首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular ATP activates large increases in cell surface area and membrane turnover in rat brown adipocytes (Pappone, P. A., and Lee, S. C. 1996. J. Gen. Physiol. 108:393-404). We used whole-cell patch clamp membrane capacitance measurements of membrane surface area concurrently with fura-2 ratio imaging of intracellular calcium to test whether these purinergic membrane responses are triggered by cytosolic calcium increases or G protein activation. Increasing cytosolic calcium with adrenergic stimulation, calcium ionophore, or calcium-containing pipette solutions did not cause exocytosis. Extracellular ATP increased membrane capacitance in the absence of extracellular calcium with internal calcium strongly buffered to near resting levels. Purinergic stimulation still activated exocytosis and endocytosis in the complete absence of intracellular and extracellular free calcium, but endocytosis predominated. Modulators of G protein function neither triggered nor inhibited the initial ATP-elicited capacitance changes, but GTPgammaS or cytosolic nucleotide depletion did reduce the cells' capacity to mount multiple purinergic responses. These results suggest that calcium modulates purinergically-stimulated membrane trafficking in brown adipocytes, but that ATP responses are initiated by some other signal that remains to be identified.  相似文献   

2.
The first response of brown adipocytes to adrenergic stimulation is a rapid depolarizing conductance increase mediated by alpha-adrenergic receptors. We used patch recording techniques on cultured brown fat cells from neonatal rats to characterize this conductance. Measurements in perforated patch clamped cells showed that fast depolarizing responses were frequent in cells maintained in culture for 1 d or less, but were seen less often in cells cultured for longer periods. Ion substitution showed that the depolarization was due to a selective increase in membrane chloride permeability. The reversal potential for the depolarizing current in perforated patch clamped cells indicated that intracellular chloride concentrations were significantly higher than expected if chloride were passively distributed. The chloride conductance could be activated by increases in intracellular calcium, either by exposing intact cells to the ionophore A23187 or by using pipette solutions with free calcium levels of 0.2-1.0 microM in whole- cell configuration. The chloride conductance did not increase monotonically with increases in intracellular calcium, and going whole cell with pipette-free calcium concentrations > or = 10 microM rapidly inactivated the current. The chloride currents ran down in whole-cell recordings using intracellular solutions of various compositions, and were absent in excised patches. These findings imply that cytoplasmic factors in addition to intracellular calcium are involved in regulation of the chloride conductance. The chloride currents could be blocked by niflumic acid or flufenamic acid with IC50s of 3 and 7 microM, or by higher concentrations of SITS (IC50 = 170 microM), DIDS (IC50 = 50 microM), or 9-anthracene carboxylic acid (IC50 = 80 microM). The chloride conductance activated in whole cell by intracellular calcium had the permeability sequence PNOS > PI > PBr > PCl >> Paspartate, measured from either reversal potentials or conductances. Instantaneous current-voltage relations for the calcium-activated chloride currents were linear in symmetric chloride solutions. Much of the current was time and voltage independent and active at all membrane potentials between -100 and +100 mV, but an additional component of variable amplitude showed time-dependent activation with depolarization. Volume- sensitive chloride currents were also present in brown fat cells, but differed from the calcium-activated currents in that they responded to cell swelling, required intracellular ATP in whole-cell recordings, showed no sensitivity to intracellular or extracellular calcium levels, and were relatively resistant to block by niflumic and flufenamic acids. (ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Extracellular ATP triggers changes in intracellular Ca2+, ion channel function, and membrane trafficking in adipocytes. The aim of the present study was to determine which P2 receptors might mediate the Ca2+ signaling and membrane trafficking responses to ATP in brown fat cells. RT-PCR was used to determine which P2 receptors are expressed in brown fat cells. Responses to nucleotide agonists and antagonists were characterized using fura-2 fluorescence imaging of Ca2+ responses, and FM 1-43 fluorescence imaging and membrane capacitance measurements to assess membrane trafficking. The pharmacology of the Ca2+ responses fits the properties of the P2Y receptors for which mRNA is expressed, but the agonist and antagonist sensitivity of the membrane-trafficking response was not consistent with any P2 receptor described to date. Brown adipocytes expressed mRNA for P2Y2, P2Y6, and P2Y12 metabotropic receptors and P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 ionotropic receptors. The agonists ATP, ADP, UTP, UDP and 2′, 3′-(benzoylbenzoyl) ATP (BzATP) increased intracellular Ca2+, while 100 μM suramin, pyridoxal-phosphate-6-azophenyl-2′ 4′-disulfonic acid (PPADS), or Reactive Blue 2 partially blocked Ca2+ responses. ATP, but not ADP, UTP, UDP or BzATP activated membrane trafficking. The membrane response could be blocked completely with 1 μM PPADS but not by the antagonist MRS2179. We conclude that multiple P2 receptors mediate the ATP responses of brown fat cells, and that membrane trafficking is regulated by a P2 receptor showing unusual properties.  相似文献   

4.
Combined fatty acid esterification and lipolysis, termed lipid cycling, is an ATP‐consuming process that contributes to energy expenditure. Therefore, interventions that stimulate energy expenditure through lipid cycling are of great interest. Here we find that pharmacological and genetic inhibition of the mitochondrial pyruvate carrier (MPC) in brown adipocytes activates lipid cycling and energy expenditure, even in the absence of adrenergic stimulation. We show that the resulting increase in ATP demand elevates mitochondrial respiration coupled to ATP synthesis and fueled by lipid oxidation. We identify that glutamine consumption and the Malate‐Aspartate Shuttle are required for the increase in Energy Expenditure induced by MPC inhibition in Brown Adipocytes (MAShEEBA). We thus demonstrate that energy expenditure through enhanced lipid cycling can be activated in brown adipocytes by decreasing mitochondrial pyruvate availability. We present a new mechanism to increase energy expenditure and fat oxidation in brown adipocytes, which does not require adrenergic stimulation of mitochondrial uncoupling.  相似文献   

5.
The relative importance of ATP as a functional sympathetic neurotransmitter in blood vessels has been shown to be increased when the level of preexisting vascular tone or pressure is increased, in studies carried out in rat mesenteric arteries. The aim of the present study was to determine whether tone influences the involvement of ATP as a sympathetic cotransmitter with noradrenaline in another species. We used the porcine perfused mesenteric arterial bed and porcine mesenteric large, medium and small arteries mounted for isometric tension recording, because purinergic cotransmission can vary depending on the size of the blood vessel. In the perfused mesenteric bed at basal tone, sympathetic neurogenic vasocontractile responses were abolished by prazosin, an α1-adrenoceptor antagonist, but there was no significant effect of α,β-methylene ATP, a P2X receptor-desensitizing agent. Submaximal precontraction of the mesenteric arterial bed with U46619, a thromboxane A2 mimetic, augmented the sympathetic neurogenic vasocontractile responses; under these conditions, both α,β-methylene ATP and prazosin attenuated the neurogenic responses. In the mesenteric large, medium and small arteries, prazosin attenuated the sympathetic neurogenic contractile responses under conditions of both basal and U46619-raised tone. α,β-Methylene ATP was effective in all of these arteries only under conditions of U46619-induced tone, causing a similar inhibition in all arteries, but had no significant effect on sympathetic neurogenic contractions at basal tone. These data show that ATP is a cotransmitter with noradrenaline in porcine mesenteric arteries; the purinergic component was revealed under conditions of partial precontraction, which is more relevant to physiological conditions.  相似文献   

6.
ATP is an efficacious secretagogue for mucin and chloride in the epithelial cell line HT29-Cl.16E. Mucin release has been measured as [3H]glucosamine-labeled product in extracellular medium and as single-cell membrane capacitance increases indicative of exocytosis-related increases in membrane area. The calcium-activated chloride channel blocker niflumic acid, also reported to modulate secretion, was used to probe for divergence in the purinergic signaling of mucin exocytosis and channel activation. With the use of whole cell patch clamping, ATP stimulated a transient capacitance increase of 15 +/- 4%. Inclusion of niflumic acid significantly reduced the ATP-stimulated capacitance change to 3 +/- 1%, although normalized peak currents were not significantly different. Ratiometric imaging was used to assess intracellular calcium (Cai2+) dynamics during stimulation. In the presence of niflumic acid, the ATP-stimulated peak change in Cai2+ was unaffected, but the initial response and overall time to Cai2+ peak were significantly affected. Excluding external calcium before ATP stimulation or including the capacitative calcium entry blocker LaCl3 during stimulation muted the initial calcium transient similar to that observed with niflumic acid and significantly reduced peak capacitance change, suggesting that a substantial portion of the ATP-stimulated mucin exocytosis in HT29-Cl.16E depends on a rapid, brief calcium influx through the plasma membrane. Niflumic acid interferes with this influx independent of a chloride channel blockade effect.  相似文献   

7.
In this study, we report that lipocalin 2 (Lcn2), a recently characterized adipokine/cytokine, is a novel regulator of brown adipose tissue (BAT) activation by modulating the adrenergic independent p38 MAPK-PGC-1α-UCP1 pathway. Global Lcn2 knock-out (Lcn2−/−) mice have defective BAT thermogenic activation caused by cold stimulation and decreased BAT activity under high fat diet-induced obesity. Nevertheless, Lcn2−/− mice maintain normal sympathetic nervous system activation as evidenced by normal catecholamine release and lipolytic activity in response to cold stimulation. Further studies showed that Lcn2 deficiency impairs peroxisomal and mitochondrial oxidation of lipids and attenuates cold-induced Pgc1a and Ucp1 expression and p38 MAPK phosphorylation in BAT. Moreover, in vitro studies showed that Lcn2 deficiency reduces the thermogenic activity of brown adipocytes. Lcn2−/− differentiated brown adipocytes have significantly decreased expression levels of brown fat markers, decreased p38 MAPK phosphorylation, and decreased mitochondrial oxidation capacity. However, Lcn2−/− brown adipocytes have normal norepinephrine-stimulated p38 MAPK and hormone-sensitive lipase phosphorylation and Pgc1a and Ucp1 expression, suggesting an intact β-adrenergic signaling activation. More intriguingly, recombinant Lcn2 was able to significantly stimulate p38 MAPK phosphorylation in brown adipocytes. Activating peroxisome proliferator-activated receptor γ, a downstream effector of PGC-1α, by thiazolidinedione administration fully reverses the BAT function of Lcn2−/− mice. Our findings provide evidence for the novel role Lcn2 plays in oxidative metabolism and BAT activation via an adrenergic independent mechanism.  相似文献   

8.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is defective in cystic fibrosis, and has also been closely associated with ATP permeability in cells. Using a Xenopus oocyte cRNA expression system, we have evaluated the molecular mechanisms that control CFTR-modulated ATP release. CFTR-modulated ATP release was dependent on both cAMP activation and a gradient change in the extracellular chloride concentration. Activation of ATP release occurred within a narrow concentration range of external Cl that was similar to that reported in airway surface fluid. Mutagenesis of CFTR demonstrated that Cl conductance and ATP release regulatory properties could be dissociated to different regions of the CFTR protein. Despite the lack of a need for Cl conductance through CFTR to modulate ATP release, alterations in channel pore residues R347 and R334 caused changes in the relative ability of different halides to activate ATP efflux (wtCFTR, Cl >> Br; R347P, Cl >> Br; R347E, Br >> Cl; R334W, Cl = Br). We hypothesize that residues R347 and R334 may contribute a Cl binding site within the CFTR channel pore that is necessary for activation of ATP efflux in response to increases of extracellular Cl. In summary, these findings suggest a novel chloride sensor mechanism by which CFTR is capable of responding to changes in the extracellular chloride concentration by modulating the activity of an unidentified ATP efflux pathway. This pathway may play an important role in maintaining fluid and electrolyte balance in the airway through purinergic regulation of epithelial cells. Insight into these molecular mechanisms enhances our understanding of pathogenesis in the cystic fibrosis lung.  相似文献   

9.
ATP is co-localized with norepinephrine at the sympathetic nerve terminals and may be released simultaneously upon neuronal stimulation, which results in activation of purinergic receptors. To examine whether leptin synthesis and lipolysis are influenced by P2 purinergic receptor activation, the effects of ATP and other nucleotides on leptin secretion and glycerol release have been investigated in differentiated rat white adipocytes. Firstly, insulin-induced leptin secretion was inhibited by nucleotide treatment with the following efficacy order: 3'-O-(4-benzoyl)benzoyl ATP (BzATP) > ATP > UTP. Secondly, treatment of adipocytes with ATP increased both intracellular Ca(2+) concentration and cAMP content. Intracellular calcium concentration was increased by ATP and UTP, but not BzATP, an effect attributed to phospholipase C-coupled P2Y(2). On the other hand, cAMP was generated by treatment with BzATP and ATPgammaS, but not UTP, indicating functional expression of adenylyl cyclase-coupled P2Y(11) receptors in white adipocytes. Thirdly, lipolysis was significantly activated by BzATP and ATP, which correlated with the characteristics of the P2Y(11) subtype. Taken together, the data presented here suggest that white adipocytes express at least two different types of P2Y receptors and that activation of P2Y(11) receptor might be involved in inhibition of leptin production and stimulation of lipolysis, suggesting that purinergic transmission can play an important role in white adipocyte physiology.  相似文献   

10.
Polymorphonuclear neutrophils (PMNs) form the first line of defense against invading microorganisms. We have shown previously that ATP release and autocrine purinergic signaling via P2Y2 receptors are essential for PMN activation. Here we show that mitochondria provide the ATP that initiates PMN activation. Stimulation of formyl peptide receptors increases the mitochondrial membrane potential (Δψm) and triggers a rapid burst of ATP release from PMNs. This burst of ATP release can be blocked by inhibitors of mitochondrial ATP production and requires an initial formyl peptide receptor-induced Ca2+ signal that triggers mitochondrial activation. The burst of ATP release generated by the mitochondria fuels a first phase of purinergic signaling that boosts Ca2+ signaling, amplifies mitochondrial ATP production, and initiates functional PMN responses. Cells then switch to glycolytic ATP production, which fuels a second round of purinergic signaling that sustains Ca2+ signaling via P2X receptor-mediated Ca2+ influx and maintains functional PMN responses such as oxidative burst, degranulation, and phagocytosis.  相似文献   

11.
The transient receptor potential (TRP) channel TRPM3 is a calcium-permeable cation channel activated by heat and by the neurosteroid pregnenolone sulfate (PregS). TRPM3 is highly expressed in sensory neurons, where it plays a key role in heat sensing and inflammatory hyperalgesia, and in pancreatic β cells, where its activation enhances glucose-induced insulin release. However, despite its functional importance, little is known about the cellular mechanisms that regulate TRPM3 activity. Here, we provide evidence for a dynamic regulation of TRPM3 by membrane phosphatidylinositol phosphates (PIPs). Phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) and ATP applied to the intracellular side of excised membrane patches promote recovery of TRPM3 from desensitization. The stimulatory effect of cytosolic ATP on TRPM3 reflects activation of phosphatidylinositol kinases (PI-Ks), leading to resynthesis of PIPs in the plasma membrane. Various PIPs directly enhance TRPM3 activity in cell-free inside-out patches, with a potency order PI(3,4,5)P3 > PI(3,5)P2 > PI(4,5)P2 ≈ PI(3,4)P2 >> PI(4)P. Conversely, TRPM3 activity is rapidly and reversibly inhibited by activation of phosphatases that remove the 5-phosphate from PIPs. Finally, we show that recombinant TRPM3, as well as the endogenous TRPM3 in insuloma cells, is rapidly and reversibly inhibited by activation of phospholipase C–coupled muscarinic acetylcholine receptors. Our results reveal basic cellular mechanisms whereby membrane receptors can regulate TRPM3 activity.  相似文献   

12.
Activity-dependent release of ATP from synapses, axons and glia activates purinergic membrane receptors that modulate intracellular calcium and cyclic AMP. This enables glia to detect neural activity and communicate among other glial cells by releasing ATP through membrane channels and vesicles. Through purinergic signalling, impulse activity regulates glial proliferation, motility, survival, differentiation and myelination, and facilitates interactions between neurons, and vascular and immune system cells. Interactions among purinergic, growth factor and cytokine signalling regulate synaptic strength, development and responses to injury. We review the involvement of ATP and adenosine receptors in neuron-glia signalling, including the release and hydrolysis of ATP, how the receptors signal, the pharmacological tools used to study them, and their functional significance.  相似文献   

13.
Recruitment and activation of brite (or beige) adipocytes has been advocated as a potential avenue for manipulating whole-body energy expenditure. Despite numerous studies illustrating the differences in gene and protein markers between brown, brite and white adipocytes, there is very little information on the adrenergic regulation and function of these brite adipocytes. We have compared the functional (cyclic AMP accumulation, oxygen consumption rates, mitochondrial function, glucose uptake, extracellular acidification rates, calcium influx) profiles of mouse adipocytes cultured from three contrasting depots, namely interscapular brown adipose tissue, and inguinal or epididymal white adipose tissues, following chronic treatment with the peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone. Prototypical brown adipocytes readily express β3-adrenoceptors, and β3-adrenoceptor stimulation increases cyclic AMP accumulation, oxygen consumption rates, mitochondrial function, glucose uptake, and extracellular acidification rates. Treatment of brown adipocytes with rosiglitazone increases uncoupling protein 1 (UCP1) levels, and increases β3-adrenoceptor mitochondrial function but does not affect glucose uptake responses. In contrast, inguinal white adipocytes only express UCP1 and β3-adrenoceptors following rosiglitazone treatment, which results in an increase in all β3-adrenoceptor-mediated functions. The effect of rosiglitazone in epididymal white adipocytes, was much lower compared to inguinal white adipocytes. Rosiglitazone also increased α1-adrenoceptor mediated increases in calcium influx and glucose uptake (but not mitochondrial function) in inguinal and epididymal white adipocytes. In conclusion, the PPARγ agonist rosiglitazone promotes the induction and function of brite adipocytes cultured from inguinal and epididymal white adipose depots.  相似文献   

14.
Mutations in mitochondrial DNA (mtDNA) can cause mitochondrial disease, a group of metabolic disorders that affect both children and adults. Interestingly, individual mtDNA mutations can cause very different clinical symptoms, however the factors that determine these phenotypes remain obscure. Defects in mitochondrial oxidative phosphorylation can disrupt cell signaling pathways, which may shape these disease phenotypes. In particular, mitochondria participate closely in cellular calcium signaling, with profound impact on cell function. Here, we examined the effects of a homoplasmic m.13565C>T mutation in MT-ND5 on cellular calcium handling using transmitochondrial cybrids (ND5 mutant cybrids). We found that the oxidation of NADH and mitochondrial membrane potential (Δψm) were significantly reduced in ND5 mutant cybrids. These metabolic defects were associated with a significant decrease in calcium uptake by ND5 mutant mitochondria in response to a calcium transient. Inhibition of glycolysis with 2-deoxy-D-glucose did not affect cytosolic calcium levels in control cybrids, but caused an increase in cytosolic calcium in ND5 mutant cybrids. This suggests that glycolytically-generated ATP is required not only to maintain Δψm in ND5 mutant mitochondria but is also critical for regulating cellular calcium homeostasis. We conclude that the m.13565C>T mutation in MT-ND5 causes defects in both mitochondrial oxidative metabolism and mitochondrial calcium sequestration. This disruption of mitochondrial calcium handling, which leads to defects in cellular calcium homeostasis, may be an important contributor to mitochondrial disease pathogenesis.  相似文献   

15.
Extracellular purine nucleotides appear capable of regulating plant development, defence and stress responses by acting in part as agonists of plasma membrane calcium channels. Factors stimulating ATP release include wounding, osmotic stress and elicitors. Here we show that exogenous abscisic acid and L-glutamate can also cause ATP accumulation around Arabidopsis thaliana roots. Release of ADP from root epidermis would trigger ionotropic receptor-like activity in the plasma membrane, resulting in transient elevation of cytosolic free calcium. Root epidermal protoplasts (expressing aequorin as a cytosolic free calcium reporter) can support an extracellular ADP-induced cytosolic calcium elevation in the presence of an extracellular reductant. This confirms that ADP could elicit calcium-based responses distinct to those of ATP, which have been shown previously to involve production of extracellular reactive oxygen species.  相似文献   

16.
There are differences between osteoclasts and osteoblastic cells in their cytosolic calcium responses to purinergic receptor activation. Application of 50 or 100 μM extracellular ATP inhibits the calcium response to a second application of ATP in osteoblastic rat osteosarcoma UMR 106 cells, but not in rabbit osteoclasts. This shows that there is adaptation to the extracellular ATP in osteoclasts, but not in the UMR 106 cells. Extracellular washing of the UMR 106 cells restores the calcium response to ATP partially but not completely, indicating that there is a purinergic receptor activation-induced desensitisation of the receptor or its linked signalling pathways. In contrast to these results, if extracellular UTP is applied first, application of ATP produces no calcium response in osteoclasts, with or without washing, while in the UMR 106 cells there is some response to the ATP, which is greatly enhanced by washing. This indicates that UTP induces a complete desensitisation of the purinergic receptor/calcium signalling system in osteoclasts, but not in the osteoblastic cells, in which there is simply competition between UTP and ATP for the same receptors. Taken together, these results demonstrate that ATP and UTP could differentially regulate osteoblasts and osteoclasts.  相似文献   

17.
Some studies have indicated that insulin was able to increase the level of free cytosolic calcium in adipocytes [e.g. 7]. The present study was designed to examine this phenomenon. Insulin did not increase free cytosolic calcium, however oxytocin, vasopressin, alpha-adrenergic agonists and ATP did increase free cytosolic calcium in adipocytes. Other agonists which also did not alter calcium were epidermal growth factor, angiotensin II, glucagon, and beta-adrenergic agonists. The effect of oxytocin at increasing free cytosolic calcium was inhibited by activation of protein kinase C with phorbol 12-myristate 13-acetate and by ADP ribosylation of a Gi like protein with islet activating protein. The hormones that did increase cytosolic free calcium did so by mobilizing internal calcium and by promoting calcium influx. Even though insulin did not increase free cytosolic calcium, it was able to attenuate the alpha-adrenergic mediated increase in cytosolic free calcium. The fact that certain hormones can increase the level of the second messenger calcium in adipocytes implies that it may be a key intracellular regulator of adipocyte function as it is in many other tissues.  相似文献   

18.
Phosphorylated cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels require nucleoside triphosphates, such as ATP, to open. As the concentration of intracellular ATP increases, the probability of the channel being open (Po) increases. To better understand how ATP regulates the channel, we studied excised inside-out membrane patches that contained single, phosphorylated CFTR Cl- channels and examined the kinetics of gating at different concentrations of ATP. As the ATP concentration increased from 0.1 to 3 mM the mean closed time decreased, but mean open time did not change. Analysis of the data using histograms of open- and closed-state durations, the maximum likelihood method, and the log-likelihood ratio test suggested that channel behavior could be described by a model containing one open and two closed states (C1<==>C2<==>O). ATP regulated phosphorylated channels at the transition between the closed states C1 and C2: as the concentration of ATP increased, the rate of transition from C1 to C2 (C1-->C2) increased. In contrast, transitions from C2 to C1 and between C2 and the open state (O) were not significantly altered by ATP. Addition of ADP in the presence of ATP decreased the transition rate from C1 to C2 without affecting other transition rates. These data suggest that ATP regulates CFTR Cl- channels through an interaction that increases the rate of transition from the closed state to a bursting state in which the channel flickers back and forth between an open and a closed state (C2). This transition may reflect ATP binding or perhaps a step subsequent to binding.  相似文献   

19.
The effects of the purinergic agonists, ATP, ATPgammaS, UTP, and 2-Met-Thio AP, were investigated in the hindlimb vascular bed of the cat. Under constant-flow conditions, injections of the purinergic agonists into the perfusion circuit elicited dose-related decreases in perfusion pressure. The order of potency was 2-Met-Thio ATP > ATPgammaS > ATP > UTP. In contrast, injections of GTPgammaS, cAMP, UDP, and UMP had no effect. Vasodilator responses to ATP, ATPgammaS, UTP, and 2-Met-Thio ATP were increased in duration by the cAMP phosphodiesterase inhibitor rolipram, whereas the cGMP phosphodiesterase inhibitor zaprinast had no effect. Responses to the purinergic agonists were not altered by nitric oxide synthase inhibitors, K+(ATP) channel antagonists, cyclooxygenase inhibitors, or agents that interfere with the actions of the adrenergic nervous system. These data suggest that ATP, ATPgammaS, UTP, and 2-Met-Thio ATP dilate the hindlimb vascular bed by a direct cAMP-dependent mechanism, and that the release of nitric oxide, vasodilator prostaglandins, K+(ATP) channel opening, or an inhibitory effect on the adrenergic nervous system play little, if any, role in mediating or modulating responses to the purinergic agonists in the hindlimb circulation of the cat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号