首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of leaf in microcuttings of grape cvs. Arka Neelamani and Thompson Seedless promoted rooting in vitro (MS, 1 μM IAA, 0.1 μM GA3, 3% sucrose) but the effect varied depending on the number of leaves and position of the leaf on the cutting. Single node cuttings with a full-length lower internode and a lamina at top (LAT) showed earlier rooting and more root and shoot growth than cuttings with lamina positioned at the middle (LAM), while cuttings with a leaf at the base (LAB) of the cutting and full-length upper internode exhibited a lower percent rooting and sprouting, poor root and shoot growth, and low survival. Partial or complete removal of the upper internodal segment in LAB cuttings improved rooting and sprouting suggesting the possible operation of an inhibitory effect by the upper internode. Retaining an upper leaf in LAB cuttings (LAB+UL) resulted in necrosis of the upper leaf often followed by the lower one. The extent of necrotic damage was influenced by the leaf area and position or age of the cutting on the stock shoot. Retaining the lower internode in LAB and LAB+UL cuttings which held the node–leaf junction away from the medium, or reducing the concentration of MS medium helped significantly in improving the survival and performance of these cuttings. The difference in reaction between LAB and LAT cuttings was attributable mainly to the difference in the sensitivity of the stem part that came in contact with the medium. Removal of the leaf in LAB cuttings reduced this sensitivity. The majority of the LAB and LAB+UL cuttings, as well as non-rooting or delayed rooting LAT and LAM cuttings, exhibited high purple pigmentation of leaf, petiole and stem. Two-leafed cuttings in vitro showed poor survival, less rooting and low plantlet output compared to single-leafed cuttings. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Plants experience unique challenges due to simultaneous life in two spheres, above- and belowground. Interactions with other organisms on one side of the soil surface may have impacts that extend across this boundary. Although our understanding of plant–herbivore interactions is derived largely from studies of leaf herbivory, belowground root herbivores may affect plant fitness directly or by altering interactions with other organisms, such as pollinators. In this study, we investigated the effects of leaf herbivory, root herbivory, and pollination on plant growth, subsequent leaf herbivory, flower production, pollinator attraction, and reproduction in cucumber (Cucumis sativus). We manipulated leaf and root herbivory with striped cucumber beetle (Acalymma vittatum) adults and larvae, respectively, and manipulated pollination with supplemental pollen. Both enhanced leaf and root herbivory reduced plant growth, and leaf herbivory reduced subsequent leaf damage. Plants with enhanced root herbivory produced 35% fewer female flowers, while leaf herbivory had no effect on flower production. While leaf herbivory reduced the time that honey bees spent probing flowers by 29%, probing times on root-damaged plants were over twice as long as those on control plants. Root herbivory increased pollen limitation for seed production in spite of increased honey bee preference for plants with root damage. Leaf damage and hand-pollination treatments had no effect on fruit production, but plants with enhanced root damage produced 38% fewer fruits that were 25% lighter than those on control plants. Despite the positive effect of belowground damage on honey bee visitation, root herbivory had a stronger negative effect on plant reproduction than leaf herbivory. These results demonstrate that the often-overlooked effects of belowground herbivores may have profound effects on plant performance.  相似文献   

3.
Habitat fragmentation is currently the most pervasive anthropogenic disturbance in tropical forests and some species of leaf‐cutting ants of the genus Atta (dominant herbivores in the neotropics) have become hyper‐abundant in forest edges where their nests directly impact up to 6% of the forest area. Yet, their impacts on the regeneration dynamics of fragmented forests remain poorly investigated. Here we examine the potential of Atta cephalotes nests to function as ecological filters impacting tree recruitment. Growth, survival and biomass partitioning of experimentally planted seedlings (six tree species) were examined at eight spatially independent A. cephalotes colonies in a large Atlantic Forest fragment. Seedling performance and fate (leaf numbers and damage) were monitored up to 27 months across three habitats (nest centre, nest edge and forest understorey). Plants at illuminated nest centres showed twice the gross leaf gain as understorey individuals. Simultaneously, seedlings of all species lost many more leaves at nests than in the forest understorey, causing a negative net leaf gain. Net leaf gain in the shaded understorey ranged from zero (Licania and Thyrsodium species) to substantial growth for Copaifera and Virola, and intermediate levels little above zero for Protium and Pouteria. Also seedling survival differed across habitats and species, being typically low in the centre and at the edge of nests where seedlings were often completely defoliated by the ants. Lastly, seedling survival increased strongly with seed size at nest edges while there was no such correlation in the forest. Our results suggest that Atta nests operate as ecological filters by creating a specific disturbance regime that differs from other disturbances in tropical forests. Apparently, Atta nests favour large‐seeded tree species with resprouting abilities and the potential to profit from a moderate, nest‐mediated increase in light availability.  相似文献   

4.
Mortensen B  Wagner D  Doak P 《Oecologia》2011,165(4):983-993
The effects of plant defenses on herbivory can differ among spatial scales. This may be particularly common with indirect defenses, such as extrafloral nectaries (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive effects of EFNs in quaking aspen (Populus tremuloides Michx.) against damage by a specialist herbivore, the aspen leaf miner (Phyllocnistis populiella Cham.), at the scale of individual leaves and entire ramets (i.e., stems). Experiments excluding crawling arthropods revealed that the effects of aspen EFNs differed at the leaf and ramet scales. Crawling predators caused similar reductions in the percent leaf area mined on individual leaves with and without EFNs. However, the extent to which crawling predators increased leaf miner mortality and, consequently, reduced mining damage increased with EFN expression at the ramet scale. Thus, aspen EFNs provided a diffuse defense, reducing damage to leaves across a ramet regardless of leaf-scale EFN expression. We detected lower leaf miner damage and survival unassociated with crawling predators on EFN-bearing leaves, suggesting that direct defenses (e.g., chemical defenses) were stronger on leaves with than without EFNs. Greater direct defenses on EFN-bearing leaves may reduce the probability of losing these leaves and thus weakening ramet-scale EFN defense. Aspen growth was not related to EFN expression or the presence of crawling predators over the course of a single season. Different effects of aspen EFNs at the leaf and ramet scales suggest that future studies may benefit from examining indirect defenses simultaneously at multiple scales.  相似文献   

5.
插穗因素对闽楠扦插苗生根、生长及相关酶活性的影响   总被引:1,自引:0,他引:1  
选择40年生无病虫害闽楠植株半木质化枝条为插穗,采用L_8(2~7)正交试验方法,设置插穗来源(枝条顶部、枝条中部)、枝条长度(10cm、15cm)和留叶数(保留1片和2片全叶)3个插穗因素,研究插穗因素对闽楠扦插苗生根、生长及理化性质等方面影响,筛选适宜插穗处理方式,揭示插穗调控扦插苗生根和生长机理。结果表明:(1)闽楠插穗来源、长度及留叶数显著影响扦插苗的生根、生长及理化特性。(2)闽楠扦插最适合的插穗处理是取长度为10cm的中部枝、保留2片叶。(3)影响闽楠扦插生根率的最主要因素是插穗来源,关键生理指标是根系PPO和POD活性;影响闽楠扦插苗新梢生长最主要的因素是插穗的留叶数,关键生理指标是根系IAAO活性和MDA含量。研究表明,各插穗因素显著影响着闽楠扦插苗的生根及生长,并以长度10cm、保留2片的中部枝为插穗最佳;该研究结果为闽楠扦插繁殖技术制定和推广应用提供理论与技术指导。  相似文献   

6.
We conducted two experiments that investigated how the method and location of artificial defoliation influenced growth, reproduction, and allocation in canola, Brassica napus. In one experiment, 0%, 25%, or 50% of leaf area was removed by cutting circular holes at three possible locations: concentrated at either the base of leaves or at their tips, or dispersed throughout leaf blades. Plants fully compensated for such damage; reproduction and allocation were unaffected by either defoliation intensity or wound location. In a second experiment, we again initiated three intensities of defoliation: non-damaged plants served as controls, while others had 25% or 50% of their leaf areas removed. The method of removal in the second experiment consisted of cutting either multiple, similar-sized, circular holes or single, contiguous patches of a leaf blade. At the highest defoliation intensity reproductive output and allocation were significantly less in plants treated with the former method than the latter, even though an equivalent initial amount of leaf area was removed in both treatments. We conclude that simulated herbivory studies must account for not only how much of the plant is damaged, but also the pattern of leaf damage itself, since both factors contribute to a plant’s physiological and ecological responses to grazing.  相似文献   

7.
The interaction of plants with insect herbivores and fungal pathogens can affect community dynamics, but there is little information on how this antagonistic interaction may be altered in human‐disturbed tropical systems. We examined whether the amount and quality of foliar damage on the pioneer herbs Heliconia latispatha and Heliconia collinsiana are distinct on road edges and secondary riparian vegetation compared with natural gaps in continuous forest (controls) in Mexico. We also investigated some physical and biological mechanisms that may jointly explain such differences. The overall insect damage in H. latispatha was similar between road edges and natural forest gaps (8.0% vs. 7.2% of leaf area). Damage by caterpillars, however, decreased from 4.2 percent in forest gaps to 0.5 percent on road edges, whereas damage by leaf‐cutting ants increased from 0 to 5.8 percent. In secondary riparian vegetation, where none of the leaves sampled were attacked by ants, overall herbivore damage in H. collinsiana was less than half that observed in forest gaps (3.0% vs. 6.7%), and driven mainly by differences in caterpillar damage (2.5% vs. 6.2%). By contrast, attack by leaf fungal pathogens was two to three times greater in both human‐disturbed habitats than in gaps (8.2–9.6% vs. 3.7–4.2%). Potential mechanisms underlying these differences involved human‐induced shifts in air and soil temperature driven by greater light availability, as well as changes in relative humidity, leaf toughness, foliar condensed tannins, and local abundance of herbivores. Our results indicate that human disturbance alters insect herbivory and may increase proliferation of leaf disease. Abstract in Spanish is available in the online version of this article.  相似文献   

8.
  • Identifying the mechanisms of compensation to insect herbivory remains a major challenge in plant biology and evolutionary ecology. Most previous studies have addressed plant compensatory responses to one or two levels of insect herbivory, and the underlying traits mediating such responses remain elusive in many cases.
  • We evaluated responses associated with compensation to multiple intensities of leaf damage (0% control, 10%, 25%, 50%, 75% of leaf area removed) by means of mechanical removal of foliar tissue and application of a caterpillar (Spodoptera exigua) oral secretions in 3‐month‐old wild cotton plants (Gossypium hirsutum). Four weeks post‐treatment, we measured plant growth and multiple traits associated with compensation, namely: changes in above‐ and belowground, biomass and the concentration of nutrients (nitrogen and phosphorus) and non‐structural carbon reserves (starch and soluble sugars) in roots, stems and leaves.
  • We found that wild cotton fully compensated in terms of growth and biomass allocation when leaf damage was low (10%), whereas moderate (25%) to high leaf damage in some cases led to under‐compensation. Nonetheless, high levels of leaf removal (50% and 75%) in most cases did not cause further reductions in height and allocation to leaf and stem biomass relative to low and moderate damage. There were significant positive effects of leaf damage on P concentration in leaves and stems, but not roots, as well as a negative effect on soluble sugars in roots.
  • These results indicate that wild cotton fully compensated for a low level of leaf damage but under‐compensated under moderate to high leaf damage, but can nonetheless sustain growth despite increasing losses to herbivory. Such responses were possibly mediated by a re‐allocation of carbohydrate reserves from roots to shoots.
  相似文献   

9.
吐根作为治疗痢疾的特效药而著名,主要具有祛痰、催吐和抗阿米巴痢疾的作用。我国目前对吐根药材的需求全部依赖于进口,国内未有大规模种植,为此,该文对原产巴西的吐根进行了引种繁殖及栽培研究。结果表明:(1)云南省西双版纳傣族自治州景洪市的气候条件能满足吐根的正常生长发育的需求,可作为吐根的引种地。(2)吐根的分根和茎下段可用于扦插繁殖,其发根率和存活率分别100.0%和100.0%、68.0%和75.0%,前者优于后者。(3)用20 mg·L-1的IAA或IBA浸泡1 h,吐根茎下段的扦插成活率为90.0%或88.0%,均显著高于对照,可用于提高吐根茎下段的扦插成活率。(4)采用分根繁殖的吐根植株在植株生长和药材外观性状较好,单株总根体积较高,吐根一年生植株平均株高为10.66 cm,两年生平均株高为16.54 cm,一年生植株根总体积为2.71 mL,两年生根总体积为3.54 mL。(5)吐根栽培基质可用腐殖土:椰糠体积比为4:1。(6)在吐根的年周期生长中,地径1—3月和9—11月增长明显,株高7—11月增长明显,叶片长和宽3—9月增长明显,根据这些特点,可科学制定相应的水肥管理措施。该研究结果可为吐根的引种繁殖和栽培提供一定的科学参考。  相似文献   

10.
Queens of the leaf‐cutting ant species Atta laevigata and Atta capiguara were collected soon after their mating flight and maintained in the laboratory until death. Ant corpses showing signs of contamination by insect pathogenic fungi were selected for fungal identification. Filamentous fungi such as Beauveria bassiana and Paecilomyces lilacinus actively sporulated in the ant’s corpses. This is the first report of the latter fungus on reproductives of leaf‐cutting ants. The fact that queens may acquire filamentous fungi including saprophytic and potential insect pathogens after their mating event is especially interesting regarding the impacts of such microbes on the establishment of a new nest.  相似文献   

11.
Wounding of plants by insects is often mimicked in the laboratory by mechanical means such as cutting or crushing, and has not been compared directly with other forms of biotic stress such as virus infection. To compare the response of plants to these types of biotic and abiotic stress, trypsin inhibitor (TI) activity induced locally and systemically in mature tobacco (Nicotiana tabacum L.) and tomato (Lycopersicon esculentum L.) plants was followed for 12 days. In tobacco, cutting, crushing and insect feeding all induced comparable levels of TI activity of approx. 5 nmol·(mg leaf protein)?1 in wounded leaves, while tobacco mosaic virus (TMV) infection of tobacco induced 10-fold lower amounts in the infected leaves. In tomato, feeding by insects also led to the induction of a level of TI activity of 5 nmol·(mg leaf protein)?1. In contrast, both cutting and crushing of tomato leaves induced 10-fold higher amounts. These data show that biotic stress, in the form of insect feeding and TMV infection, and abiotic stress, in the form of wounding, have different effects on local levels of induced TI activity in mature tobacco and tomato plants. Irrespective of the type of wounding, in neither tobacco nor tomato could systemic induction of TI activity be observed in nearby unwounded leaves, which suggests that systemic induction of TI activity in mature tobacco and tomato plants is different from systemic TI induction in seedlings. Wounding of tobacco leaves, however, did increase the responsiveness to wounding elsewhere in the plant, as measured by an increased induction of TI activity.  相似文献   

12.
According to available evidence, leaf gallers have only minor impacts on their plant hosts. We hypothesised that the relatively large leaf gallers formed by Eupontania sawflies on small, creeping arctic-alpine willows have a strong influence on their host plants. In this study, we specifically tested the effects of leaf galler (Eupontania aquilonis) on the survival and growth of dwarf willow (Salix herbacea) in a mountain snow-bed in northern Finland. We marked galled, leaves-removed and untreated ramets in experimental blocks. In the following year, we measured the growth and survival of the ramets. The mortality of galled shoots was approx. 40% higher, and the mortality of galled ramets approx. 25% higher than in the control ramets and in the leaf-removal treatment. The leaf biomass of galled ramets and the number of leaves were significantly less in galled ramets than in untreated or leaves-removed ramets. It is possible that galling causes fatal resource depletion of shoots in its host plant. The results show that leaf gallers are ecologically more influential than previously thought.  相似文献   

13.
The effects of neighboring vegetation and soil fertility on the establishment, survival and growth of tree species were studied in a subtropical old-field area in south Brazil. Seed damage, germination and seedling establishment of four tree species plus growth and survival of two transplanted tree species were monitored under factorial combinations of the following treatments: (1) pioneer vegetation (presence and absence); (2) soil fertility (addition of NPK and control). Facilitation was the main process affecting plant performance. The presence of pioneer vegetation significantly improved germination, establishment, growth and survival of most study species. Around 90% of sown seeds were damaged and the removal of pioneer vegetation significantly increased seed damage for all species studied, decreased germination in three out of four species, and decreased establishment in one species. Moreover a significantly higher seedling growth rate of Inga virescens was found after the first year of the experiment in plots where vegetation was present. The presence of vegetation significantly increased seedling survival of I. virescens by protecting seedlings from leaf loss due to winter frosts. Competition was detected by the second year when a higher growth of transplanted seedlings of the species Araucaria angustifolia occurred in plots where vegetation was present and fertilizer were applied. A lower growth rate was detected in plots where vegetation was present but fertilizer was not applied. These results indicate a balance between competition for soil nutrients and protection by neighbor vegetation. Damage of seedlings by leaf cutter ants was an important barrier for plant survival. Damage occurred in 80% of the A. angustifolia seedlings and 58% of these damaged seedlings died. The presence of neighboring vegetation tended to protect seedlings from ant damage. Although competition occurred, facilitation seems to be the main process driving early successional changes in this subtropical old field. This was mainly due to the improvement of local microclimatic conditions and protection against herbivores by neighboring vegetation. Facilitation occurred during establishment and growth phases in a subtropical area that is considered a productive, low stress environment. Our results indicate that facilitation may be more frequent in productive environments than previously thought.  相似文献   

14.
Hurricanes have dramatic effects on forest vegetation, but their effects on shrublands have rarely been studied. We analyzed the effects of three 2004 hurricanes—among the strongest on record in Florida—on vital rates of 12 rare plant species of pyrogenic interior Florida scrub and sandhill. Tree damage varied by vegetation type (being highest in areas with Pinus clausa) and was associated with debris deposition. Most rare species were minimally impacted by hurricanes. The two most frequently damaged species were the shrubs Prunus geniculata (11% of individuals) and Asimina obovata (7%); both were resilient to damage. Prunus geniculata had little mortality during the hurricane year but damaged plants had a temporary (1‐yr) reduction in relative growth rate. Prunus geniculata flowering was unaffected by hurricane damage. Hurricane damage had no effects on vital rates of A. obovata, Eriogonum longifolium var. gnaphalifolium, or Chrysopsis highlandsensis. Other species suffered little or no observable hurricane damage. Of 12 species analyzed, nine had similar annual survival in hurricane and nonhurricane years. Relatively low survival in the hurricane year (compared with other years) was linked to prehurricane drought or prescribed fire in two of three species. Thus, the 2004 hurricanes did not have important effects on populations of interior Florida scrub and sandhill plants, especially herbaceous species. This is in marked contrast to dramatic demographic responses to fire in central Florida and strong effects of hurricanes in coastal Florida, highlighting that these different disturbances may have divergent effects on vegetation and populations over short distances.  相似文献   

15.
1. Foliar trichomes clearly reduce chewing damage and efficiency of movement by some insect herbivores, but the effect of trichomes on insect oviposition is less well characterised. Trichomes are likely to have particularly strong, negative effects on species that require secure attachment of the egg to the leaf epidermis for successful transition to the feeding stage – a group that includes many leaf mining insects. 2. One such species, Micrurapteryx salicifoliella, must initially enter leaf cells directly from an egg adhered to the cuticle, but later instars can move between leaves and initiate new mines from the leaf exterior. 3. Natural patterns of occurrence by M. salicifoliella were quantified on 10 sympatric Salix species varying in trichome expression to test whether trichomes were associated with reduced oviposition, larval survival and leaf damage. 4. Mean egg density and leaf mining damage were negatively related to mean trichome density across Salix species. Survival of M. salicifoliella from egg to pupa was positively related to trichome density, suggesting that initiation of new mines by late‐instar larvae was not adversely affected by trichomes. There was no evidence that trichomes benefited leaf miner larvae indirectly by decreasing density‐dependent mortality; rather, the positive relationship between trichome density and larval survival may reflect less effective chemical defence by Salix species expressing high trichome density. 5. The results suggest that foliar trichomes serve as an effective defence against M. salicifoliella by deterring oviposition, but do not reduce the survivorship of those individuals that successfully transition from egg to larva.  相似文献   

16.
  • 1 The economic losses associated with crop damage by invasive pests can be minimized by recognizing their potential impact before they spread into new areas or crops.
  • 2 We experimentally evaluated the preferences of the leaf‐cutting ant Acromyrmex lobicornis (Hymenoptera: Formicidae) for the most common conifer species commercially planted in northern Patagonia, Argentina. The areas of potential forest interest in this region and the geographical range of this ant overlap. We performed field preference tests and monitored the level of ant herbivory on planted conifer seedlings next to nests.
  • 3 Acromyrmex lobicornis preferred some conifer species and avoided foraging on others. Pseudotsuga menziesii and Austrocedrus chilensis were the less preferred species, Pinus ponderosa and Pinus contorta were the most preferred by A. lobicornis.
  • 4 The item mostly selected by ants was young needles from P. contorta. This species was also the pine mostly defoliated. Seedlings without ant‐exclusion showed a mean±SE of 60±5% defoliation during the sampling period. Pinus ponderosa was less defoliated; control seedlings showed a mean±SE of 8.5±1% of leaf damage in the sampling period.
  • 5 The present study shows how the use of simple field tests of leaf‐cutting ant preferences could allow an improved selection of appropriate conifer species for future plantations in areas where leaf‐cutting ants are present.
  相似文献   

17.
The plant stress hypothesis suggests that some herbivores favour stressed plants, whereas the plant vigour hypothesis proposes that other herbivores prefer vigorous plants. The effects of a prior stress, that of frost damage, were examined on the subsequent growth of Eucalyptus globulus globulus and on the response of insect herbivores. Frost damage affected tree growth by reducing new leaf area and increasing specific leaf area (SLA). However, herbivore abundance was not affected by prior frost damage. Two feeding trials using Anoplognathus chloropyrus and Hyalarcta huebneri and a morphometric study of Ctenarytaina eucalypti were conducted to assess the performance of herbivores on trees that had suffered more or less frost damage. Consumption by A. chloropyrus and H. huebneri was unaffected by foliage origin (damaged versus healthy). Hyalarcta huebneri grew faster when fed leaves from previously damaged trees, and C. eucalypti from previously damaged trees were larger than those from healthy trees. Enhanced insect performance on frost damaged plants may have resulted from the high specific leaf area (most likely thinner) leaves. The herbivore abundance data did not support the hypothesis that previously frost damaged plants are preferred by insects. However, increased growth of H. huebneri and larger body size of C. eucalypti on damaged trees indicates that previously stressed trees may produce leaves of higher nutritional value.  相似文献   

18.
  • Re‐growth of fodder plants after grazing and mowing drives the profitability of their cultivation and is therefore an important target trait for plant breeding and agricultural engineering. However, for some fodder plants little is known about their re‐growth dynamics in response to grazing or mowing.
  • We analysed the native response of plant architecture, leaf morphology and growth performance to experimental cutting in wild Trifolium pratense L. (red clover) plants. A total of 150 potted clover plants were established under controlled field conditions, and half of the plants were cut to 5 cm 3 months after sowing. Each plant was measured every week for 5 months.
  • The cut and subsequently re‐grown plants carried fewer main branches (?20%), as well as fewer (?13%) and smaller (?32%) leaves than the control plants. However, the cut plants produced an average of 17% more accumulated leaf area (cut + re‐grown leaf area) than the control plants. This discrepancy was explained by variation in the growth strategy of the plants, where the cut plants invariably expressed a second growth phase, while almost half of the untreated plants did not.
  • Our results suggest that cutting acted as an artificial trigger initiating a second growth phase in the cut plants and thereby contributed to yield increase. Exploiting this mechanism may set new goals for breeding and optimisation of the mowing regime.
  相似文献   

19.
Herbivory is considered an important biotic interaction in mangroves. Nevertheless, detailed information on specific plant–herbivore interactions that might have considerable influence in ecological and evolutionary processes is still very poor and fragmented. Herbivory damage was quantified during December 2015 in seedlings and trees in monospecific stands of Avicennia germinans in Laguna Madre of Tamaulipas, Mexico. The use of this mangrove species as a larval host is well documented; however, this is the first report for Junonia litoralis. These lepidopteran larvae consumed, on average, 10.2% of the leaf area; but herbivory was higher on seedlings (mean 15%) than on trees (mean 2.3%). These values are comparable to estimations of 10% mean herbivory damage in other field studies. This indicates that herbivores cause greater damage in seedlings than in trees. Herbivore activity by J. litoralis only occurred in A. germinans and did not affect associated herbs or shrubs of other species. The close interaction between J. litoralis and A. germinans may have profound implications for ecological and evolutionary processes of mangroves and enables a better understanding of ecosystem function and its conservation. Further studies are needed to investigate such interactions and their implications including long-term monitoring of interstitial salinity and leaf chemistry at different stages of growth and maturity of the host species.  相似文献   

20.
  1. White-tailed deer (Odocoileus virginianus Zimmermann) and insect pests negatively affect soybean production; however, little is known about how these herbivores potentially interact to affect soybean yield. Previous studies have shown deer browse on non-crop plants affects insect density and insect-mediated leaf damage, which together reduce plant reproductive output. In soybeans, reproductive output is influenced by direct and indirect interactions of different herbivores.
  2. Here, we quantified indirect interactions between two groups of herbivores (mammals and insects) and their effects on soybean growth and yield. We examined responses of insect pest communities along a gradient of deer herbivory (29% to 49% browsed stems) in soybean monocultures.
  3. Structural equation models showed that deer browse had direct negative effects on soybean plant height and yield. Deer browse indirectly decreased insect-mediated leaf damage by reducing plant height. Deer browse also indirectly increased pest insect abundance through reductions in plant height. Similarly, deer herbivory had an indirect positive effect on leaf carbon: nitrogen ratios through changes in plant height, thereby decreasing leaf nutrition.
  4. These results suggest that pest insect abundance may be greater on soybean plants in areas of higher deer browse, but deer browse may reduce insect herbivory through reduced leaf nutrition.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号