首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-10 is a potent immunoregulatory cytokine attenuating a wide range of immune effector and inflammatory responses. In the present study, we assess whether endogenous levels of IL-10 function to regulate the incidence and severity of collagen-induced arthritis. DBA/1 wildtype (WT), heterozygous (IL-10+/-) and homozygous (IL-10-/-) IL-10-deficient mice were immunized with type II collagen. Development of arthritis was monitored over time, and collagen-specific cytokine production and anticollagen antibodies were assessed. Arthritis developed progressively in mice immunized with collagen, and 100% of the WT, IL-10+/-, and IL-10-/- mice were arthritic at 35 days. However, the severity of arthritis in the IL-10-/- mice was significantly greater than that in WT or IL-1+/- animals. Disease severity was associated with reduced IFN-gamma levels and a dramatic increase in CD11b-positive macrophages. Paradoxically, both the IgG1 and IgG2a anticollagen antibody responses were also significantly reduced. These data demonstrate that IL-10 is capable of controlling disease severity through a mechanism that involves IFN-gamma. Since IL-10 levels are elevated in rheumatoid arthritis synovial fluid, these findings may have relevance to rheumatoid arthritis.  相似文献   

2.
IL-15 is a powerful T cell growth factor (TCGF) with particular importance for the maintenance of CD8(+) T cells. Because costimulation blockade does not result in universal tolerance, we hypothesized that "escape" from costimulation blockade might represent a CD8(+) and IL-15/IL-15R(+)-dependent process. For this analysis, we have used an IL-15 mutant/Fcgamma2a protein, a potentially cytolytic protein that is also a high-affinity receptor site specific antagonist for the IL-15Ralpha receptor protein, as a therapeutic agent. The IL-15-related fusion protein was used as monotherapy or in combination with CTLA4/Fc in murine islet allograft models. As monotherapies, CTLA4/Fc and an IL-15 mutant/Fcgamma2a were comparably effective in a semiallogeneic model system, and combined treatment with IL-15 mutant/Fcgamma2a plus CTLA4/Fc produced universal permanent engraftment. In a fully MHC-mismatched strain combination known to be refractory to costimulation blockade treatment, combined treatment with both fusion proteins proved to be highly effective; >70% of recipients were tolerized. The analysis revealed that the IL-15 mutant/Fc treatment confers partial protection from both CD4(+) and CD8(+) T cell graft infiltration. In rejections occurring despite CTLA4/Fc treatment, concomitant treatment with the IL-15 mutant/Fcgamma2a protein blocked a CD8(+) T cell-dominated rejection processes. This protection was linked to a blunted proliferative response of alloreactive T cells as well silencing of CTL-related gene expression events. Hence, we have demonstrated that targeting the IL-15/IL-15R pathway represents a new and potent strategy to prevent costimulation blockade-resistant CD8(+) T cell-driven rejection.  相似文献   

3.
We have recently reported the presence and a potential proinflammatory role of IL-18 in the synovium of patients with rheumatoid arthritis. To obtain direct evidence that IL-18 plays an influential role in articular inflammation, we investigated the development of collagen-induced arthritis in a strain of mice lacking IL-18 (IL-18(-/-)) of DBA/1 background. IL-18(-/-) mice developed markedly reduced incidence of arthritis compared with heterozygous or wild-type mice. Of the IL-18(-/-) mice that developed arthritis, the severity of the disease was significantly reduced compared with the intact mice. This was accompanied by reduced articular inflammation and destruction evident on histology. IL-18(-/-) mice also had significantly reduced Ag-specific proliferation and proinflammatory cytokine (IFN-gamma, TNF-alpha, IL-6, and IL-12) production by spleen and lymph node cells in response to bovine type II collagen (CII) in vitro compared with wild-type mice, paralleled in vivo by a significant reduction in serum anti-CII IgG2a Ab level. Treatment with rIL-18 completely reversed the disease of the IL-18(-/-) mice to that of the wild-type mice. These data directly demonstrate a pivotal role of IL-18 in the development of inflammatory arthritis and suggest that antagonists to IL-18 may have therapeutic potential in rheumatic diseases.  相似文献   

4.
IL-10 is a potent immunoregulatory cytokine attenuating a wide range of immune effector and inflammatory responses. In the present study, we assess whether endogenous levels of IL-10 function to regulate the incidence and severity of collagen-induced arthritis. DBA/1 wildtype (WT), heterozygous (IL-10+/-) and homozygous (IL-10-/-) IL-10-deficient mice were immunized with type II collagen. Development of arthritis was monitored over time, and collagen-specific cytokine production and anticollagen antibodies were assessed. Arthritis developed progressively in mice immunized with collagen, and 100% of the WT, IL-10+/-, and IL-10-/- mice were arthritic at 35 days. However, the severity of arthritis in the IL-10-/- mice was significantly greater than that in WT or IL-1+/- animals. Disease severity was associated with reduced IFN-γ levels and a dramatic increase in CD11b-positive macrophages. Paradoxically, both the IgG1 and IgG2a anticollagen antibody responses were also significantly reduced. These data demonstrate that IL-10 is capable of controlling disease severity through a mechanism that involves IFN-γ. Since IL-10 levels are elevated in rheumatoid arthritis synovial fluid, these findings may have relevance to rheumatoid arthritis.  相似文献   

5.
IL-18 expression has recently been detected in rheumatoid arthritis (RA) synovial membrane. We investigated the mechanisms by which IL-18-induced collagen-induced arthritis in DBA/1 mice primed intradermally with type II bovine collagen in IFA and boosted i.p. 21 days later with CII in saline. Mice were injected i.p. with rIL-12, rIL-18, or both (100 ng) during days -1 to 4 and again on days 20-24. Control mice received PBS. Mice treated with IL-12 or IL-18 alone developed significantly higher incidence and more severe disease compared with controls. These were elevated further by combination treatment with IL-12 and IL-18. The cytokine treatments led to markedly enhanced synovial hyperplasia, cellular infiltration, and cartilage erosion compared with controls. Cytokine-treated mice produced significantly more IFN-gamma, TNF-alpha, and IL-6 than the controls. Interestingly, IL-18-treated mice produced more TNF-alpha and IL-6, but less IFN-gamma, compared with mice treated with IL-12. Furthermore, splenic macrophages from DBA/1 mice cultured in vitro with IL-18, but not IL-12, produced substantial amounts of TNF-alpha. Mice treated with IL-18 or IL-18 plus IL-12 produced markedly more IgG1 and IgG2a anti-collagen Ab compared with controls, whereas IL-12 treatment only led to an enhanced IgG2a response. Together these results demonstrate that IL-18 can promote collagen-induced inflammatory arthritis through mechanisms that may be distinct from those induced by IL-12.  相似文献   

6.
Anti-TNF-alpha treatment of rheumatoid arthritis patients markedly suppresses inflammatory disease activity, but so far no tissue-protective effects have been reported. In contrast, blockade of IL-1 in rheumatoid arthritis patients, by an IL-1 receptor antagonist, was only moderately effective in suppressing inflammatory symptoms but appeared to reduce the rate of progression of joint destruction. We therefore used an established collagen II murine arthritis model (collagen-induced arthritis(CIA)) to study effects on joint structures of neutralization of either TNF-alpha or IL-1. Both soluble TNF binding protein and anti-IL-1 treatment ameliorated disease activity when applied shortly after onset of CIA. Serum analysis revealed that early anti-TNF-alpha treatment of CIA did not decrease the process in the cartilage, as indicated by the elevated COMP levels. In contrast, anti-IL-1 treatment of established CIA normalized COMP levels, apparently alleviating the process in the tissue. Histology of knee and ankle joints corroborated the finding and showed that cartilage and joint destruction was significantly decreased after anti-IL-1 treatment but was hardly affected by anti-TNF-alpha treatment. Radiographic analysis of knee and ankle joints revealed that bone erosions were prevented by anti-IL-1 treatment, whereas the anti-TNF-alpha-treated animals exhibited changes comparable to the controls. In line with these findings, metalloproteinase activity, visualized by VDIPEN production, was almost absent throughout the cartilage layers in anti-IL-1-treated animals, whereas massive VDIPEN appearance was found in control and sTNFbp-treated mice. These results indicate that blocking of IL-1 is a cartilage- and bone-protective therapy in destructive arthritis, whereas the TNF-alpha antagonist has little effect on tissue destruction.  相似文献   

7.
T cell IL-17 displays proinflammatory properties and is expressed in the synovium of patients with rheumatoid arthritis. Its contribution to the arthritic process has not been identified. Here, we show that blocking of endogenous IL-17 in the autoimmune collagen-induced arthritis model results in suppression of arthritis. Also, joint damage was significantly reduced. In contrast, overexpression of IL-17 enhanced collagen arthritis. Moreover, adenoviral IL-17 injected in the knee joint of type II collagen-immunized mice accelerated the onset and aggravated the synovial inflammation at the site. Radiographic and histologic analysis showed markedly increased joint destruction. Elevated levels of IL-1beta protein were found in synovial tissue. Intriguingly, blocking of IL-1alphabeta with neutralizing Abs had no effect on the IL-17-induced inflammation and joint damage in the knee joint, implying an IL-1 independent pathway. This direct potency of IL-17 was underscored in the unabated IL-17-induced exaggeration of bacterial cell wall-induced arthritis in IL-1beta(-/-) mice. In conclusion, this data shows that IL-17 contributes to joint destruction and identifies an IL-1-independent role of IL-17. These findings suggest IL-17 to be a novel target for the treatment of destructive arthritis and may have implications for tissue destruction in other autoimmune diseases.  相似文献   

8.
We investigated the therapeutic potential and mechanism of action of IFN-beta protein for the treatment of rheumatoid arthritis (RA). Collagen-induced arthritis was induced in DBA/1 mice. At the first clinical sign of disease, mice were given daily injections of recombinant mouse IFN-beta or saline for 7 days. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were assessed histologically 8 days after the onset of arthritis. Proteoglycan depletion was determined by safranin O staining. Expression of cytokines, receptor activator of NF-kappaB ligand, and c-Fos was evaluated immunohistochemically. The IL-1-induced expression of IL-6, IL-8, and granulocyte/macrophage-colony-stimulating factor (GM-CSF) was studied by ELISA in supernatant of RA and osteoarthritis fibroblast-like synoviocytes incubated with IFN-beta. We also examined the effect of IFN-beta on NF-kappaB activity. IFN-beta, at 0.25 microg/injection and higher, significantly reduced disease severity in two experiments, each using 8-10 mice per treatment group. IFN-beta-treated animals displayed significantly less cartilage and bone destruction than controls, paralleled by a decreased number of positive cells of two gene products required for osteoclastogenesis, receptor activator of NF-kappaB ligand and c-Fos. Tumor necrosis factor alpha and IL-6 expression were significantly reduced, while IL-10 production was increased after IFN-beta treatment. IFN-beta reduced expression of IL-6, IL-8, and GM-CSF in RA and osteoarthritis fibroblast-like synoviocytes, correlating with reduced NF-kappaB activity. The data support the view that IFN-beta is a potential therapy for RA that might help to diminish both joint inflammation and destruction by cytokine modulation.  相似文献   

9.
Collagen-induced arthritis (CIA) is a chronic inflammatory disease bearing all the hallmarks of rheumatoid arthritis, e.g. polyarthritis, synovitis, and subsequent cartilage/bone erosions. One feature of the disease contributing to joint damage is synovial hyperplasia. The factors responsible for the hyperplasia are unknown; however, an imbalance between rates of cell proliferation and cell death (apoptosis) has been suggested. To evaluate the role of a major pathway of cell death – Fas (CD95)/FasL – in the pathogenesis of CIA, DBA/1J mice with a mutation of the Fas gene (lpr) were generated. The susceptibility of the mutant DBA-lpr/lpr mice to arthritis induced by collagen type II was evaluated. Contrary to expectations, the DBA-lpr/lpr mice developed significantly milder disease than the control littermates. The incidence of disease was also significantly lower in the lpr/lpr mice than in the controls (40% versus 81%; P < 0.05). However DBA-lpr/lpr mice mounted a robust immune response to collagen, and the expression of local proinflammatory cytokines such as, e.g., tumor necrosis factor α (TNF-α) and IL-6 were increased at the onset of disease. Since the contribution of synovial fibroblasts to inflammation and joint destruction is crucial, the potential activating effect of Fas on mouse fibroblast cell line NIH3T3 was investigated. On treatment with anti-Fas in vitro, the cell death of NIH3T3 fibroblasts was reduced and the expression of proinflammatory cytokines TNF-α and IL-6 was increased. These findings suggest that impairment of immune tolerance by increased T-cell reactivity does not lead to enhanced susceptibility to CIA and point to a role of Fas in joint destruction.  相似文献   

10.
Viral IL-10 (vIL-10) and soluble TNF receptor (sTNFR) are anti-inflammatory proteins that can suppress collagen-induced arthritis (CIA). These and related proteins have shown efficacy in the treatment of human rheumatoid arthritis; however, neither alone is able to completely suppress disease. Furthermore, they have short half-lives, necessitating frequent administration. To determine the ability of these proteins to act synergistically following gene transfer, arthritis was induced in DBA/1 male mice by immunization with type II collagen on days 0 and 21. Mice were injected i.v. either before disease onset (day 20) or after disease onset (day 28) with 1010 particles of adenovirus encoding vIL-10, a soluble TNF receptor-IgG1 fusion protein (sTNFR-Ig), a combination of both vectors, or a control vector lacking a transgene. Significant synergism was observed with the combination of vIL-10 and sTNFR-Ig, with a substantial reduction in both the incidence and severity of disease as well as inhibition of progression of established disease. sTNFR-Ig alone had no effect on CIA. vIL-10 alone inhibited disease when given before disease onset, but had minimal effect on established disease. Both proteins inhibited spleen cell proliferation and IFN-gamma secretion in response to stimulation with type II collagen, but only vIL-10 reduced the synovial mRNA levels of the proinflammatory cytokines IL-1beta, TNF-alpha, and IL-6. These findings demonstrate that vIL-10 and sTNFR-Ig act synergistically in suppressing CIA and suggest that gene transfer offers a potential therapeutic modality for the treatment of arthritis.  相似文献   

11.
The role of IL-23 in the development of arthritis and bone metabolism was studied using systemic IL-23 exposure in adult mice via hydrodynamic delivery of IL-23 minicircle DNA in vivo and in mice genetically deficient in IL-23. Systemic IL-23 exposure induced chronic arthritis, severe bone loss, and myelopoiesis in the bone marrow and spleen, which resulted in increased osteoclast differentiation and systemic bone loss. The effect of IL-23 was partly dependent on CD4(+) T cells, IL-17A, and TNF, but could not be reproduced by overexpression of IL-17A in vivo. A key role in the IL-23-induced arthritis was made by the expansion and activity of myeloid cells. Bone marrow macrophages derived from IL-23p19(-/-) mice showed a slower maturation into osteoclasts with reduced tartrate-resistant acid phosphatase-positive cells and dentine resorption capacity in in vitro osteoclastogenesis assays. This correlated with fewer multinucleated osteoclast-like cells and more trabecular bone volume and number in 26-wk-old male IL-23p19(-/-) mice compared with control animals. Collectively, our data suggest that systemic IL-23 exposure induces the expansion of a myeloid lineage osteoclast precursor, and targeting IL-23 pathway may combat inflammation-driven bone destruction as observed in rheumatoid arthritis and other autoimmune arthritides.  相似文献   

12.
IL-23p19 deficient mice have revealed a critical role of IL-23 in the development of experimental autoimmune diseases, such as collagen-induced arthritis (CIA). Neutralizing IL-23 after onset of CIA in rats has been shown to reduce paw volume, but the effect on synovial inflammation and the immunological autoimmune response is not clear. In this study, we examined the role of IL-23 at different stages of CIA and during T cell memory mediated flare-up arthritis with focus on changes in B cell activity and Th1/Th17 modulation. Anti-IL-23p19 antibody (anti-IL23p19) treatment, starting 15 days after the type II collagen (CII)-immunization but before clinical signs of disease onset, significantly suppressed the severity of CIA. This was accompanied with significantly lower CII-specific IgG1 levels and lower IgG2a levels in the anti-IL-23p19 treated mice compared to the control group. Importantly, neutralizing IL-23 after the first signs of CIA did not ameliorate the disease. This was in contrast to arthritic mice that underwent an arthritis flare-up since a significantly lower disease score was observed in the IL-23p19 treated mice compared to the control group, accompanied by lower synovial IL-17A and IL-22 expression in the knee joints of these mice. These data show IL-23-dependent and IL-23-independent stages during autoimmune CIA. Furthermore, the memory T cell mediated flare-up arthritis is IL-23-mediated. These data suggest that specific neutralization of IL-23p19 after onset of autoimmune arthritis may not be beneficial as a therapeutic therapy for patients with rheumatoid arthritis (RA). However, T cell mediated arthritis relapses in patients with RA might be controlled by anti-IL-23p19 treatment.  相似文献   

13.
There is mounting evidence for a role of the growth factor granulocyte-macrophage colony-stimulating factor (GM-CSF) in inflammatory disease, including arthritis. In the present study, we examined the effectiveness of treatment of collagen-induced arthritis (CIA) with a neutralizing mAb to GM-CSF. DBA/1 mice were immunized for the development of CIA and treated at different times, and with different doses, with neutralizing mAb to GM-CSF or isotype control mAb. Anti-GM-CSF mAb treatment prior to the onset of arthritis, at the time of antigen challenge, was effective at ameliorating the ensuing disease. Modulation of arthritis was seen predominantly as a reduction in overall disease severity, both in terms of the number of limbs affected per mouse and the clinical score of affected limbs. Importantly, anti-GM-CSF mAb treatment ameliorated existing disease, seen both as a reduction in the number of initially affected limbs progressing and lower numbers of additional limbs becoming affected. By histology, both inflammation and cartilage destruction were reduced in anti-GM-CSF-treated mice, and the levels of tumor necrosis factor-a and IL-1? were also reduced in joint tissue washouts of these mice. Neither humoral nor cellular immunity to type II collagen, however, was affected by anti-GM-CSF mAb treatment. These results suggest that the major effect of GM-CSF in CIA is on mediating the effector phase of the inflammatory reaction to type II collagen. The results also highlight the essential role of GM-CSF in the ongoing development of inflammation and arthritis in CIA, with possible therapeutic implications for rheumatoid arthritis.  相似文献   

14.
Collagen-induced arthritis (CIA) represents an animal model of autoimmune polyarthritis with significant similarities to human rheumatoid arthritis that can be induced upon immunization with native type II collagen. As in rheumatoid arthritis, both cellular and humoral immune mechanisms contribute to disease pathogenesis. Genotypic studies have identified at least six genetic loci contributing to arthritis susceptibility, including the class II MHC. We have examined the mechanism of Ab-mediated inflammation in CIA joints, specifically the role of complement activation, by deriving a line of mice from the highly CIA-susceptible DBA/1LacJ strain that are congenic for deficiency of the C5 complement component. We show that such C5-deficient DBA/1LacJ animals mount normal cellular and humoral immune responses to native type II collagen, with the activation of collagen-specific TNF-alpha-producing T cells in the periphery and substantial intra-articular deposition of complement-fixing IgG Abs. Nevertheless, these C5-deficient mice are highly resistant to the induction of CIA. These data provide evidence for an important role of complement in Ab-triggered inflammation and in the pathogenesis of autoimmune arthritis.  相似文献   

15.
Using genetic linkage analysis of proteoglycan-induced arthritis (PGIA), a murine model for rheumatoid arthritis, we identified two loci, Pgia8 and Pgia9, on chromosome 15 (chr15) that appear to be implicated in disease susceptibility. Immunization of congenic strains carrying the entire chr15 and separately each of the two loci of DBA/2 arthritis-resistant origin in susceptible BALB/c background confirmed locations of two loci on chr15: the major Pgia9 and lesser Pgia8 locus. Distal part of chr15 (Pgia9) showed a major suppressive effect on PGIA susceptibility in females (40%, p < 0.001), whereas the effect of this locus in congenic males was still significant but weaker. Proximal part of chr15 (Pgia8) demonstrated mild and transient effect upon arthritis; this effect was PGIA-promoting in males and suppressive in females. Pgia8 and Pgia9 loci demonstrated an additive mode of inheritance, since when they were both incorporated in consomic chr15 strain, the total effect was a sum of the two loci. Using F(2) population of the intercross of wild-type and chr15 consomic strain, we confirmed and refined quantitative trait locus positions and identified a strong correlation between disease susceptibility and lymphocyte-producing cytokines of TNF-alpha and IL-6. Both Pgia8 and Pgia9 loci on chr15 appear to control IL-6 production in spleen cultures of arthritic mice, providing an important link to the mechanism of autoimmune inflammation.  相似文献   

16.
Rheumatoid arthritis (RA) is a chronic destructive autoimmune disease characterised by periods of flare and remission. Today’s treatment is based on continuous immunosuppression irrespective of the patient’s inflammatory status. When the disease is in remission the therapy is withdrawn but withdrawal attempts often results in inflammatory flares, and re-start of the therapy is commenced when the inflammation again is prominent which leads both to suffering and increased risk of tissue destruction. An attractive alternative treatment would provide a disease-regulated therapy that offers increased anti-inflammatory effect during flares and is inactive during periods of remission. To explore this concept we expressed the immunoregulatory cytokine interleukin (IL)-10 gene under the control of an inflammation dependent promoter in a mouse model of RA - collagen type II (CII) induced arthritis (CIA). Haematopoetic stem cells (HSCs) were transduced with lentiviral particles encoding the IL-10 gene (LNT-IL-10), or a green fluorescence protein (GFP) as control gene (LNT-GFP), driven by the inflammation-dependent IL-1/IL-6 promoter. Twelve weeks after transplantation of transduced HSCs into DBA/1 mice, CIA was induced. We found that LNT-IL-10 mice developed a reduced severity of arthritis compared to controls. The LNT-IL-10 mice exhibited both increased mRNA expression levels of IL-10 as well as increased amount of IL-10 produced by B cells and non-B APCs locally in the lymph nodes compared to controls. These findings were accompanied by increased mRNA expression of the IL-10 induced suppressor of cytokine signalling 1 (SOCS1) in lymph nodes and a decrease in the serum protein levels of IL-6. We also found a decrease in both frequency and number of B cells and serum levels of anti-CII antibodies. Thus, inflammation-dependent IL-10 therapy suppresses experimental autoimmune arthritis and is a promising candidate in the development of novel treatments for RA.  相似文献   

17.
We investigated the therapeutic potential and mechanism of action of IFN-β protein for the treatment of rheumatoid arthritis (RA). Collagen-induced arthritis was induced in DBA/1 mice. At the first clinical sign of disease, mice were given daily injections of recombinant mouse IFN-β or saline for 7 days. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were assessed histologically 8 days after the onset of arthritis. Proteoglycan depletion was determined by safranin O staining. Expression of cytokines, receptor activator of NF-κB ligand, and c-Fos was evaluated immunohistochemically. The IL-1-induced expression of IL-6, IL-8, and granulocyte/macrophage-colony-stimulating factor (GM-CSF) was studied by ELISA in supernatant of RA and osteoarthritis fibroblast-like synoviocytes incubated with IFN-β. We also examined the effect of IFN-β on NF-κB activity. IFN-β, at 0.25 μg/injection and higher, significantly reduced disease severity in two experiments, each using 8–10 mice per treatment group. IFN-β-treated animals displayed significantly less cartilage and bone destruction than controls, paralleled by a decreased number of positive cells of two gene products required for osteoclastogenesis, receptor activator of NF-κB ligand and c-Fos. Tumor necrosis factor α and IL-6 expression were significantly reduced, while IL-10 production was increased after IFN-β treatment. IFN-β reduced expression of IL-6, IL-8, and GM-CSF in RA and osteoarthritis fibroblast-like synoviocytes, correlating with reduced NF-κB activity. The data support the view that IFN-β is a potential therapy for RA that might help to diminish both joint inflammation and destruction by cytokine modulation.  相似文献   

18.
The hallmarks of rheumatoid arthritis (RA) are leukocytic infiltration of the synovium and expansiveness of fibroblast-like synoviocytes (FLS). The abnormal proliferation of FLS and their resistance to apoptosis is mediated, at least in part, by present in RA joints proinflammatory cytokines and growth factors. Because IL-15 exerts properties of antiapoptotic and growth factors, and is produced by RA FLS, we hypothesized that IL-15 participates in RA FLS activation. To test this hypothesis, we first examined whether RA FLS express chains required for high affinity functional IL-15R. Indeed, RA FLS express IL-15Ralpha at mRNA and protein levels. Moreover, we confirmed the presence of IL-2Rbeta and common gamma-chains. Interestingly, TNF-alpha or IL-1beta triggered significant elevation of IL-15Ralpha chain at mRNA and protein levels. Next, we investigated the effects of exogenous or endogenous IL-15 on Bcl-2 and Bcl-x(L) expression, FLS proliferation, and apoptosis. Exogenous IL-15 enhanced RA FLS proliferation and increased the level of mRNA-encoding Bcl-x(L). To test the role of endogenous IL-15 in the activation of RA FLS, an IL-15 mutant/Fcgamma2a protein exerting properties of specific antagonist to the IL-15Ralpha chain was used. We found that blocking IL-15 biological activities using this protein substantially reduced endogenous expression of Bcl-2 and Bcl-x(L), and RA FLS proliferation that was reflected by increased apoptosis. Thus, we have demonstrated that a distinctive phenotype of RA FLS, i.e., persistent activation, proliferation, and resistance to apoptosis, is related to the autocrine activation of IL-15Rs by FLS-derived IL-15.  相似文献   

19.
IL-17 is the hallmark cytokine for the newly identified subset of Th cells, Th17. Th17 cells are important instigators of inflammation in several models of autoimmune disease; in particular, collagen induced arthritis (CIA) and experimental autoimmune encephalomyelitis (EAE), which were previously characterized as Th1-mediated diseases. Although high levels of IFN-gamma are secreted in CIA and EAE, disease is exacerbated in IFN-gamma- or IFN-gamma receptor-deficient mice due to the ability of IFN-gamma to suppress IL-17 secretion. However, in proteoglycan-induced arthritis (PGIA), severe arthritis is dependent on the production of IFN-gamma. We were therefore interested in determining the role of IL-17 in PGIA. We assessed the progression of arthritis in IL-17-deficient (IL-17-/-) mice and found the onset and severity of arthritis were equivalent in wild-type (WT) and IL-17-/- mice. Despite evidence that IL-17 is involved in neutrophil recruitment, synovial fluid from arthritic joints showed a comparable proportion of Gr1+ neutrophils in WT and IL-17-/- mice. IL-17 is also implicated in bone destruction in autoimmune arthritis, however, histological analysis of the arthritic joints from WT and IL-17-/- mice revealed a similar extent of joint cellularity, cartilage destruction, and bone erosion despite significantly reduced RANKL (receptor activator of NK-kappaB ligand) expression. There were only subtle differences between WT and IL-17-/- mice in proinflammatory cytokine expression, T cell proliferation, and autoantibody production. These data demonstrate that IL-17 is not absolutely required for autoimmune arthritis and that the production of other proinflammatory mediators is sufficient to compensate for the loss of IL-17 in PGIA.  相似文献   

20.
THR0921 is a novel peroxisome proliferator-activated receptor gamma (PPARgamma) agonist with potent anti-diabetic properties. Because of the proposed role of PPARgamma in inflammation, we investigated the potential of orally active THR0921 to inhibit the pathogenesis of collagen-induced arthritis (CIA). CIA was induced in DBA/1J mice by the injection of bovine type II collagen in complete Freund's adjuvant on days 0 and 21. Mice were treated with THR0921 (50 mg/kg/day) starting on the day of the booster injection and throughout the remaining study period. Both clinical disease activity scores as well as histological scores of joint destruction were significantly reduced in mice treated with THR0921 compared to untreated mice. Proliferation of isolated spleen cells, as well as circulating levels of IgG antibody to type II collagen, was decreased by THR0921. Moreover, spleen cell production of IFN-gamma, tumor necrosis factor (TNF)-alpha and IL-1beta in response to exposure to lipopolysaccharide or type II collagen was reduced by in vivo treatment with THR0921. Steady state mRNA levels of TNF-alpha, IL-1beta, monocyte chemotactic protein-1 and receptor activator of nuclear factor kappaB ligand (RANKL) in isolated joints were all decreased in mice treated with THR0921. Finally, THR0921 inhibited osteoclast differentiation of bone marrow-derived cells stimulated with macrophage colony-stimulating factor and RANKL. In conclusion, THR0921 attenuates collagen-induced arthritis in part by reducing the immune response. As such, PPARgamma may be an important therapeutic target for rheumatoid arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号