首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photoreactive DNA duplexes mimicking substrates of nucleotide excision repair (NER) system were used to analyze the interaction of XPC-HR23B, RPA, and XPA with damaged DNA. Photoreactive groups in one strand of DNA duplex (arylazido-dCMP or 4-thio-dUMP) were combined with anthracenyl-dCMP residue at the opposite strand to analyze contacts of NER factors with damaged and undamaged strands. Crosslinking of XPC-HR23B complex with photoreactive 48-mers results in modification of XPC subunit. XPC-HR23B did not crosslink with DNA duplex bearing bulky residues in both strands while this modification does not prevent interaction of DNA with XPA. The data on crosslinking of XPA and RPA with photoreactive DNA duplexes containing bulky group in one of the strands are in favor of XPA preference to interact with the damaged strand and RPA preference for the undamaged strand. The results support the understanding and set the stage for dynamically oriented experiments of how the pre-incision complex is formed in the early stage of NER.  相似文献   

2.
3.
In mammalian cells, nucleotide excision repair (NER) is the major pathway for the removal of bulky DNA adducts. Many of the key NER proteins are members of the XP family (XPA, XPB, etc.), which was named on the basis of its association with the disorder xerodoma pigmentosum. Human replication protein A (RPA), the ubiquitous single-stranded DNA-binding protein, is another of the essential proteins for NER. RPA stimulates the interaction of XPA with damaged DNA by forming an RPA–XPA complex on damaged DNA sites. Binding of RPA to the undamaged DNA strand is most important during NER, because XPA, which directs the excision nucleases XPG and XPF, must bind to the damaged strand. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to assess the binding of the tandem high affinity DNA-binding domains, RPA-AB, and of the isolated domain RPA-A, to normal DNA and damaged DNA containing the cyclobutane pyrimidine dimer (CPD) lesion. Both RPA-A and RPA-AB were found to bind non- specifically to both strands of normal and CPD- containing DNA duplexes. There were no differences observed when binding to normal DNA duplex was examined in the presence of the minimal DNA-binding domain of XPA (XPA-MBD). However, there is a drastic difference for CPD-damaged DNA duplex as both RPA-A and RPA-AB bind specifically to the undamaged strand. The strand-specific binding of RPA and XPA to the damaged duplex DNA shows that RPA and XPA play crucial roles in damage verification and guiding cleavage of damaged DNA during NER.  相似文献   

4.
Long linear DNA analogs of nucleotide excision repair (NER) substrates have been synthesized. They are 137-mer duplexes containing in their internal positions nucleotides with bulky substitutes imitating lesions with fluorochloroazidopyridyl and fluorescein groups introduced using spacer fragments at the 4N and 5C positions of dCMP and dUMP (Fap-dC- and Flu-dU-DNA) and DNA containing a (+)-cis-stereoisomer of benzo[a]pyrene-N2-deoxyguanidine (BP-dG-DNA, 131 bp). The interaction of the modified DNA duplexes with the proteins of NER-competent HeLa extract was investigated. The substrate properties of the model DNA in the reaction of specific excision were shown to vary in the series Fap-dC-DNA << Flu-dU-DNA < BP-dG-DNA. During the experiments on affinity modification of the proteins of NER-competent extract, Fap-dC-DNA (137 bp) containing a 32P-label in the photoactive nucleotide demonstrated properties of a highly efficient and selective probe. The set of the main targets of labeling included polypeptides of the extract with the same values of apparent molecular weights (35–90 kDa) as when using the shorter (48 bp) Fap-dC-DNA. Besides, some of the extract proteins were shown capable of specific and effective interaction with the long analog of NER substrate. Electrophoretic mobility of these proteins coincided with the mobilities of DNA-binding subunits of XPC-HR23B and PARP1 (∼127 and T]115 kDa, respectively). The 115-kDa target protein was identified as PARP1 using NAD+-based functional testing. The results suggest that the linear Fap-dC-DNA is an unrepairable substrate analog that can compete with effective NER substrates in the binding of the proteins responsible for lesion recognition and excision.  相似文献   

5.
The interaction of nucleotide excision repair factors--xeroderma pigmentosum complementation group C protein in complex with human homolog of yeast Rad23 protein (XPC-HR23B), replication protein A (RPA), and xeroderma pigmentosum complementation group A protein (XPA)--with 48-mer DNA duplexes imitating damaged DNA structures was investigated. All studied proteins demonstrated low specificity in binding to damaged DNA compared with undamaged DNA duplexes. RPA stimulates formation of XPC-HR23B complex with DNA, and when XPA and XPC-HR23B are simultaneously present in the reaction mixture a synergistic effect in binding of these proteins to DNA is observed. RPA crosslinks to DNA bearing photoreactive 5I-dUMP residue on one strand and fluorescein-substituted dUMP analog as a lesion in the opposite strand of DNA duplex and also stimulates cross-linking with XPC-HR23B. Therefore, RPA might be one of the main regulation factors at various stages of nucleotide excision repair. The data are in agreement with the cooperative binding model of nucleotide excision repair factors participating in pre-incision complex formation with DNA duplexes bearing damages.  相似文献   

6.
The multiprotein factor composed of XPA and replication protein A (RPA) is an essential subunit of the mammalian nucleotide excision repair system. Although XPA-RPA has been implicated in damage recognition, its activity in the DNA repair pathway remains controversial. By replacing DNA adducts with mispaired bases or non-hybridizing analogues, we found that the weak preference of XPA and RPA for damaged substrates is entirely mediated by indirect readout of DNA helix conformations. Further screening with artificially distorted substrates revealed that XPA binds most efficiently to rigidly bent duplexes but not to single-stranded DNA. Conversely, RPA recognizes single-stranded sites but not backbone bending. Thus, the association of XPA with RPA generates a double-check sensor that detects, simultaneously, backbone and base pair distortion of DNA. The affinity of XPA for sharply bent duplexes, characteristic of architectural proteins, is not compatible with a direct function during recognition of nucleotide lesions. Instead, XPA in conjunction with RPA may constitute a regulatory factor that monitors DNA bending and unwinding to verify the damage-specific localization of repair complexes or control their correct three-dimensional assembly.  相似文献   

7.
The interaction of nucleotide excision repair (NER) proteins (XPC-HR23b, RPA, and XPA) with 48-mer DNA duplexes containing the bulky lesion-mimicking fluorescein-substituted derivative of dUMP (5-{3-[6-(carboxyamidofluo-resceinyl)amidocapromoyl]allyl}-2′-deoxyuridine-5′-monophosphate) in a cluster with a lesion of another type (apurinic/apyrimidinic (AP) site) has been studied. It is shown that XPC-HR23b is modified to a greater extent by the DNA duplex containing an AP site opposite nucleotide adjacent to the fluorescein residue than by DNA containing an AP site shifted to the 3′-or 5′-end of the DNA strand. The efficiency of XPA modification by DNA duplexes containing both AP site and fluorescein residue is higher than that by DNA lacking the bulky lesion; the modification pattern in this case depends on the AP site position. In accordance with its major function, RPA interacts more efficiently with single-stranded DNA than with DNA duplexes, including those bearing bulky lesions. The observed interaction between the proteins involved in nucleotide excision repair and DNA structures containing a bulky lesion processed by NER and the AP site repaired via base excision repair may be significant for both these repair pathways in cells and requires the specific sequence of repair of clustered DNA lesions.  相似文献   

8.
The interaction of xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA) with damaged DNA in nucleotide excision repair (NER) was studied using model dsDNA and bubble-DNA structure with 5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-dUMP lesions in one strand and containing photoreactive 5-iodo-dUMP residues in defined positions. Interactions of XPA and RPA with damaged and undamaged DNA strands were investigated by DNA–protein photocrosslinking and gel shift analysis. XPA showed two maximums of crosslinking intensities located on the 5′-side from a lesion. RPA mainly localized on undamaged strand of damaged DNA duplex and damaged bubble-DNA structure. These results presented for the first time the direct evidence for the localization of XPA in the 5′-side of the lesion and suggested the key role of XPA orientation in conjunction with RPA binding to undamaged strand for the positioning of the NER preincision complex. The findings supported the mechanism of loading of the heterodimer consisting of excision repair cross-complementing group 1 and xeroderma pigmentosum group F proteins by XPA on the 5′-side from the lesion before damaged strand incision. Importantly, the proper orientation of XPA and RPA in the stage of preincision was achieved in the absence of TFIIH and XPG.  相似文献   

9.
Recognition of new DNA nucleotide excision repair (NER) substrate analogs, 48-mer ddsDNA (damaged double-stranded DNA), by human replication protein A (hRPA) has been analyzed using fluorescence spectroscopy and photoaffinity modification. The aim of the present work was to find quantitative characteristics of RPA-ddsDNA interaction and RPA subunits role in this process. The designed DNA structures bear bulky substituted pyrimidine nitrogen bases at the inner positions of duplex forming DNA chains. The photoreactive 4-azido-2,5-difluoro-3- pyridin-6-yl (FAP) and fluorescent antracenyl, pyrenyl (Antr, Pyr) groups were introduced via different linker fragments into exo-4N of deoxycytidine or 5C of deoxyuridine. J-dU-containing DNA was used as a photoactive model of undamaged DNA strands. The reporter group was a fluorescein residue, introduced into the 5'-phosphate end of one duplex-forming DNA strand. RPA-dsDNA association constants and the molar RPA/dsDNA ratio have been calculated based on fluorescence anisotropy measurements under conditions of a 1:1 RPA/dsDNA molar ratio in complexes. The evident preference for RPA binding to ddsDNA over undamaged dsDNA distinctly depends on the adduct type and varies in the following way: undamaged dsDNA < Antr-dC-ddsDNA < mmdsDNA < FAPdU-, Pyr-dU-ddsDNA < FAP-dC-ddsDNA (K(D) = 68 +/- 1; 25 +/- 6; 13 +/- 1; 8 +/- 2, and 3.5 +/- 0.5 nM correspondingly) but weakly depends on the chain integrity. Interestingly the bulkier lesions not in all cases have a greater effect on RPA affinity to ddsDNA. The experiments on photoaffinity modification demonstrated only p70 of compactly arranged RPA directly interacting with dsDNA. The formation of RPA-ddsDNA covalent adducts was drastically reduced when both strands of DNA duplex contained virtually opposite located FAP-dC and Antr-dC. Thus RPA requires undamaged DNA strand presence for the effective interaction with dsDNA bearing bulky damages and demonstrates the early NER factors characteristic features underlying strand discrimination capacity and poor activity of the NER system toward double damaged DNA.  相似文献   

10.
The xeroderma pigmentosum group A protein (XPA) is a core component of nucleotide excision repair (NER). To coordinate early stage NER, XPA interacts with various proteins, including replication protein A (RPA), ERCC1, DDB2, and TFIIH, in addition to UV-damaged or chemical carcinogen-damaged DNA. In this study, we investigated the effects of mutations in the RPA binding regions of XPA on XPA function in NER. XPA binds through an N-terminal region to the middle subunit (RPA32) of the RPA heterotrimer and through a central region that overlaps with its damaged DNA binding region to the RPA70 subunit. In cell-free NER assays, an N-terminal deletion mutant of XPA showed loss of binding to RPA32 and reduced DNA repair activity, but it could still bind to UV-damaged DNA and RPA. In contrast, amino acid substitutions in the central region reduced incisions at the damaged site in the cell-free NER assay, and four of these mutants (K141A, T142A, K167A, and K179A) showed reduced binding to RPA70 but normal binding to damaged DNA. Furthermore, mutants that had one of the four aforementioned substitutions and an N-terminal deletion exhibited lower DNA incision activity and binding to RPA than XPA with only one of these substitutions or the deletion. Taken together, these results indicate that XPA interaction with both RPA32 and RPA70 is indispensable for NER reactions.  相似文献   

11.
XPA, XPC-hHR23B, RPA, and TFIIH all are the damage recognition proteins essential for the early stage of nucleotide excision repair. Nonetheless, it is not clear how these proteins work together at the damaged DNA site. To get insight into the molecular mechanism of damage recognition, we carried out a comprehensive analysis on the interaction between damage recognition proteins and their assembly on damaged DNA. XPC physically interacted with XPA, but failed to stabilize the XPA-damaged DNA complex. Instead, XPC-hHR23B was effectively displaced from the damaged DNA by the combined action of RPA and XPA. A mutant RPA lacking the XPA interaction domain failed to displace XPC-hHR23B from damaged DNA, suggesting that XPA and RPA cooperate with each other to destabilize the XPC-hHR23B-damaged DNA complex. Interestingly, the presence of hHR23B significantly increased RPA/XPA-mediated displacement of XPC from damaged DNA, suggesting that hHR23B may modulate the binding of XPC to damaged DNA. Together, our results suggest that damage recognition occurs in a multistep process such that XPC-hHR23B initiates damage recognition, which was replaced by combined action of XPA and RPA. XPA and RPA, once forming a complex at the damage site, would likely work with TFIIH, XPG, and ERCC1-XPF for dual incision.  相似文献   

12.
Strand-specific binding of RPA and XPA to damaged duplex DNA   总被引:7,自引:0,他引:7  
The nucleotide excision repair (NER) pathway is a major pathway used to repair bulky adduct DNA damage. Two proteins, xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA), have been implicated in the role of DNA damage recognition in the NER pathway. The particular manner in which these two damage recognition proteins align themselves with respect to a damaged DNA site was assessed using photoreactive base analogues within specific DNA substrates to allow site-specific cross-linking of the damage recognition proteins. Results of these studies demonstrate that both RPA and XPA are in close proximity to the adduct as measured by cross-linking of each protein directly to the platinum moiety. Additional studies demonstrate that XPA contacts both the damaged and undamaged strands of the duplex DNA. Direct evidence is presented demonstrating preferential binding of RPA to the undamaged strand of a duplex damaged DNA molecule.  相似文献   

13.
Order of assembly of human DNA repair excision nuclease.   总被引:21,自引:0,他引:21  
Human excision nuclease removes DNA damage by concerted dual incisions bracketing the lesion. The dual incisions are accomplished by sequential and partly overlapping actions of six repair factors, RPA, XPA, XPC, TFIIH, XPG, and XPF.ERCC1. Of these, RPA, XPA, and XPC have specific binding affinity for damaged DNA. To learn about the role of these three proteins in damage recognition and the order of assembly of the excision nuclease, we measured the binding affinities of XPA, RPA, and XPC to a DNA fragment containing a single (6-4) photoproduct and determined the rate of damage excision under a variety of reaction conditions. We found that XPC has the highest affinity to DNA and that RPA has the highest selectivity for damaged DNA. Under experimental conditions conducive to binding of either XPA + RPA or XPC to damaged DNA, the rate of damage removal was about 5-fold faster for reactions in which XPA + RPA was the first damage recognition factor presented to DNA compared with reactions in which XPC was the first protein that had the opportunity to bind to DNA. We conclude that RPA and XPA are the initial damage sensing factors of human excision nuclease.  相似文献   

14.
Replication protein A (RPA) is required for simian virus 40-directed DNA replication in vitro and for nucleotide excision repair (NER). Here we report that RPA and the human repair protein XPA specifically interact both in vitro and in vivo. Mapping of the RPA-interactive domains in XPA revealed that both of the largest subunits of RPA, RPA-70 and RPA-34, interact with XPA at distinct sites. A domain involved in mediating the interaction with RPA-70 was located between XPA residues 153 and 176. Deletion of highly conserved motifs within this region identified two mutants that were deficient in binding RPA in vitro and highly defective in NER both in vitro and in vivo. A second domain mediating the interaction with RPA-34 was identified within the first 58 residues in XPA. Deletion of this region, however, only moderately affects the complementing activity of XPA in vivo. Finally, the XPA-RPA complex is shown to have a greater affinity for damaged DNA than XPA alone. Taken together, these results indicate that the interaction between XPA and RPA is required for NER but that only the interaction with RPA-70 is essential.  相似文献   

15.
Acrolein (Acr), a ubiquitous environmental contaminant, is a human carcinogen. Acr can react with DNA to form mutagenic α- and γ-hydroxy-1, N(2)-cyclic propano-2'-deoxyguanosine adducts (α-OH-Acr-dG and γ-OH-Acr-dG). We demonstrate here that Acr-dG adducts can be efficiently repaired by the nucleotide excision repair (NER) pathway in normal human bronchial epithelia (NHBE) and lung fibroblasts (NHLF). However, the same adducts were poorly processed in cell lysates isolated from Acr-treated NHBE and NHLF, suggesting that Acr inhibits NER. In addition, we show that Acr treatment also inhibits base excision repair and mismatch repair. Although Acr does not change the expression of XPA, XPC, hOGG1, PMS2 or MLH1 genes, it causes a reduction of XPA, XPC, hOGG1, PMS2, and MLH1 proteins; this effect, however, can be neutralized by the proteasome inhibitor MG132. Acr treatment further enhances both bulky and oxidative DNA damage-induced mutagenesis. These results indicate that Acr not only damages DNA but can also modify DNA repair proteins and further causes degradation of these modified repair proteins. We propose that these two detrimental effects contribute to Acr mutagenicity and carcinogenicity.  相似文献   

16.
DNA damage recognition during nucleotide excision repair in mammalian cells   总被引:13,自引:0,他引:13  
Wood RD 《Biochimie》1999,81(1-2):39-44
For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components.  相似文献   

17.
Nucleotide excision repair (NER) is a pivotal life process for repairing DNA nucleotide mismatch caused by chemicals, metal ions, radiation, and other factors. As the initiation step of NER, the xeroderma pigmentosum complementation group A protein (XPA) recognizes damaged DNA molecules, and recruits the replication protein A (RPA), another important player in the NER process. The stability of the Zn2+-chelated Zn-finger domain of XPA center core portion (i.e., XPA98-210) is the foundation of its biological functionality, while the displacement of the Zn2+ by toxic metal ions (such as Ni2+, a known human carcinogen and allergen) may impair the effectiveness of NER and hence elevate the chance of carcinogenesis. In this study, we first calculated the force field parameters for the bonded model in the metal center of the XPA98-210 system, showing that the calculated results, including charges, bonds, angles etc., are congruent with previously reported results measured by spectrometry experiments and quantum chemistry computation. Then, comparative molecular dynamics simulations using these parameters revealed the changes in the conformation and motion mode of XPA98-210 Zn-finger after the substitution of Zn2+ by Ni2+. The results showed that Ni2+ dramatically disrupted the relative positions of the four Cys residues in the Zn-finger structure, forcing them to collapse from a tetrahedron into an almost planar structure. Finally, we acquired the binding mode of XPA98-210 with its ligands RPA70N and DNA based on molecular docking and structural alignment. We found that XPA98-210’s Zn-finger domain primarily binds to a V-shaped cleft in RPA70N, while the cationic band in its C-terminal subdomain participates in the recognition of damaged DNA. In addition, this article sheds light on the multi-component interaction pattern among XPA, DNA, and other NER-related proteins (i.e., RPA70N, RPA70A, RPA70B, RPA70C, RPA32, and RPA14) based on previously reported structural biology information. Thus, we derived a putative cytotoxic mechanism associated with the nickel ion, where the Ni2+ disrupts the conformation of the XPA Zn-finger, directly weakening its interaction with RPA70N, and thus lowering the effectiveness of the NER process. In sum, this work not only provides a theoretical insight into the multi-protein interactions involved in the NER process and potential cytotoxic mechanism associated with Ni2+ binding in XPA, but may also facilitate rational anti-cancer drug design based on the NER mechanism.  相似文献   

18.
Wang M  Mahrenholz A  Lee SH 《Biochemistry》2000,39(21):6433-6439
The xeroderma pigmentosum group A complementing protein (XPA) and eukaryotic replication protein A (RPA) are among the major damage-recognition proteins involved in the early stage of nucleotide excision repair (NER). XPA and RPA are able to bind damaged DNA independently, although RPA interaction stimulates XPA binding to damaged DNA [Li, L., Lu, X., Peterson, C. A., and Legerski, R. J. (1995) Mol. Cell. Biol. 15, 5396-5402 (1); Stigger, E., Drissi, R., and Lee, S.-H. (1998) J. Biol. Chem. 273, 9337-9343 (2)]. In this study, we used surface plasmon resonance (SPR) analysis to investigate the interaction of XPA and RPA with two major types of UV-damaged DNA: the (6-4) photoproduct and the cis-syn cyclobutane dimer of thymidine. Both XPA and RPA preferentially bind to (6-4) photoproduct-containing duplex DNA over cis-syn cyclobutane dimer-containing DNA. The binding of XPA to (6-4) photoproduct was weak (K(D) = 2.13 x 10(-)(8) M), whereas RPA showed a very stable interaction with (6-4) photoproduct (K(D) = 2. 02 x 10(-)(10) M). When XPA and RPA were incubated together, the stability of the XPA-damaged DNA interaction was significantly enhanced by wild-type RPA. On the other hand, mutant RPA (RPA:p34Delta33C) defective in its interaction with XPA failed to stabilize XPA-damaged DNA complex. Taken together, our results suggest that a role for RPA in UV-damage recognition is to stabilize XPA-damaged DNA complex through protein-protein interaction.  相似文献   

19.
We used scanning confocal fluorescence microscopy to observe and analyze individual DNA– protein complexes formed between human nucleotide excision repair (NER) proteins and model DNA substrates. For this purpose human XPA protein was fused to EGFP, purified and shown to be functional. Binding of EGFP-labeled XPA protein to a Cy3.5-labeled DNA substrate, in the presence and absence of RPA, was assessed quantitatively by simultaneous excitation and emission detection of both fluorophores. Co-localization of Cy3.5 and EGFP signals within one diffraction limited spot indicated complexes of XPA with DNA. Measure ments were performed on samples in a 1% agarose matrix in conditions that are compatible with protein activity and where reactions can be studied under equilibrium conditions. In these samples DNA alone was freely diffusing and protein-bound DNA was immobile, whereby they could be discriminated resulting in quantitative data on DNA binding. On the single molecule level ~10% of XPA co-localized with DNA; this increased to 32% in the presence of RPA. These results, especially the enhanced binding of XPA in the presence of RPA, are similar to those obtained in bulk experiments, validating the utility of scanning confocal fluorescence microscopy for investigating functional interactions at the single molecule level.  相似文献   

20.
Interaction of nucleotide excision repair factors--replication protein A (RPA) and Xeroderma pigmentosum complementing group A protein (XPA)--with DNA structures containing nucleotides with bulky photoreactive groups imitating damaged nucleotides was investigated. Efficiency of photoaffinity modification of two proteins by photoreactive DNAs varied depending on DNA structure and type of photoreactive group. The secondary structure of DNA and, first of all, the presence of extended single-stranded parts plays a key role in recognition by RPA. However, it was shown that RPA efficiently interacts with DNA duplex containing a bulky substituent at the 5 -end of a nick. XPA was shown to prefer the nicked DNA; however, this protein was cross-linked with approximately equal efficiency by single-stranded and double-stranded DNA containing a bulky substituent inside the strand. XPA seems to be sensitive not only to the structure of DNA double helix, but also to a bulky group incorporated into DNA. The mechanism of damage recognition in the process of nucleotide excision repair is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号