encoding polypeptides of 815, 381, and 274 amino acids, respectively) directed alpha-mannosyl transferases. MtfC (from ORF274), the first mannosyl transferase, transfers a mannose to the endogenous acceptor. It critically depended on a functional rfe gene (which directs the synthesis of the endogenous acceptor) and initiates the growth of the polysaccharide chain. MtfB (from ORF381) then transfers two mannoses into the 3 position of the previous mannose, and MtfA (from ORF815) transfers three mannoses into the 2 position. Further chain growth needs only the two transferases MtfA and MtfB. Thus, there are fewer transferases needed than the number of sugars in the repeating unit. Analysis of the predicted amino acid sequence of the ORF261 and ORF431 proteins indicated that they function as components of an ATP-binding cassette transport system. A possible correlation between the mechanism of polymerization and mode of membrane translocation of the products is discussed.  相似文献   

4.
To investigate the effect of chromosomal mutation on the synthesis of rfe-dependent Escherichia coli O9 lipopolysaccharide (LPS), the cloned E. coli O9 rfb gene was introduced into Salmonella typhimurium strains defective in various genes involved in the synthesis of LPS. When E. coli O9 rfb was introduced into S. typhimurium strains possessing defects in rfb or rfc, they synthesized E. coli O9 LPS on their cell surfaces. The rfe-defective mutant of S. typhimurium synthesized only very small amounts of E. coli O9 LPS after the introduction of E. coli O9 rfb. These results confirmed the widely accepted idea that the biosynthesis of E. coli O9-specific polysaccharide does not require rfc but requires rfe. By using an rfbT mutant of the E. coli O9 rfb gene, the mechanism of transfer of the synthesized E. coli O9-specific polysaccharide from antigen carrier lipid to the R-core of S. typhimurium was investigated. The rfbT mutant of the E. coli O9 rfb gene failed to direct the synthesis of E. coli O9 LPS in the rfc mutant strain of S. typhimurium, in which rfaL and rfbT functions are intact, but directed the synthesis of the precursor. Because the intact E. coli O9 rfb gene directed the synthesis of E. coli O9 LPS in the same strain, it was suggested that the rfaL product of S. typhimurium and rfbT product of E. coli O9 cooperate to synthesize E. coli O9 LPS in S. typhimurium.  相似文献   

5.
The Escherichia coli O9a O-polysaccharide (O-PS) is a prototype for bacterial glycan synthesis and export by an ATP-binding cassette transporter-dependent pathway. The O9a O-PS possesses a tetrasaccharide repeat unit comprising two α-(1→2)- and two α-(1→3)-linked mannose residues and is extended on a polyisoprenoid lipid carrier by the action of a polymerase (WbdA) containing two glycosyltransferase active sites. The N-terminal domain of WbdA possesses α-(1→2)-mannosyltransferase activity, and we demonstrate in this study that the C-terminal domain is an α-(1→3)-mannosyltransferase. Previous studies established that the size of the O9a polysaccharide is determined by the chain-terminating dual kinase/methyltransferase (WbdD) that is tethered to the membrane and recruits WbdA into an active enzyme complex by protein-protein interactions. Here, we used bacterial two-hybrid analysis to identify a surface-exposed α-helix in the C-terminal mannosyltransferase domain of WbdA as the site of interaction with WbdD. However, the C-terminal domain was unable to interact with WbdD in the absence of its N-terminal partner. Through deletion analysis, we demonstrated that the α-(1→2)-mannosyltransferase activity of the N-terminal domain is regulated by the activity of the C-terminal α-(1→3)-mannosyltransferase. In mutants where the C-terminal catalytic site was deleted but the WbdD-interaction site remained, the N-terminal mannosyltransferase became an unrestricted polymerase, creating a novel polymer comprising only α-(1→2)-linked mannose residues. The WbdD protein therefore orchestrates critical localization and coordination of activities involved in chain extension and termination. Complex domain interactions are needed to position the polymerase components appropriately for assembly into a functional complex located at the cytoplasmic membrane.  相似文献   

6.
7.
Synthetic monosaccharide derivatives (alpha-glucosyl, beta-glucosyl, alpha-mannosyl) and disaccharide derivatives (alpha-mannosyl-1,2-alpha-glucosyl, alpha-mannosyl-1,3-alpha-glucosyl, alpha-mannosyl-1,4-alpha-glucosyl, alpha-mannosyl-1,6-alpha-glucosyl) of diphosphomoraprenol were used as putative mannose acceptors in the biosynthesis of Escherichia coli O9 antigen. Membranes of E. coli O9 derived from the rfe mutant F 1357 were reconstituted with these compounds and then incubated with different concentrations of GDP-[14C]mannose. Of the monosaccharide derivatives tested, only alpha-glucodiphosphomoraprenol was a mannose acceptor and the only disaccharide derivative which accepted mannose was alpha-mannosyl-1,3-alpha-glucosyldiphosphomoraprenol. The alpha-glucosyl derivative accepted only one mannose unit at 4 microM GDP-[14C]mannose, and above 50 microM GDP-[14C]mannose about 25% of the product had a minimum size of about 30 mannose units. The alpha-mannosyl-1,3-alpha-glucosyl derivative was only a mannose acceptor at a GDP-[14C]mannose concentration of 50 microM and higher, and the product had a minimum size of about 30 mannose units. The results are discussed with respect to requirement of mannose acceptors.  相似文献   

8.
The Escherichia coli O9a and O8 polymannose O-polysaccharides (O-PSs) serve as model systems for the biosynthesis of bacterial polysaccharides by ATP-binding cassette transporter-dependent pathways. Both O-PSs contain a conserved primer-adaptor domain at the reducing terminus and a serotype-specific repeat unit domain. The repeat unit domain is polymerized by the serotype-specific WbdA mannosyltransferase. In serotype O9a, WbdA is a bifunctional α-(1→2)-, α-(1→3)-mannosyltransferase, and its counterpart in serotype O8 is trifunctional (α-(1→2), α-(1→3), and β-(1→2)). Little is known about the detailed structures or mechanisms of action of the WbdA polymerases, and here we establish that they are multidomain enzymes. WbdAO9a contains two separable and functionally active domains, whereas WbdAO8 possesses three. In WbdCO9a and WbdBO9a, substitution of the first Glu of the EX7E motif had detrimental effects on the enzyme activity, whereas substitution of the second had no significant effect on activity in vivo. Mutation of the Glu residues in the EX7E motif of the N-terminal WbdAO9a domain resulted in WbdA variants unable to synthesize O-PS. In contrast, mutation of the Glu residues in the motif of the C-terminal WbdAO9a domain generated an enzyme capable of synthesizing an altered O-PS repeat unit consisting of only α-(1→2) linkages. In vitro assays with synthetic acceptors unequivocally confirmed that the N-terminal domain of WbdAO9a possesses α-(1→2)-mannosyltransferase activity. Together, these studies form a framework for detailed structure-function studies on individual domains and a strategy applicable for dissection and analysis of other multidomain glycosyltransferases.  相似文献   

9.
Genetic characterization of the wb* gene in a series of Escherichia coli and Klebsiella strains possessing the mannose homopolymer as the O-specific polysaccharide was carried out. The partial nucleotide sequences and PCR-restriction fragment length polymorphism analysis suggested that E. coli serotype O9a, a subtype of E. coli O9, might have been generated by the insertion of the Klebsiella O3 wb* gene into a certain E. coli strain.  相似文献   

10.
We describe the biosynthesis in vitro of the mannose acceptor of the O9 mannan synthesis by Escherichia coli membranes and its analysis with chemical, enzymatic and physical means. Membranes from E. coli 1357 (O9:K29-:H-his,pmi,rfe) were incubated with 10 mM UDP-glucose and 20 mM magnesium chloride in large scale. The incubation mixtures were extracted with butan-1-ol and the extract was fractionated by ion-exchange chromatography on DEAE-cellulose. The presence of the mannose acceptor was detected in the column effluent by using aliquots of the fractions in membrane-reconstitution experiments. The purified mannose acceptor was hydrolyzed for 10 min in 0.1 M hydrochloric acid at 100 degrees C and the hydrolyzate was extracted with light petroleum. Mass spectrometric analysis of the material from the organic phase showed it to be undecaprenol. The aqueous phase contained phosphate and glucose (as determined with glucose oxidase peroxidase) in the ratio of 1.9, alpha-Galactosyldiphosphoundecaprenol and beta-glucosylphosphoundecaprenol were prepared for comparison in these experiments. The results obtained showed that the mannose acceptor in the synthesis of the O9 mannan of E. coli is alpha-glucosyldiphosphoundecaprenol.  相似文献   

11.
In Escherichia coli K-12, RcsC and RcsB are thought to act as the sensor and effector components, respectively, of a two-component regulatory system which regulates expression of the slime polysaccharide colanic acid (V. Stout and S. Gottesman, J. Bacteriol. 172:659-669, 1990). Here, we report the cloning and DNA sequence of a 4.3-kb region containing rcsC and rcsB from E. coli O9:K30:H12. This strain does not produce colanic acid but does synthesize a K30 (group I) capsular polysaccharide. The rcsB gene from E. coli K30 (rcsBK30) is identical to the rcsB gene from E. coli K-12 (rcsBK-12). rcsCK30 has 16 nucleotide changes, resulting in six amino acid changes in the predicted protein. To examine the function of the rcs regulatory system in expression of the K30 capsular polysaccharide, chromosomal insertion mutations were constructed in E. coli O9:K30:H12 to independently inactivate rcsBK30 and the auxiliary positive regulator rcsAK30. Strains with these mutations maintained wild-type levels of K30 capsular polysaccharide expression and still produced a K30 capsule, indicating that the rcs system is not essential for expression of low levels of the group I capsular polysaccharide in lon+ E. coli K30. However, K30 synthesis is increased by introduction of a multicopy plasmid carrying rcsBK30. K30 polysaccharide expression is also markedly elevated in an rcsBK30-dependent fashion by a mutation in rcsCK30, suggesting that the rcs system is involved in high levels of synthesis. To determine whether the involvement of the rcs system in E. coli K30 expression is typical of group I (K antigen) capsules, multicopy rcsBK30 was introduced into 22 additional strains with structurally different group I capsules. All showed an increase in mucoid phenotype, and the polysaccharides produced in the presence and absence of multicopy rcsBK30 were examined. It is has been suggested that E. coli strains with group I capsules can be subdivided based on K antigen structure. For the first time, we show that strains with group I capsules can also be subdivided by the ability to produce colanic acid. Group IA contains capsular polysaccharides (including K30) with repeating-unit structures lacking amino sugars, and expression of group IA capsular polysaccharides is increased by multicopy rcsBK30. Group IB capsular polysaccharides all contain amino sugars. In group IB strains, multicopy rcsBK30 activates synthesis of colanic acid.  相似文献   

12.
The rfbO9 gene cluster, which is responsible for the synthesis of the lipopolysaccharide O9 antigen, was cloned from Escherichia coli O9:K30. The gnd gene, encoding 6-phosphogluconate dehydrogenase, was identified adjacent to the rfbO9 cluster, and by DNA sequence analysis the gene order gnd-rfbM-rfbK was established. This order differs from that described for other members of the family Enterobacteriaceae. Nucleotide sequence analysis was used to identify the rfbK and rfbM genes, encoding phosphomannomutase and GDP-mannose pyrophosphorylase, respectively. In members of the family Enterobacteriaceae, these enzymes act sequentially to form GDP-mannose, which serves as the activated sugar nucleotide precursor for mannose residues in cell surface polysaccharides. In the E. coli O9:K30 strain, a duplicated rfbM2-rfbK2 region was detected approximately 3 kbp downstream of rfbM1-rfbK1 and adjacent to the remaining genes of the rfbO9 cluster. The rfbM isogenes differed in upstream flanking DNA but were otherwise highly conserved. In contrast, the rfbK isogenes differed in downstream flanking DNA and in 3'-terminal regions, resulting in slight differences in the sizes of the predicted RfbK proteins. RfbMO9 and RfbKO9 are most closely related to CpsB and CpsG, respectively. These are isozymes of GDP-mannose pyrophosphorylase and phosphomannomutase, respectively, which are thought to be involved in the biosynthesis of the slime polysaccharide colanic acid in E. coli K-12 and Salmonella enterica serovar Typhimurium. An E. coli O-:K30 mutant, strain CWG44, lacks rfbM2-rfbK2 and has adjacent essential rfbO9 sequences deleted. The remaining chromosomal genes are therefore sufficient for GDP-mannose formation and K30 capsular polysaccharide synthesis. A mutant of E. coli CWG44, strain CWG152, was found to lack GDP-mannose pyrophosphorylase and lost the ability to synthesize K30 capsular polysaccharide. Wild-type capsular polysaccharide could be restored in CWG152, by transformation with plasmids containing either rfbM1 or rfbM2. Introduction of a complete rfbO9 gene cluster into CWG152 restored synthesis of both O9 and K30 polysaccharides. Consequently, rfbM is sufficient for the biosynthesis of GDP-mannose for both O antigen and capsular polysaccharide E. coli O9:K30. Analysis of a collection of serotype O8 and O9 isolates by Southern hybridization and PCR amplification experiments demonstrated extensive polymorphism in the rfbM-rfbK region.  相似文献   

13.
In Salmonella, ilv-linked rfe genes participate in the biosynthesis of the enterobacterial common antigen (CA) as well as of certain types of O antigen (serogroups C1 and L). rff genes, probably in the same cluster with rfe, are required for CA synthesis (P.H. M?kel? et al., in preparation). Several Escherichia coli strains were studied to determine whether they also have rfe-rff genes that are involved in the synthesis of O antigen and CA, or of CA only. In a first approach, E, coli K-12 F-prime factors carrying the genes ilv and argH or argE and presumably rfe-rff genes were introduced into CA-negative Salmonella mutants that are blocked in CA synthesis because of mutated rfe or rff genes. All resulting ilv+ hybrids were CA positive. In recipients with group C1-derived rfb genes, the synthesis of O6,7-specific antigen was also restored. This result shows that E. coli K-12 has rfe and rff genes providing the functions required in the synthesis of CA and Salmonella 6,7-specific polysaccharide. By introduction of defective rfe regions from suitable Salmonella donors into E. coli O8, 09, and O100 strains, the synthesis of CA as well as of the O-specific polysaccharides was blocked. This indicates that in the E. coli strains tested the rfe genes are involved in the synthesis of both O antigen and CA. This suggestion was confirmed by the finding of E. coli rough mutants that had simultaneously become CA negative. In transduction experiments it could be shown that the appearance of the rough and CA- phenotype was due to a defect in the ilv-linked rfe region.  相似文献   

14.
The O8 and O9-specific lipopolysaccharides of Escherichia coli lost their serological activity during liberation of the polysaccharide moieties (alpha-mannans) by mild acid hydrolysis, as tested by passive haemagglutination and haemagglutination inhibition. The serological activities and specificities were restored by substitution of the polysaccharides with 1 to 2 stearoyl groups per polysaccharide chain. The mannans obtained by biosynthesis in vitro were serologically active only when bound to the membrane-associated hydrophobic carrier molecule. Liberation of the polysaccharides from the carrier by treatment with aqueous phenol resulted in loss of the serological activity. The O8- and O9-specific mannans of E. coli are thus serologically active when they are part of an amphiphilic molecule and not as free polysaccharides.  相似文献   

15.
The Escherichia coli O9a and O8 O-antigen serotypes represent model systems for the ABC transporter-dependent synthesis of bacterial polysaccharides. The O9a and O8 antigens are linear mannose homopolymers containing conserved reducing termini (the primer-adaptor), a serotype-specific repeat unit domain, and a terminator. Synthesis of these glycans occurs on the polyisoprenoid lipid-linked primer, undecaprenol pyrophosphoryl-GlcpNAc, by two conserved mannosyltransferases, WbdC and WbdB, and a serotype-specific mannosyltransferase, WbdA. The glycan structure and pattern of conservation in the O9a and O8 mannosyltransferases are not consistent with the existing model of O9a biosynthesis. Here we establish a revised pathway using a combination of in vivo (mutant complementation) experiments and in vitro strategies with purified enzymes and synthetic acceptors. WbdC and WbdB synthesize the adaptor region, where they transfer one and two α-(1→3)-linked mannose residues, respectively. The WbdA enzymes are solely responsible for forming the repeat unit domains of these O-antigens. WbdAO9a has two predicted active sites and polymerizes a tetrasaccharide repeat unit containing two α-(1→3)- and two α-(1→2)-linked mannopyranose residues. In contrast, WbdAO8 polymerizes trisaccharide repeat units containing single α-(1→3)-, α-(1→2)-, and β-(1→2)-mannopyranoses. These studies illustrate assembly systems exploiting several mannosyltransferases with flexible active sites, arranged in single- and multiple-domain formats.  相似文献   

16.
The polymannan O-antigenic polysaccharides (O-PSs) of Escherichia coli O8 and O9a are synthesized via an ATP-binding cassette (ABC) transporter-dependent pathway. The group 2 capsular polysaccharides of E. coli serve as prototypes for polysaccharide synthesis and export via this pathway. Here, we show that there are some fundamental differences between the ABC transporter-dependent pathway for O-PS biosynthesis and the capsular polysaccharide paradigm. In the capsule system, mutants lacking the ABC transporter are viable, and membranes isolated from these strains are no longer able to synthesize polymer using an endogenous acceptor. In contrast, E. coli strains carrying mutations in the membrane component (Wzm) and/or the nucleotide-binding component (Wzt) of the O8 and O9a polymannan transporters are nonviable under conditions permissive to O-PS biosynthesis and take on an aberrant elongated cell morphology. Whereas the ABC transporters for capsular polysaccharides with different structures are functionally interchangeable, the O8 and O9a exporters are specific for their cognate polymannan substrates. The E. coli O8 and O9a Wzt proteins contain a C-terminal domain not present in the corresponding nucleotide-binding protein (KpsT) from the capsule exporter. Whereas the Wzm components are functionally interchangeable, albeit with reduced efficiency, the Wzt components are not, indicating a specific role for Wzt in substrate specificity. Chimeric Wzt proteins were constructed in order to localize the region involved in substrate specificity to the C-terminal domain.  相似文献   

17.
O-polysaccharides were isolated from the lipopolysaccharides of Escherichia coli O40 and Shigella dysenteriae type 9 and studied by chemical analyses along with (1)H and (13)C NMR spectroscopy. The following new structure of the O-polysaccharide of E. coli O40 was established: -->2)-beta-D-Galp-(1-->4)-beta-D-Manp-(1-->4)-alpha-D-Galp-(1-->3)-beta-D-GlcpNAc-(1--> TheO-polysaccharide structure of S. dysenteriae type 9 established earlier was revised and found to be identical to the reported structure of the capsular polysaccharide of E. coli K47 and to differ from that of the E. coli O40 polysaccharide in the presence of a 3,4-linked pyruvic acid acetal having the (R)-configuration (RPyr): -->2)-beta-D-Galp3,4(RPyr)-(1-->4)-beta-D-Manp-(1-->4)-alpha-D-Galp-(1-->3)-beta-D-GlcpNAc-(1-->  相似文献   

18.
A V Franco  D Liu    P R Reeves 《Journal of bacteriology》1996,178(7):1903-1907
The modal distribution of O-antigen chain length is determined by the Wzz (Cld/Rol) protein in those cases in which it has been studied. The system of O-antigen synthesis in Escherichia coli serotypes O8 and O9 is different from that reported for most other bacteria, and chain length distribution is thought not to be determined by a Wzz protein. We report the existence in E. coli O8 and O9 strains of wzz genes which are very similar to and have sequences within the range of variation of those which determine the chain length of typical O antigens. We also find that wzz genes previously identified by their effect on O-antigen chain length, when cloned and transferred to O8 and O9 strains, affect the chain length of a capsule-related form of LPS, K(LPS). We conclude that in at least some O8 and O9 strains there is a wzz gene which controls the chain length of K(LPS) but has no effect on the O8 or O9 antigen.  相似文献   

19.
The structure of the capsular polysaccharide from E. coli O9:K37 (A 84a) has been studied, using methylation analysis, Smith degradation, and graded acid hydrolysis. The configurations at the anomeric centres were assigned by 1H-n.m.r. spectroscopy of the polysaccharide and its derivatives and oligosaccharide fragments. The polysaccharide has the following trisaccharide repeating-unit which is unique in the E. coli series of capsular polysaccharides in possessing a 1-carboxyethylidene group as the sole acidic function. (Formula: see text) E. coli capsular polysaccharides have been classified into seventy-four serotypes. The structures of about twenty of these polysaccharides have been elucidated, one of which, K29, has been reported to contain a 1-carboxyethylidene group. In continuation of a programme aimed at establishing the structural basis for the serology and immunochemistry of the E. coli capsular antigens, we now report on the structure of the capsular polysaccharide from E. coli O9:K37.  相似文献   

20.
The type R3 core oligosaccharide predominates in the lipopolysaccharides from enterohemorrhagic Escherichia coli isolates including O157:H7. The R3 core biosynthesis (waa) genetic locus contains two genes, waaD and waaJ, that are predicted to encode glycosyltransferases involved in completion of the outer core. Through determination of the structures of the lipopolysaccharide core in precise mutants and biochemical analyses of enzyme activities, WaaJ was shown to be a UDP-glucose:(galactosyl) lipopolysaccharide alpha-1,2-glucosyltransferase, and WaaD was shown to be a UDP-glucose:(glucosyl)lipopolysaccharide alpha-1,2-glucosyltransferase. The residue added by WaaJ was identified as the ligation site for O polysaccharide, and this was confirmed by determination of the structure of the linkage region in serotype O157 lipopolysaccharide. The initial O157 repeat unit begins with an N-acetylgalactosamine residue in a beta-anomeric configuration, whereas the biological repeat unit for O157 contains alpha-linked N-acetylgalactosamine residues. With the characterization of WaaJ and WaaD, the activities of all of the enzymes encoded by the R3 waa locus are either known or predicted from homology data with a high level of confidence. However, when core oligosaccharide structure is considered, the origin of an additional alpha-1,3-linked N-acetylglucosamine residue in the outer core is unknown. The gene responsible for a nonstoichiometric alpha-1,7-linked N-acetylglucosamine substituent in the heptose (inner core) region was identified on the large virulence plasmids of E. coli O157 and Shigella flexneri serotype 2a. This is the first plasmid-encoded core oligosaccharide biosynthesis enzyme reported in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号