首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in presenilins are the major cause of familial Alzheimer's disease (FAD), leading to impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Presenilins are the catalytic subunits of γ-secretase, which itself is critically involved in the processing of amyloid precursor protein to release neurotoxic amyloid β (Aβ). Besides Aβ generation, there is growing evidence that presenilins play an essential role in the formation and maintenance of synapses. To further elucidate the effect of presenilin1 (PS1) on synapses, we performed longitudinal in vivo two-photon imaging of dendritic spines in the somatosensory cortex of transgenic mice over-expressing either human wild-type PS1 or the FAD-mutated variant A246E (FAD-PS1). Interestingly, the consequences of transgene expression were different in two subtypes of cortical dendrites. On apical layer 5 dendrites, we found an enhanced spine density in both mice over-expressing human wild-type presenilin1 and FAD-PS1, whereas on basal layer 3 dendrites only over-expression of FAD-PS1 increased the spine density. Time-lapse imaging revealed no differences in kinetically distinct classes of dendritic spines nor was the shape of spines affected. Although γ-secretase-dependent processing of synapse-relevant proteins seemed to be unaltered, higher expression levels of ryanodine receptors suggest a modified Ca(2+) homeostasis in PS1 over-expressing mice. However, the conditional depletion of PS1 in single cortical neurons had no observable impact on dendritic spines. In consequence, our results favor the view that PS1 influences dendritic spine plasticity in a gain-of-function but γ-secretase-independent manner.  相似文献   

2.
In order to examine the effects of activity on spine production and/or maintenance in the cerebral cortex, we have compared the number of dendritic spines on pyramidal neurons in slices of PO mouse somatosensory cortex maintained in organotypic slice cultures under conditions that altered basal levels of spontaneous electrical activity. Cultures chronically exposed to 100 μM picrotoxin (PTX) for 14 days exhibited significantly elevated levels of electrical activity when compared to neurons in control cultures. Pyramidal neurons raised in the presence of PTX showed significantly densities of dendritic spines on primary apical, secondary apical, and secondary basal dendrites when compared to control cultures. The PTX-induced increase in spine density was dose dependent and appeared to saturate at 100 μM. Cultures exhibiting little or no spontaneous activity, as a result of growth in a combination of PTX and tetrodotoxin (TTx), showed significantly fewer dendritic spines compared to cultures maintained in PTX alone. These results demonstrate that the density of spines on layers V and VI pyramidal neurons can be modulated by growth conditions that alter the levels of spontaneous electrical activity. 1994 John Wiley & Sons, Inc.  相似文献   

3.
1. In Golgi-Cox-impregnated coronal sections of albino rat brains at 1, 4, 26, 24, 30, 60 and 90 days it is presented the evolution of the spine-less, bare initial zone ("nude zone", NZ) at the proximal apical main dendrites of the layer V pyramidal neurons in the somatosensory and anterior limbie cortex. The quantitative results are analyzed by statistical methods. 2. The NZ is comprehended as a morphological correlate of the endodendritic neuroplasmic flow (Weiss 1944, Globus, Lux and Schuberl 1968, Kreutzberg 1973). The observed changes of the percental frequency and the average length of NZ increases rapidly. 3. The NZ occurs at first in the (12th) 16 postnatal day, thus in a time, when the organs of hearing and the eyes are differentiated completely. Between 16th and 24th day the percental frequency as well as the longitude of NZ increases. During this time the rats will be independent of the mother animals. With the full differentiation of the urogenital tract and especially with the sexual maturity the percentage frequency of NZ increases only at pyramidal cells in the anterior limbie cortex between 24th and 60th day. During 3rd month the NZ is occuring percental more frequently in the anterior limbic cortex than in the somatosensory cortex. At this time the average length of NZ is shorter in the limbic cortex. 4. As to the enriched, vivid movement of the animals and the playing impulse of the young rats the average length of NZ will be extended at pyramidal neurons in the somatosensory cortex during 2nd month, as well as the pattern of spine distribution will be changed along apical dendrites (Schlerhorn, unpublished). During the following (3rd) month the NZ will be shorteded in the somatosensory cortex, obviously caused by new formation of spines at the proximal main dendrites. 5. These newly formed spines in the initial zone of apical dendrites may be inhibitory spines. The inhibitory spines are stained only when using the mercury chromate impregnation according to Golgi-Cox, but not when using the silver chromate methods according to Golgi-Kopsch or Golgi-Bubenaite. The different tingibility of these spines by different Golgi techniques is discussed by Doedens, Nagel and Schierhorn (1974). The pyramidal neurons in the somatosensory cortex possess a longer average length of NZ (Lnz = 7,3[mum]) than the pyramidal cells in the anterior limbic cortex (Lnz = 6.2[mum]). As to NZ the differences between silver and mercury chromate stained pyramidal neurons are greater in the somatosensory cortex than in limbic cortex (see Tab. 7). Therefore we assume that there are in the initial zone of somatosensory pyramidal neurons more inhibitory spines than at the pyramidal neurons in the anterior limbic cortex. 6. The regional differences in the percentual frequency and in the average length of NZ between somatosensory and limbic cortex are new identifying marks of architectonic differentiation of the pyramidal neurons in cortical regions of phylogenetically different ages.  相似文献   

4.
Dendritic spines receive most excitatory inputs in the neocortex and are morphologically very diverse. Recent evidence has demonstrated linear relationships between the size and length of dendritic spines and important features of its synaptic junction and time constants for calcium compartmentalisation. Therefore, the morphologies of dendritic spines can be directly interpreted functionally. We sought to explore whether there were potential differences in spine morphologies between areas and species that could reflect potential functional differences. For this purpose, we reconstructed and measured thousands of dendritic spines from basal dendrites of layer III pyramidal neurons from mouse temporal and occipital cortex and from human temporal cortex. We find systematic differences in spine densities, spine head size and spine neck length among areas and species. Human spines are systematically larger and longer and exist at higher densities than those in mouse cortex. Also, mouse temporal spines are larger than mouse occipital spines. We do not encounter any correlations between the size of the spine head and its neck length. Our data suggests that the average synaptic input is modulated according to cortical area and differs among species. We discuss the implications of these findings for common algorithms of cortical processing.  相似文献   

5.
Despite progress in reducing ischemic stroke damage, complete protection remains elusive. Here we demonstrate that, after permanent occlusion of a major cortical artery (middle cerebral artery; MCA), single whisker stimulation can induce complete protection of the adult rat cortex, but only if administered within a critical time window. Animals that receive early treatment are histologically and behaviorally equivalent to healthy controls and have normal neuronal function. Protection of the cortex clearly requires reperfusion to the ischemic area despite permanent occlusion. Using blood flow imaging and other techniques we found evidence of reversed blood flow into MCA branches from an alternate arterial source via collateral vessels (inter-arterial connections), a potential mechanism for reperfusion. These findings suggest that the cortex is capable of extensive blood flow reorganization and more importantly that mild sensory stimulation can provide complete protection from impending stroke given early intervention. Such non-invasive, non-pharmacological intervention has clear translational potential.  相似文献   

6.
Methods of light and electron microscopy were used to compare dendritic spines of cortical neurons in three principal areas (dorsal, medial, and lateral cortex) of the forebrain inTestudo horsfieldi andEmys orbicularis. Differences between the spines in each of the three areas were found to be common to both species. Differences in the distribution of dendrites in proximal, middle, and distal segments of the dendrites and the density, shape, length, and fine structure of these formations were all taken into account. Besides the undoubted similarity between the species, differences were found in the fine structure of the spines and in their quantitative distribution in homonymous cortical zones and are connected with the character of processing of incoming information, which is largely dependent on the ecological features of the species.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 142–148, March–April, 1977.  相似文献   

7.
A rapid upregulation of astrocytic protein expression within area 2 of the cingulate cortex (Cg2) of the maternal rat occurs within 3 h postpartum and persists throughout lactation. Previous studies have shown that similar changes in astrocytic proteins can signal changes in local synapses and dendritic spines. Thus, here we used the Golgi-Cox impregnation technique to compare spine density in layer 2 and 3 pyramidal cells of Cg2, the CA1 region of the hippocampus and the parietal cortex (ParCx) among metestrus, late pregnant (LP), 3-hour postpartum (3H PP) and 16-day postpartum rats (D16 PP). Rats in the 3H PP group had higher numbers of dendritic spines/10 μm on the apical dendrites of pyramidal neurons in both Cg2 and CA1 than the other groups, which did not differ. A similar pattern was observed in basilar dendrites but this failed to reach significance. In Cg2, Sholl analysis revealed that rats in the D16 PP group had a significantly greater extent of dendritic arborization in the basilar region than any other group. These data suggest that the changes in astrocytic proteins that occur in Cg2 in the postpartum period are associated with neuronal plasticity in pyramidal layers 2 and 3.  相似文献   

8.
The function of the cerebral cortex is dependent on the precise organization of the circuits formed by its component neurons. The connections between neurons are not random, but are specific at multiple levels of organization. For example, each cortical area connects to only a selected subset of other areas and within any given area the axonal and dendritic arbors of individual neurons arborize in precise, layer-specific patterns (for review see Felleman & Van Essen, 1991; Callaway, 1998) . In each layer there are dendrites from multiple cell types including cells with somata both within and outside that layer. Anatomical studies have shown that axons arborizing in a particular cortical layer can connect selectively onto dendrites of some cell types in the layer, while avoiding the dendrites of other cell types (e.g. Freund & Gulyas, 1991; Hornung & Celio, 1992; Staiger et al., 1996). These cell type specific connections are, however, difficult to elucidate with anatomical methods, so the frequency of such specificity has remained elusive. Recent experimental methods combining intracellular recording of single neurons with focal neuronal stimulation by uncaging glutamate with light (“photostimulation”) have made the analysis of cell type specific cortical connections more tractable. These studies show that cell type specificity of connections is prevalent in cortex. Here I review photostimulation-based studies investigating the laminar sources of cortical input to distinct cell types in the visual and somatosensory cortices of rats and the primary visual cortex of monkeys.  相似文献   

9.
We present a protocol for in vivo imaging of cortical tissue using a deep-brain imaging probe in the shape of a microprism. Microprisms are 1-mm in size and have a reflective coating on the hypotenuse to allow internal reflection of excitation and emission light. The microprism probe simultaneously images multiple cortical layers with a perspective typically seen only in slice preparations. Images are collected with a large field-of-view (~900 μm). In addition, we provide details on the non-survival surgical procedure and microscope setup. Representative results include images of layer V pyramidal neurons from Thy-1 YFP-H mice showing their apical dendrites extending through the superficial cortical layer and extending into tufts. Resolution was sufficient to image dendritic spines near the soma of layer V neurons. A tail-vein injection of fluorescent dye reveals the intricate network of blood vessels in the cortex. Line-scanning of red blood cells (RBCs) flowing through the capillaries reveals RBC velocity and flux rates can be obtained. This novel microprism probe is an elegant, yet powerful new method of visualizing deep cellular structures and cortical function in vivo.Download video file.(107M, mp4)  相似文献   

10.
An electron-microscopic study was made of 4520 synapses in different layers of the cat auditory cortex. Of the total number of synapses 53% were located on dendritic spines, 37% on dendrites, and 10% on neuron bodies; 91% of the synapses belonged to Gray's type I, 9% to type II. Most of the type I synapses were located on dendrites and dendritic spines, whereas the type II synapses were distributed on neuron bodies, axon hillocks, and large dendrites. Signs of degeneration were discovered 60 h after complete neuronal isolation of an area of the auditory cortex in 22.8% of synapses. No degenerating type II synapses were found. This indicates that they are formed by axons of intracortical neurons. The quantitative and qualitative composition of the synapses were shown to differ in different layers of the auditory cortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 2, pp. 131–137, March–April, 1980.  相似文献   

11.
The development of nervous system connectivity depends upon the arborization of dendritic fields and the stabilization of dendritic spine synapses. It is well established that neuronal activity and the neurotrophin BDNF modulate these correlated processes. However, the downstream mechanisms by which these extrinsic signals regulate dendritic development and spine stabilization are less well known. Here we report that a substrate of BDNF signaling, the Ankyrin Repeat‐rich Membrane Spanning (ARMS) protein or Kidins220, plays a critical role in the branching of cortical and hippocampal dendrites and in the turnover of cortical spines. In the barrel somatosensory cortex and the dentate gyrus, regions where ARMS/Kidins220 is highly expressed, no difference in the complexity of dendritic arbors was observed in 1‐month‐old adolescent ARMS/Kidins220+/? mice compared to wild‐type littermates. However, at 3 months of age, young adult ARMS/Kidins220+/? mice exhibited decreased dendritic complexity. This suggests that ARMS/Kidins220 does not play a significant role in the initial formation of dendrites but, rather, is involved in the refinement or stabilization of the arbors later in development. In addition, at 1 month of age, the rate of spine elimination was higher in ARMS/Kidins220+/? mice than in wild‐type mice, suggesting that ARMS/Kidins220+/? levels regulate spine stability. Taken together, these data suggest that ARMS/Kidins220 is important for the growth of dendritic arbors and spine stability during an activity‐ and BDNF‐dependent period of development. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

12.
Zuo Y  Lin A  Chang P  Gan WB 《Neuron》2005,46(2):181-189
Synapse formation and elimination occur throughout life, but the magnitude of such changes at distinct developmental stages remains unclear. Using transgenic mice overexpressing yellow fluorescent protein and transcranial two-photon microscopy, we repeatedly imaged dendritic spines on the apical dendrites of layer 5 pyramidal neurons. In young adolescent mice (1-month-old), 13%-20% of spines were eliminated and 5%-8% formed over 2 weeks in barrel, motor, and frontal cortices, indicating a cortical-wide spine loss during this developmental period. As animals mature, there is also a substantial loss of dendritic filopodia involved in spinogenesis. In adult mice (4-6 months old), 3%-5% of spines were eliminated and formed over 2 weeks in various cortical regions. Over 18 months, only 26% of spines were eliminated and 19% formed in adult barrel cortex. Thus, after a concurrent loss of spines and spine precursors in diverse regions of young adolescent cortex, spines become stable and a majority of them can last throughout life.  相似文献   

13.
Pyramidal, aspinous, sparsely-spinous bipolar and multipolar neurons of the rat sensomotor cerebral cortex, impregnated after Golgi method, have been studied at an electron microscopical level. The ultrastructural characteristics of the pyramidal neurons differs from that of the nonpyramidal cells. Distribution of various synaptic contacts on the cellular surface and cortical postsynaptic targets of the axonal arborizations of the neurons are revealed. On the body of the pyramidal cells only symmetrical synapses exist, on large dendritic trunks symmetrical synapses prevail, on the spines and the terminal dendritic branches assymetrical synapses mainly predominate. Axonal collateralies of the pyramidal cells form asymmetrical synapses on the spines, small and middle dendrites. There are more axo-somatic synapses on the bodies of the nonpyramidal neurons than on the pyramidal cells, among them both symmetrical and asymmetrical types of the synapses occur. On the trunks and small dendrites of the nonpyramidal cells both types of synaptic contacts are revealed. In the distal direction of the dendrites the number of the asymmetrical synapses becomes predominating. Axons of the bipolar cells form asymmetrical synapses on the spines, small and middle dendrites. Axons of the multipolar cells form symmetrical synapses on the dendrites and the dendritic trunks of the nondifferentiated cells. Differences in the distribution character of the synaptic inlets and various postsynaptic targets of the axonal systems in the cells assume various functional role of the identified neurons.  相似文献   

14.
Destabilization of cortical dendrites and spines by BDNF.   总被引:12,自引:0,他引:12  
Particle-mediated gene transfer and two-photon microscopy were used to monitor the behavior of dendrites of individual cortical pyramidal neurons coexpressing green fluorescent protein (GFP) and brain-derived neurotrophic factor (BDNF). While the dendrites and spines of neurons expressing GFP alone grew modestly over 24-48 hr, coexpressing BDNF elicited dramatic sprouting of basal dendrites, accompanied by a regression of dendritic spines. Compared to GFP-transfected controls, the newly formed dendrites and spines were highly unstable. Experiments utilizing Trk receptor bodies, K252a, and overexpression of nerve growth factor (NGF) demonstrated that these effects were mediated by secreted BDNF interacting with extracellular TrkB receptors. Thus, BDNF induces structural instability in dendrites and spines, which, when restricted to particular portions of a dendritic arbor, may help translate activity patterns into specific morphological changes.  相似文献   

15.
Dendritic spines receive most excitatory inputs in the CNS. Recent evidence has demonstrated that the spine head volume is linearly correlated with the readily releasable pool of neurotransmitter and the PSD size. These correlations can be used to functionally interpret spine morphology. Using Golgi impregnations and light microscopy, we reconstructed 23000 spines from pyramidal neurons in layers 2/3, 4, 5 and 6 of mouse primary visual cortex and CA1 hippocampal region and measured their spine head diameters and densities. Spine head diameters and densities are variable within and across cells, although they are similar between apical and basal dendrites. When compared to other regions, layer 5 neurons have larger spine heads and CA1 neurons higher spine densities. Interestingly, we detect a correlation between spine head diameter and interspine distance within and across cells, whereby larger spines are spaced further away from each other than smaller spines. Finally, in CA1 neurons, spine head diameters are larger, and spine density lower, in distal apical dendrites (>200 microm from soma) compared to proximal regions. These results reveal that spine morphologies and densities, and therefore synaptic properties, are jointly modulated with respect to cortical region, laminar position, and, in some cases, even the position of the spine along the dendritic tree. Individual neurons also appear to regulate their apical and basal spine densities and morphologies in concert. Our data provide evidence for a homeostatic control of excitatory synaptic strength.  相似文献   

16.
Peters  A.  Sethares  C. 《Brain Cell Biology》1997,26(12):779-797
In previous publications we proposed a model of cortical organization in which the pyramidal cells of the cerebral cortex are organized into modules. The modules are centred around the clusters of apical dendrites that originate from the layer 5 pyramidal cells. In monkey striate cortex such modules have an average diameter of 23 μm and the outputs originating from the modules are contained in the vertical bundles of myelinated axons that traverse the deeper layers of the cortex. The present study is concerned with how the double bouquet cells in layer 2/3 of striate cortex relate to these pyramidal cell modules. The double bouquet cells are visualized with an antibody to calbindin, and it has been shown that their vertically oriented axons, or horse tails, are arranged in a regular array, such that there is one horse tail per pyramidal cell module. Within layer 2/3 the double bouquet cell axons run alongside the apical dendritic clusters, while in layer 4C they are closely associated with the myelinated axon bundles. However, the apical dendrites are not the principal targets of the double bouquet cell axons. Most of the neuronal elements post-synaptic to them are the shafts of small dendrites (60%) and dendritic spines, with which they form symmetric synapses. This regular arrangement of the axons of the double-bouquet cells and their relationship to the components of the pyramidal cells modules supports the concept that there are basic, repeating neuronal circuits in the cortex.  相似文献   

17.
18.
We show that the neural cell recognition molecule Close Homolog of L1 (CHL1) is required for neuronal positioning and dendritic growth of pyramidal neurons in the posterior region of the developing mouse neocortex. CHL1 was expressed in pyramidal neurons in a high-caudal to low-rostral gradient within the developing cortex. Deep layer pyramidal neurons of CHL1-minus mice were shifted to lower laminar positions in the visual and somatosensory cortex and developed misoriented, often inverted apical dendrites. Impaired migration of CHL1-minus cortical neurons was suggested by strikingly slower rates of radial migration in cortical slices, failure to potentiate integrin-dependent haptotactic cell migration in vitro, and accumulation of migratory cells in the intermediate and ventricular/subventricular zones in vivo. The restriction of CHL1 expression and effects of its deletion in posterior neocortical areas suggests that CHL1 may regulate area-specific neuronal connectivity and, by extension, function in the visual and somatosensory cortex.  相似文献   

19.
Similar to maternal care, paternal care is a source of neonatal sensory stimulation, which in primates and rodents has been shown to be essential for developing structure and function of sensory cortices. The aim of our study in the biparental rodent Octodon degus was to assess the impact of paternal deprivation on dendritic and synaptic development in the somatosensory cortex. We (i) quantified the amount of paternal care in relation to total parental investment and (ii) compared dendritic and synaptic development of pyramidal neurons in the somatosensory cortex of animals raised by a single mother or by both parents. On the behavioral level we show that paternal care comprises 37% of total parent‐offspring interactions, and that the somatosensory stimulation provided by the fathers primarily consists of huddling, licking/grooming, and playing. On the morphological level we found that, compared with offspring raised by both parents (mother and father), the father‐deprived animals displayed significantly reduced spine numbers on the basal dendrites of pyramidal neurons. Furthermore, paternal deprivation induces hemispheric asymmetry of the dendritic morphology of somatosensory pyramidal neurons. Father‐deprived animals show shorter and less complex basal dendrites in the left somatosensory cortex compared with the right hemisphere. These findings indicate that paternal deprivation results in delayed or retarded dendritic and synaptic development of somatosensory circuits. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

20.
Neocortical island chronically isolated from surrounding cortical and subcortical structures with preserved pial blood supply has long been a model for research into the mechanisms of cortex functioning. To fully cut the cortex we improved the type of knife by using a retractable tungsten wire. The tip of a syringe needle was bent and cut away all but the beginning of the bend. In anesthetized rats the somatosensory cortex was exposed, the guide needle was lowered down to the desired depth into the cortex avoiding blood vessels. The wire then was pulled out through the curved needle tip until the tip of the wire touched the pia mater. The device was then raised, lowered, rotated to achieve complete separation of the cortical island from the surrounding tissues. The wire was retracted into the needle before withdrawal of the device. Analysis of neocortical slices 8 weeks later showed lesions of the white matter and transcortical cuts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号