首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of apoptosis by cell cycle regulator molecules under conditions optimal for exponential growth was examined in rat pheochromocytoma PC12 cells by overexpression of cyclins and cyclin-dependent kinases (cdks). By flow cytometry and by immunofluorescence, only cells overexpressing cdk4 or cyclin D1 underwent apoptosis, which was not associated with G1-arrest. Cdk4 kinase activity was significantly higher in cdk4-, or cyclin D1-expressing cells. Furthermore, induction of apoptosis by cdk4 was abrogated by co-transfection of p16(INK4), or dominant negative cdk4. These results suggest that upregulation of cdk4 kinase activity is a primary and critical mediator of apoptosis in PC12 cells under physiological conditions.  相似文献   

2.
Integrin-mediated adhesion of epithelial cells to extracellular matrix (ECM) proteins induces prolonged tyrosine phosphorylation and partial activation of epidermal growth factor receptor (EGFR) in an integrin-dependent and EGFR ligand-independent manner. Integrin-mediated activation of EGFR in epithelial cells is required for multiple signal transduction events previously shown to be induced by cell adhesion to matrix proteins, including tyrosine phosphorylation of Shc, Cbl, and phospholipase Cgamma, and activation of the Ras/Erk and phosphatidylinositol 3'-kinase/Akt signaling pathways. In contrast, activation of focal adhesion kinase, Src, and protein kinase C, adhesion to matrix proteins, cell spreading, migration, and actin cytoskeletal rearrangements are induced independently of EGFR kinase activity. The ability of integrins to induce the activation of EGFR and its subsequent regulation of Erk and Akt activation permitted adhesion-dependent induction of cyclin D1 and p21, Rb phosphorylation, and activation of cdk4 in epithelial cells in the absence of exogenous growth factors. Adhesion of epithelial cells to the ECM failed to efficiently induce degradation of p27, to induce cdk2 activity, or to induce Myc and cyclin A synthesis; subsequently, cells did not progress into S phase. Treatment of ECM-adherent cells with EGF, or overexpression of EGFR or Myc, resulted in restoration of late-G(1) cell cycle events and progression into S phase. These results indicate that partial activation of EGFR by integrin receptors plays an important role in mediating events triggered by epithelial cell attachment to ECM; EGFR is necessary for activation of multiple integrin-induced signaling enzymes and sufficient for early events in G(1) cell cycle progression. Furthermore, these findings suggest that EGFR or Myc overexpression may provoke ligand-independent proliferation in matrix-attached cells in vivo and could contribute to carcinoma development.  相似文献   

3.
Uterine decidualization, characterized by stromal cell proliferation, and differentiation into specialized type of cells (decidual cells) with polyploidy, during implantation is critical to the pregnancy establishment in mice. The mechanisms by which the cell cycle events govern these processes are poorly understood. The cell cycle is tightly regulated at two particular checkpoints, G1-S and G2-M phases. Normal operation of these phases involves a complex interplay of cyclins, cyclin-dependent kinases (cdks) and cdk inhibitors (CKIs). We previously observed that upregulation of uterine cyclin D3 at the implantation site is tightly associated with decidualization in mice. To better understand the role of cyclin D3 in this process, we examined cell-specific expression and associated interactions of several cell cycle regulators (cyclins, cdks and CKIs) specific to different phases of the cell cycle during decidualization in mice. Among the various cell cycle molecules examined, coordinate expression and functional association of cyclin D3 with cdk4 suggest a role for proliferation and, that of cyclin D3 with p21 and cdk6 is consistent with the development of polyploidy during stromal cell decidualization.  相似文献   

4.
Cell cycle progression is under the control of cyclin-dependent kinases (cdks), the activity of which is dependent on the expression of specific cdk inhibitors. In this paper we report that the two cdk inhibitors, p27(Kip1) and p18(INK4c), are differently expressed and control different steps of human B lymphocyte activation. Resting B cells contain large amounts of p27(Kip1) and no p18(INK4c). In vitro stimulation by Staphylococcus aureus Cowan 1 strain or CD40 ligand associated with IL-10 and IL-2 induces a rapid decrease in p27(Kip1) expression combined with cell cycle entry and progression. In contrast, in vitro Ig production correlates with specific expression of p18(INK4c) and early G(1) arrest. This G(1) arrest is associated with inhibition of cyclin D3/cdk6-mediated retinoblastoma protein phosphorylation by p18(INK4c). A similar contrasting pattern of p18(INK4c) and p27(Kip1) expression is observed both in B cells activated in vivo and in various leukemic cells. Expression of p18(INK4c) was also detected in various Ig-secreting cell lines in which both maximum Ig secretion and specific p18(INK4c) expression were observed during the G(1) phase. Our study shows that p27(Kip1) and p18(INK4c) have different roles in B cell activation; p27(Kip1) is involved in the control of cell cycle entry, and p18(INK4c) is involved in the subsequent early G(1) arrest necessary for terminal B lymphocyte differentiation.  相似文献   

5.
In order to elucidate the mechanisms by which estrogens and antiestrogens modulate the growth of breast cancer cells, we have characterized the changes induced by estradiol that occur during the G1 phase of the cell cycle of MCF-7 human mammary carcinoma cells. Addition of estradiol relieves the cell cycle block created by tamoxifen treatment, leading to marked activation of cyclin E-cdk2 complexes and phosphorylation of the retinoblastoma protein within 6 h. Cyclin D1 levels increase significantly while the levels of cyclin E, cdk2, and the p21 and p27 cdk inhibitors are relatively constant. However, the p21 cdk inhibitor shifts from its association with cyclin E-cdk2 to cyclin D1-cdk4, providing an explanation for the observed activation of the cyclin E-cdk2 complexes. These results support the notion that cyclin D1 has an important role in steroid-dependent cell proliferation and that estrogen, by regulating the activities of G1 cyclin-dependent kinases, can control the proliferation of breast cancer cells.  相似文献   

6.
The antimitogenic action of transforming growth factor beta (TGF-beta) in epithelial cells involves cyclin-dependent kinase (cdk) inhibitory gene responses and downregulation of c-Myc expression. Although the cdk inhibitory responses are sufficient for G(1) arrest, enforced expression of c-Myc prevents G(1) arrest by TGF-beta. We investigated the basis of this antagonism by using Mv1Lu lung epithelial cell lines that conditionally express levels of human c-Myc. We show that c-Myc prevents induction of the cdk4 inhibitor p15(Ink4b) and the subsequent inhibition of G(1) cdks by TGF-beta. We assessed the significance of this effect by analyzing the oligomeric state of cdk4 in these cells. In proliferating cells, endogenous cdk4 is distributed among three populations: an abundant high-molecular-mass (>400-kDa) pool of latent cdk4 that serves as a source of cdk4 for cyclin D, a low-abundance pool containing active cyclin D-cdk4 complexes, and an inactive population of monomeric cdk4. Cell stimulation with TGF-beta converts the latent and active cdk4 pools into inactive cdk4, an effect that is specifically mimicked by overexpression of p15 but not by other forms of G(1) arrest. This process of TGF-beta-induced cdk4 inactivation is completely blocked by expression of c-Myc, even though the latent and active cdk4 complexes from c-Myc-expressing cells remain sensitive to dissociation by p15 in vitro. c-Myc causes a small increase in cyclin D levels, but this effect contributes little to the loss of TGF-beta responses in these cells. The evidence suggests that c-Myc interferes with TGF-beta activation of the p15 G(1) arrest pathway. TGF-beta must therefore downregulate c-Myc in order to activate this pathway.  相似文献   

7.
8.
9.
Cyclin E-Cdk2 kinase activation is an essential step in Myc-induced proliferation. It is presumed that this requires sequestration of G(1) cell cycle inhibitors p27(Kip1) and p21(Cip1) (Ckis) via a Myc-induced protein. We provide biochemical and genetic evidence to show that this sequestration is mediated via induction of cyclin D1 and/or cyclin D2 protein synthesis rates. Consistent with this conclusion, primary cells from cyclin D1(-/-) and cyclin D2(-/-) mouse embryos, unlike wild-type controls, do not respond to Myc with increased proliferation, although they undergo accelerated cell death in the absence of serum. Myc sensitivity of cyclin D1(-/-) cells can be restored by retroviruses expressing either cyclins D1, D2 or a cyclin D1 mutant forming kinase-defective, Cki-binding cyclin-cdk complexes. The sequestration function of D cyclins thus appears essential for Myc-induced cell cycle progression but dispensable for apoptosis.  相似文献   

10.
Expression of cyclins and cdks throughout murine carcinogenesis.   总被引:6,自引:0,他引:6  
The overexpression and/or amplification of cell cycle regulating genes is an important factor in the progression of cancer. Recent attention has been focused on several cyclin and cdks genes whose expression were increased in many types of tumor. In this study, we investigated the expression kinetics of cyclins A, B, D1, E and cdks 1, 2, 4, 6 by RT-PCR coupled with densitometry and correlated to the growth fraction (percentage of S cells). This analysis was performed using an experimental murine leukemic model, generated by in vivo administration of murine clonogenic cells Wehi-3b injected into balb-c mice. Differential expression of cyclins and cdks was observed between normal and tumoral cells with different patterns of expression between G1 and G2M cyclins-cdks. G1 cyclins cdks expression was significantly increased in tumor cells when compared to normal cells. In the same manner, G2M cyclins cdks expression was only observed in tumor cells at a lower level than for G1 cyclins cdks, but not detected in normal cells. These differences correlated with the growth fraction for both the G1 cyclins cdks (r = 0.91, 0.94, 0.85, 0.90 and 0.96 for cyclin D1, cyclin E, cdk2, cdk4 and cdk6, respectively) and the G2M cyclins cdks (r = 0.96, 0.97 and 0.93 for cyclins A, B and cdkl respectively). Analysis of cyclins cdks expression kinetics during tumoral progression shows that cyclins A, B and cdkl were expressed from the 12th day on of disease, increased until the death of the animals and correlated with the growth fraction (r = 0.94, 0.95 and 0.97 for cyclins A, B and cdk1 respectively) (n = 20). Overexpression of other cyclins cdks were observed, from the 6th day on for cyclin D1, the 12th day for cdk2 and cdk4, the 15th day for cdk6 and the 20th day for cyclin E. These increases persisted during tumoral progression and correlated with the growth fraction (r = 0.85, 0.94, 0.93, 0.96, and 0.98 for cyclin D1, cyclin E, cdk2, cdk4 and cdk6, respectively) (n = 20). Our results demonstrated that G1 and G2-M cyclins cdks mRNA levels were increased at approximately the same time of maximal tumor growth. Only cyclin D1 overexpression occured at the initiation of tumoral development, and could therefore be considered as an early marker of cell proliferation.  相似文献   

11.
12.
Ectopic expression of Myc induces Cdk2 kinase activity in quiescent cells and antagonizes association of p27(kip1) with Cdk2. The target gene(s) by which Myc mediates this effect is largely unknown. We now show that p27 is rapidly and transiently sequestered by cyclin D2-Cdk4 complexes upon activation of Myc and that cyclin D2 is a direct target gene of Myc. The cyclin D2 promoter is repressed by Mad-Max complexes and de-repressed by Myc via a single highly conserved E-box element. Addition of trichostatin A to quiescent cells mimics activation of Myc and induces cyclin D2 expression, suggesting that cyclin D2 is repressed in a histone deacetylase-dependent manner in quiescent cells. Inhibition of cyclin D2 function in established cell lines, either by ectopic expression of p16 or by antibody injection, inhibits Myc-dependent dissociation of p27 from Cdk2 and Myc-induced cell cycle entry. Primary mouse fibroblasts that are cyclin D2-deficient undergo accelerated senescence in culture and are not immortalized by Myc; induction of apoptosis by Myc is unimpaired in such cells. Our data identify a downstream effector pathway that links Myc directly to cell cycle progression.  相似文献   

13.
DNA damaging agents such as ultraviolet (UV) induce cell cycle arrest followed by apoptosis in cells where irreparable damage has occurred. Here we show that during early phase G1 arrest which occurs in UV-irradiated human U343 glioblastoma cells, there are (1) decreases in cyclin D1 and cdk4 levels which parallel a loss of S-phase promoting cyclin D1/cdk4 complexes, and (2) increases in p53 and p21 protein levels. We also show that the late phase UV-induced apoptosis of U343 cells occurs after cell cycle re-entry and parallels the reappearance of cyclin D1 and cdk4 and cyclin D1/cdk4 complexes. These findings suggest that cyclin D1 can abrogate UV-induced G1 arrest and that the p53-mediated apoptosis that occurs in these cells is dependent on cyclin D1 levels. We examined these possibilities using U343 cells that ectopically express cyclin D1 and found that indeed cyclin D1 can overcome the cell cycle arrest caused by UV. Moreover, the appearance of p53 protein and the induction of apoptosis in UV-irradiated cells was found to be dependent on the level of ectopically expressed cyclin D1. These findings, therefore, indicate that expression of cyclin D1 following DNA damage is essential for cell cycle re-entry and p53-mediated apoptosis.  相似文献   

14.
Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent present in green tea, is a promising chemopreventive agent. We recently showed that green tea polyphenols exert remarkable preventive effects against prostate cancer in a mouse model and many of these effects are mediated by the ability of polyphenols to induce apoptosis in cancer cells [Proc. Natl. Acad. Sci. USA 98 (2001) 10350]. Earlier, we showed that EGCG causes a G0/G1 phase cell cycle arrest and apoptosis of both androgen-sensitive LNCaP and androgen-insensitive DU145 human prostate carcinoma cells, irrespective of p53 status [Toxicol. Appl. Pharmacol. 164 (2000) 82]. Here, we provide molecular understanding of this effect. We tested a hypothesis that EGCG-mediated cell cycle dysregulation and apoptosis is mediated via modulation of cyclin kinase inhibitor (cki)-cyclin-cyclin-dependent kinase (cdk) machinery. As shown by immunoblot analysis, EGCG treatment of LNCaP and DU145 cells resulted in significant dose- and time-dependent (i) upregulation of the protein expression of WAF1/p21, KIP1/p27, INK4a/p16, and INK4c/p18, (ii) down-modulation of the protein expression of cyclin D1, cyclin E, cdk2, cdk4, and cdk6, but not of cyclin D2, (iii) increase in the binding of cyclin D1 toward WAF1/p21 and KIP1/p27, and (iv) decrease in the binding of cyclin E toward cdk2. Taken together, our results suggest that EGCG causes an induction of G1 phase ckis, which inhibits the cyclin-cdk complexes operative in the G0/G1 phase of the cell cycle, thereby causing an arrest, which may be an irreversible process ultimately leading to apoptotic cell death. This is the first systematic study showing the involvement of each component of cdk inhibitor-cyclin-cdk machinery during cell cycle arrest and apoptosis of human prostate carcinoma cells by EGCG.  相似文献   

15.
The actin cytoskeleton has been found to be required for mitogen-stimulated cells to passage through the cell cycle checkpoint. Here we show that selective disruption of the actin cytoskeleton by dihydrocytochalasin B (H(2)CB) blocked the mitogenic effect in normal Swiss 3T3 cells, leading to cell cycle arrest at mid to late G(1) phase. Cells treated with H(2)CB remain tightly attached to the substratum and respond to mitogen-induced MAP kinase activation. Upon cytoskeleton disruption, however, growth factors fail to induce hyperphosphorylation of the retinoblastoma protein (pRb) and the pRb-related p107. While cyclin D1 induction and cdk4-associated kinase activity are not affected, induction of cyclin E expression and activation of cyclin E-cdk2 complexes are greatly inhibited in growth-stimulated cells treated with H(2)CB. The inhibition of cyclin E expression appears to be mediated at least in part at the RNA level and the inhibition of cdk2 kinase activity is also attributed to the decrease in cdk2 phosphorylation and proper subcellular localization. The expression patterns of cdk inhibitors p21 and p27 are similar in both untreated and H(2)CB-treated cells upon serum stimulation. In addition, the changes in subcellular localization of pRb and p107 appear to be linked to their phosphorylation states and disruption of normal actin structure affects nuclear migration of p107 during G(1)-to-S progression. Taken together, our results suggest that the actin cytoskeleton-dependent G(1) arrest is linked to the cyclin-cdk pathway. We hypothesize that normal actin structure may be important for proper localization of certain G(1) regulators, consequently modulating specific cyclin and kinase expression.  相似文献   

16.
We have recently shown that curcumin induces apoptosis in prostate cancer cells through Bax translocation to mitochondria and caspase activation, and enhances the therapeutic potential of TRAIL. However, the molecular mechanisms by which it causes growth arrest are not well-understood. We studied the molecular mechanism of curcumin-induced cell cycle arrest in prostate cancer androgen-sensitive LNCaP and androgen-insensitive PC-3 cells. Treatment of both cell lines with curcumin resulted in cell cycle arrest at G1/S phase and that this cell cycle arrest is followed by the induction of apoptosis. Curcumin induced the expression of cyclin-dependent kinase (CDK) inhibitors p16/INK4a, p21/WAF1/CIP1 and p27/KIP1, and inhibited the expression of cyclin E and cyclin D1, and hyperphosphorylation of retinoblastoma (Rb) protein. Lactacystin, an inhibitor of 26 proteasome, blocks curcumin-induced down-regulation of cyclin D1 and cyclin E proteins, suggesting their regulation at level of posttranslation. The suppression of cyclin D1 and cyclin E by curcumin may inhibit CDK-mediated phosphorylation of pRb protein. The inhibition of p21/WAF1/CIP1 by siRNA blocks curcumin-induced apoptosis, thus establishing a link between cell cycle and apoptosis. These effects of curcumin result in the proliferation arrest and disruption of cell cycle control leading to apoptosis. Our study suggests that curcumin can be developed as a chemopreventive agent for human prostate cancer.  相似文献   

17.
18.
19.
Caspase-3在roscovitine诱发PC12细胞凋亡中发挥重要作用   总被引:6,自引:0,他引:6  
Gao JX  Zhou YQ  Zhang RH  Ma XL  Liu KJ 《生理学报》2005,57(6):755-760
我们已证实周期蛋白激酶(cyclin-dependent kinases)cdk2、cdc2和cdk5抑制剂roscovitine诱导PC12细胞凋亡。本实验应用caspase-3免疫细胞化学与hoechst 33342荧光化学双标、MTT比色法细胞活性测定和Western blot方法,研究了caspase-3在roscovitine所致PC12细胞凋亡中的作用。结果显示,roscovitine(50μmol/L)处理PC12细胞12h,细胞核染色质凝缩及核碎片形成,同时胞浆中出现caspase-3阳性标志,caspase-3阳性细胞占细胞总数的42%。非特异性caspases抑制剂Z-VAD-FMK(50μmol/L)和caspase-3特异性抑制剂Z-DEVD-FMK(100μmol/L)可部分降低roscovitine所致的细胞死亡,使细胞存活率分别由29.03%(roscovitine)增至58.06%(Z-VAD-FMK+roscovitine)和45.16%(Z-DEVD-FMK+roscovitine):用单克隆non-erythroid α-spectrin抗体检测roscovitine处理组细胞匀浆提取液,表明caspase-3裂解的特异性spectfin 120kDa蛋白产物较对照组显著增加。提示细胞凋亡成分caspases参与roscovitine所敛的细胞凋亡,其中caspase-3发挥重要作用。  相似文献   

20.
We recently reported that Rho kinase is required for sustained ERK signaling and the consequent mid-G(1) phase induction of cyclin D1 in fibroblasts. The results presented here indicate that these Rho kinase effects are mediated by the formation of stress fibers and the consequent clustering of alpha5beta1 integrin. Mechanistically, alpha5beta1 signaling and stress fiber formation allowed for the sustained activation of MEK, and this effect was mediated upstream of Ras-GTP loading. Interestingly, disruption of stress fibers with ML-7 led to G(1) phase arrest while comparable disruption of stress fibers with Y27632 (an inhibitor of Rho kinase) or dominant-negative Rho kinase led to a more rapid progression through G(1) phase. Inhibition of either MLCK or Rho kinase blocked sustained ERK signaling, but only Rho kinase inhibition allowed for the induction of cyclin D1 and activation of cdk4 via Rac/Cdc42. The levels of cyclin E, cdk2, and their major inhibitors, p21(cip1) and p27(kip1), were not affected by inhibition of MLCK or Rho kinase. Overall, our results indicate that Rho kinase-dependent stress fiber formation is required for sustained activation of the MEK/ERK pathway and the mid-G(1) phase induction of cyclin D1, but not for other aspects of cdk4 or cdk2 activation. They also emphasize that G(1) phase cell cycle progression in fibroblasts does not require stress fibers if Rac/Cdc42 signaling is allowed to induce cyclin D1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号