首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of two intertidal wetland mitigation projects constructed by the California Department of Transportation (Caltrans) in the Sweetwater Marsh National Wildlife Refuge (SMNWR) in San Diego Bay was evaluated over 5 years. Most of the Sweetwater wetland complex has been altered this century, including diking (with subsequent subsidence), filling, modification of the tidal regime, freshwater inflow and sediment fluxes. The mitigation project goals included a range of functional criteria intended to support two endangered bird species (light-footed clapper rail and California least tern) and one endangered plant (salt marsh bird's-beak). While the mitigation projects have achieved some of the performance criteria established in the regulatory permits (particularly, those related to fish), vegetation criteria for one of the bird species have not been met. The initial grading (in relation to local tidal datums) should support the target plant species, but growth has been less than required. Shortcomings of the habitat include elevated soil and groundwater salinity, low nutrient levels (especially nitrogen, which is readily leached from the coarse substrate), and eroding topography (where a single oversized and overly sinous channel and the lower-than-natural marshpalin result in high velocity surface water flow and erosion). The failure to achieve a large plain at low-marsh elevations highlights the importance of a more complete understanding of the relationship between the site physical processes (topography, hydrology, climate, geomorphology), substrate conditions, and biotic responses.Corresponding editor: R.E. Turner  相似文献   

2.
There has been little discussion of how and when to integrate wildlife science into ecological restoration projects. The recent emergence of wetland ecosystem restoration offers an opportunity to use wildlife science to increase the probability of a project being successful. This paper traces the evolution of wetland ecosystem restoration in North America and proposes three roles for wildlife science in wetland ecosystem restoration: (1) contribute to conceptual ecosystem models, (2) develop quantitative performance measures and restoration targets that track the progress of restoration, and (3) achieve social feasibility by sustaining long-term public support for a project. The extensive knowledge base for many species of wildlife makes them especially useful for contributing to conceptual ecosystem models. Wildlife species are often the subject of long-term monitoring and research because they have commercial value, are conspicuous, or have aesthetic appeal. Wildlife parameters can be good performance measures for large-scale restoration projects because some species integrate information over large spatial scales and are long-lived. Parameters associated with threatened or endangered wildlife species should get special consideration as performance measures because the information will meet multiple needs rather than just those of the conceptual ecosystem model. Finally, wetland ecosystem restoration projects need to sustain funding over decades to ensure the restored system is self-sustaining. Wildlife are a valued resource that can help achieve the social feasibility of a project by providing a way to communicate complex science in terms that society understands and values.  相似文献   

3.
In theory, extirpated plant species can be reintroduced and managed to restore sustainable populations. However, few reintroduced plants are known to persist for more than a few years. Our adaptive‐management case study illustrates how we restored the endangered hemiparasitic annual plant, Chloropyron maritimum subsp. maritimum (salt marsh bird's beak), to Sweetwater Marsh, San Diego Bay National Wildlife Refuge, California, United States, and used monitoring and experimentation to identify the factors limiting the reintroduced population. After extirpation in 1988, reintroduction starting that year led to a resilient, genetically diverse population in 2016 (a “boom” of approximately 14,000) that rebounded from a “bust” (62 in 2014). Multiple regressions attributed 82% of the variation in population counts to tidal amplitude, rainfall, and temperature. Populations of salt marsh bird's beak crashed when the diurnal tide range peaked during the 18.6‐year lunar nodal cycle (a rarely considered factor that periodically added approximately 12 cm to tidal ranges). We explain booms as follows: During smaller tidal amplitudes, above‐average rainfall could desalinize upper intertidal soils and stimulate salt marsh bird's beak germination. Then, moderate temperature in May favors growth to reproduction in June. In addition, salt marsh bird's beak needs a short and open canopy of native perennial plants, with roots to parasitize (not non‐native annual grass pseudohosts) and nearby upland soil for a preferred pollinator, ground‐burrowing bees. Although our reintroduced salt marsh bird's beak population is an exceptional case of persistence, this rare species‐specific environmental and biological requirement makes it vulnerable to rising sea levels and global warming.  相似文献   

4.
Long-term monitoring is essential to evaluate the effects of wetland restoration projects. A monitoring program before and after restoration has been carried out in the study area located in the Yellow River Delta since 2001. Water quality, soil salinity, soil organic matter, plant community, and bird species were chosen as indicators in this program. During the past seven years, the restored wetland showed increasing efficiency in reducing water pollution levels. Soil quality was constantly improved through salinity reduction and soil organic matter accumulation. The vegetation community quickly re-established after the restoration was initiated in 2002. The restored vegetation communities provide favorable habitat conditions for birds and thirty-seven bird species were observed in October 2007. Based on Canonical Correspondence Analysis (CCA), plant species and vegetation community are mainly influenced by soil salinity and water depth. These indicate that conducting freshwater to the project area is an efficient measure for vegetation restoration. While monitoring results show that the restoration project had positive effects on the wetland ecosystem over the past seven years, two issues remain for future study: (1) the contribution of harvesting vegetation to stabilizing nutrient removal rate and the accumulation of soil organic matter in the soil; and (2) the effects of excessive propagation of Phragmites australis on spatial heterogeneity and plant diversity.  相似文献   

5.
武汉市上涉湖鸟类资源调查及多样性分析   总被引:1,自引:0,他引:1  
用实地踏查、定点观察的调查方法,并广泛收集历史资料,初步确定上涉湖湿地自然保护区有鸟类111种,其中“三有鸟类”86种;省级保护鸟类36种;国家重点保护鸟类11种;被列入国际贸易公约鸟类15种;被列入中国濒危动物红皮书的鸟类6种;被列入“中日候鸟协定”鸟类47种;被列入“中澳候鸟协定”鸟类14种。  相似文献   

6.
Californian Salt-Marsh Vegetation: An Improved Model of Spatial Pattern   总被引:6,自引:0,他引:6  
Although tidal wetland vegetation patterns are typically related to elevation, we hypothesized that the vertical range of a species may shift where the topography is more heterogeneous. We examined plant species occurrences in relation to elevation, proximity to the bay, and proximity to tidal creeks at a near-pristine wetland in San Quintín Bay, Baja California, Mexico. At the whole-wetland scale, most species occurred primarily within a 30-cm elevation band (the marsh plain). However, Spartina foliosa occurred only at the bayward margin, even though “suitable” elevations were present further inland. A similar pattern was found in San Diego Bay. At the microtopographic scale, three species on the marsh plain were strongly influenced by elevation, whereas four species responded to both elevation and proximity to tidal creeks. The latter species tended to “avoid” the lower 10 cm of the marsh plain except near a tidal creek. Species richness was thus greater (by 0.6 species at the lowest 10-cm class) at the tidal creek margin. Better drainage near creeks is the hypothesized cause. Our results help explain why species that are transplanted to constructed wetlands do not always grow at the full range of elevations they occupy in natural wetlands. We recommend that species be introduced to their modal elevation (determined from nearby reference marshes) and that salt-marsh construction designs include topographic heterogeneity (complex tidal creek networks). The analysis of broad-scale and fine-scale patterns of occurrence also suggests new habitat nomenclature. Elevation-based terms (“low,”“middle,” and “high” marsh) should be replaced by a system that considers elevation, landscape position, and conspicuous species. We suggest three habitat designations: (a) the high marsh—a 30- to 70-cm elevation range with Salicornia subterminalis; (b) the marsh plain—a 30-cm elevation range with heterogeneous topography and up to nine common species; and (c) cordgrass habitat—the bayward portion of the marsh plain and lower elevations, all occupied by Spartina foliosa. Although these habitats do not have discrete boundaries, separate terms are needed for wetland restoration plans and these designations will improve recognition that vegetation patterns respond to horizontal, as well as vertical, position.  相似文献   

7.
A study was conducted to examine nursery protocols for production of planting stocks used in wetland mitigation projects. Two commercial soil mixtures were tested along with waterlogging, fertilization, and combination treatments. Two marsh species, Panicum hemitomon and Sagittaria lancifolia, were subjected to a two‐phase study. During Phase I, watering and fertilization treatments were applied in a 2 × 2 × 2 factorial design with two soils, two watering regimes, and two fertilizer treatments. In Phase II, all plants were subjected to continuous waterlogging (no fertilizer). Soil redox potential was measured, along with plant gas exchange and growth responses. Our data do not support the hypothesis that flood “pre‐conditioning” alone can significantly improve plant growth under subsequent flooding. However, fertilization alone or in combination with flooding appeared to enhance shoot and root production in both species during the subsequent flooding. In contrast, flooding alone produced Panicum plants that appeared to remain somewhat susceptible to subsequent flooding as compared to fertilized plants. Sagittaria plants subjected to fertilizer treatment alone did not produce significantly greater total dry weights compared to their controls. Our data indicate that the growth of planting stocks for wetland mitigation can be improved by fertilization in the nursery. Key words: fertilizer, flooding, nursery production, wetland mitigation.  相似文献   

8.
In a Mediterranean patchy wetland of central Italy, we analyzed the relationship between the number of bird species, expressed in terms of bird alpha diversity, and plant alpha diversity, expressed as Hill number. This number (the exponential of the Shannon entropy) is considered one of the most strong and reliable indexes of alpha-diversity, synthesizing the information on evenness, richness and diversity in one single metric. We observed a progressive increase of the mean values of bird alpha diversity when plant alpha diversity increases along Hill number. Bird alpha diversity shows an abrupt increase between the first and the second of four categories of plant alpha diversity (0–1, >1–2, >2–3, >3), indicating a threshold response in all the groups considered (breeding, wintering and total bird assemblages). This marked decline of bird species richness at around 1 in the Hill index should represent an alarm for managers: wetland sites at or below this level of plant alpha diversity are likely to be experiencing a drastic decrease in bird species richness, both in spring (breeding birds) and in winter (wintering birds).  相似文献   

9.
刘旭  张文慧  李咏红  高鹏杰  李黎  王彤 《生态学报》2018,38(12):4404-4411
北京地区处于全球候鸟东亚-澳大利西亚的迁徙路线上,是候鸟重要的迁徙路线,近些年,随着人为活动的影响,该区生境破碎化问题愈发突出,直接威胁着本地鸟种和过境迁徙鸟类的生存。为达到保护鸟类多样性的目的,需开展相应的栖息地恢复工作。不同生态类群的鸟类对栖息地有着不同的要求,相同鸟种在不同空间、季节和生活期对栖息地的选择也有着不同的特点。因而,鸟类栖息地恢复应针对目标鸟种根据其繁殖特点、巢位空间分布、食性特点、活动空间特点等进行规划营造。以北京房山琉璃河湿地公园为例,针对项目所在区域的鸟类分布特征,确定目标恢复鸟种,结合项目区现场条件,围绕目标鸟种对于栖息地水系、植被等方面的需求,从岸线重塑、水深设计、植物配置、生态鸟岛等方面规划设计鸟类栖息地修复措施。  相似文献   

10.
Environmental correlates of avian diversity in lowland Panama rain forests   总被引:1,自引:0,他引:1  
Aim The composition of communities is known to be influenced by biogeographical history, but also by local environmental conditions. Yet few studies have evaluated the relative importance of the direct and indirect effects of multiple factors on species diversity in rich Neotropical forests. Our study aims to assess drivers of change in local bird species richness in lowland tropical rain forests. Location Thirty‐two physiographic subregions along the corridor of the Panama Canal, Panama. Methods We mapped the distributions of all forest‐dwelling bird species and quantified the environmental characteristics of all subregions, including mean annual rainfall, topographic complexity, elevational variability, forest age and forest area. Plant species richness, believed to be correlated with structural complexity, was estimated by interpolation through kriging for subregions where data were unavailable. Results The study region has a strong rainfall gradient across a short distance (65 km), which is also accompanied by steep gradients in plant and bird species diversity. Path analysis showed that precipitation strongly affected plant species diversity, which in turn affected avian diversity. Forest age and topography affected bird diversity independently of plant diversity. Forest area and its proportion occurring in the largest two fragments of each subregion (habitat configuration) were also positive correlates of bird species richness. Main conclusions Our results suggest that plant species richness, known to be influenced in part by biogeographical history and geology, also affects bird species assemblages locally. We provide support for the hypothesis that bird species richness increases with structural complexity of the habitat. Our analysis of the distributions of the region's most disturbance‐sensitive bird species showed that subregions with more rainfall, more complex topography and older forests harboured not only richer communities but also more sensitive species; while subregions with the opposite characteristics usually lacked large fractions of the regional forest bird community and hosted only common, widely distributed species. Results also emphasize the importance of preserving forest diversity from habitat loss and fragmentation, and confirm that larger, continuous forest tracts are necessary to maintain the rich avian diversity in the region.  相似文献   

11.
Budgets for species conservation limit actions. Expending resources in areas of high human density is costly and generally considered less likely to succeed. Yet, coastal California contains both a large fraction of narrowly endemic at-risk plant species as well as the state''s three largest metropolitan regions. Hence understanding the capacity to protect species along the highly urbanized coast is a conservation priority. We examine at-risk plant populations along California''s coastline from San Diego to north of San Francisco to better understand whether there is a relationship between human population density and: i) performance of at-risk plant populations; and ii) conservation spending. Answering these questions can help focus appropriate strategic conservation investment. Rare plant performance was measured using the annualized growth rate estimate between census periods using the California Natural Diversity Database. Human density was estimated using Census Bureau statistics from the year 2000. We found strong evidence for a lack of a relationship between human population density and plant population performance in California''s coastal counties. Analyzing US Endangered Species expenditure reports, we found large differences in expenditures among counties, with plants in San Diego County receiving much higher expenditures than other locations. We found a slight positive relationship between expenditures on behalf of endangered species and human density. Together these data support the argument that conservation efforts by protecting habitats within urban environments are not less likely to be successful than in rural areas. Expenditures on behalf of federally listed endangered and threatened plants do not appear to be related to proximity to human populations. Given the evidence of sufficient performance in urban environments, along with a high potential to leverage public support for nature in urban environments, expenditures in these areas appear to be an appropriate use of conservation funds.  相似文献   

12.
We analyzed data from Section 404 permits issued in California from January 1971 through November 1987 that involved impacts to wetlands and required compensatory mitigation (wetland creation, restoration, or preservation). The purpose of this study was to determine patterns and trends in permitting activity and to document cumulative effects of associated management decisions on the California wetland resource. The 324 permits examined documented that 387 compensatory wetlands (1255.9 ha) were required as mitigation for impacts to 368 wetlands (1176.3 ha). The utility of the data on wetland area was limited, however, since 38.0% of the impacted wetlands and 41.6% of the compensatory wetlands lacked acreage data. The wetland type most frequently impacted (37.8% of impacted wetlands) and used in compensation (38.2% of compensatory wetlands) was palustrine forested wetlands. Estuarine intertidal emergent wetlands had the most area impacted (52.3%) and compensated (62.5%). The majority of the wetlands were small (less than or equal to 4.0 ha in size). Wildlife habitat was the most frequently listed function of impacted wetlands (90.7% of the permits) and objective of compensatory wetlands (83.3%). Endangered species were listed as affected in 20.4% of impacted and 21.0% of compensatory projects. The number of permits requiring compensatory mitigation and the number of impacted and compensatory wetlands increased from 1971 to 1986.Documentation of the details of Section 404 permit decisions was inadequate for the permits we examined. Area information and specific locations of impacted and compensatory wetlands were lacking or of poor quality. Follow-up information was also inadequate. For example, project completion dates were specified in the permit for only 2.2% of compensatory wetlands. Furthermore, less than one-third (31.5%) of the permits required the compensatory wetland to be monitored by at least one site visit. We recommend improved documentation, regular reporting, and increased monitoring for better evaluation of the Section 404 permitting system.  相似文献   

13.
I examined the role of bird dispersal in invasiveness of three non-native plant species in California, USA: Triadica sebifera, Ligustrum lucidum, and Olea europaea. I selected these species because their invasiveness in California is uncertain, but a survey of ornithologists highlighted them as likely bird-dispersed. I quantified bird frugivory of these plants, compared them with a native species (Heteromeles arbutifolia), and explored the management implications of dispersal mutualisms for these and other incipient invasive plants. Fruit removal by birds was sufficient to permit spread for all study species. Seed dispersers (rather than seed predators) and pulse feeders (flocking species with potential for long distance dispersal) performed most fruit removal for the non-native species, a pattern indicative of an effective dispersal regime. The number of fruiting trees per stand was a significant predictor of bird visitation. Founding population size may thus be important in management of invasive, bird-dispersed plants. Disperser-defined niches were relatively narrow because a few disperser species performed the majority of fruit removal from study trees, but each fruit species was consumed by a variety of potential dispersers. This results in strong pairwise niche overlap between some plant species. Ordinated by bird use, study site-species combinations clustered more by geographic location than by plant species, emphasizing the opportunistic nature of bird foraging. None of the non-native focal plant species appears dispersal limited, and all have formed novel mutualisms in California. It is possible that these plants are now in lag phases preceding bird-mediated invasion. Consideration of bird dispersal when evaluating invasiveness is therefore an imperative.  相似文献   

14.
Conservation practitioners widely agree that optimal conservation strategies will maximize the amount of genetic variation preserved in target taxa, but there is ongoing debate about how that variation should be distributed through restoration and mitigation activities. Here, we evaluate the impacts of ~10 years of mitigation on the population genetic structure of Limnanthes vinculans, a state- and federally-listed endangered plant species restricted to ephemeral vernal pool wetlands in the Santa Rosa Plain of California. Using microsatellite loci to estimate patterns of neutral molecular variation, we found that created pools support similar levels of variation in L. vinculans as natural pools. Habitat creation and seed translocation have not disrupted the largest-scale patterns of population structure across the species range, but a concentration of mitigation activity towards the range center has reduced the extent of isolation-by-distance operating in this region and shifted the location of at least one genetic boundary. Patterns of genetic variation among populations in remnant vernal pools reveal that gene flow has historically occurred beyond the scale of individual pools at the center of the species range, while small genetic populations have differentiated around the range margins. On average, L. vinculans in created pools exhibit less cover and more restricted local distributions than those in remnant pools, but these patterns were driven by two particularly productive natural sites rather than consistent differences between natural and created sites. We conclude that mitigation activities have changed the historical patterns of gene flow within the species range to a moderate degree, that these changes will likely impact remnant pools through gene flow, and that current created sites provide less heterogeneous habitat for L. vinculans than do natural pools. Studies that track individual plants will be needed to determine if the changes in gene flow due to mitigation will have positive or negative impacts on the demographic and microevolutionary trajectories of L. vinculans. More generally, this study provides a retrospective analysis of the outcome of managing an endangered plant species through intensive mitigation, and yields several insights to inform future conservation strategies.  相似文献   

15.
This study evaluated the genetic consequences of a reintroduction of the endangered annual plant Cordylanthus maritimus ssp. maritimus to Sweetwater Marsh (San Diego County, California). A survey of 21 enzyme loci in natural populations revealed that genetic diversity is very low and is primarily found as rare alleles at a few loci, making this species especially susceptible to the loss of alleles and heterozygosity through genetic drift. The reintroduction was performed in 1991 and 1992 by sowing seeds (collected from Tijuana Estuary) in numerous small patches of suitable habitat. For this study, leaf tissue was collected from all plants in all patches during flowering in 1995 and surveyed for genotype at the three enzyme loci that are polymorphic at Tijuana Estuary. Rare alleles were absent in 27 out of 30 patches for Pgm-1, in 17 out of 30 patches for Pgm-2, and in 10 out of 11 patches for Mdh-1. In all, half of the patches lacked any rare allele. Rare alleles tended to occur in patches with few individuals. Overall rare allele frequency was lower than in the colonies from which seeds were collected at two of the three loci, and heterozygosity was reduced. The Sweetwater Marsh population is at risk of losing most of its genetic variation at enzyme loci through the extinction of patches with few individuals. Future reintroduction attempts should attempt to create contiguous sets of patches or to periodically reseed existing patches to reduce the loss of genetic variation.  相似文献   

16.
Tracking Wetland Restoration: Do Mitigation Sites Follow Desired Trajectories?   总被引:12,自引:0,他引:12  
Hypothetical models in the scientific literature suggest that ecosystem restoration and creation sites follow a smooth path of development (called a trajectory), rapidly matching natural reference sites (the target). Multi-million-dollar mitigation agreements have been based on the expectation that damages to habitat will be compensated within 5–10 years, and monitoring periods have been set accordingly. Our San Diego Bay study site, the Sweetwater Marsh National Wildlife Refuge, has one of the longest and most detailed records of habitat development at a mitigation site: data on soil organic matter, soil nitrogen, plant growth, and plant canopies for up to 10 years from a 12-year-old site. High interannual variation and lack of directional changes indicate little chance that targets will be reached in the near future. Other papers perpetuate the trajectory model, despite data that corroborate our findings. After reviewing “trajectory models” and presenting our comprehensive data for the first time, we suggest alternative management and mitigation policies.  相似文献   

17.
Preventing or reversing population declines of rare species often requires an understanding of their complete annual life cycle, but this information is lacking for many species. Such has been the case for Yuma Ridgway’s Rails (Rallus obsoletus yumanensis), a federally endangered marsh bird endemic to the Lower Colorado River Basin and Salton Sink in California, Arizona, Nevada, and Mexico. Yuma Ridgway’s Rails have been considered non-migratory, but incidental mortalities at solar facilities > 50 km from any rail habitat called this assumption into question. We attached transmitters to 89 Yuma Ridgway’s Rails during the summers of 2017 to 2019 and documented the migratory movements of 23 rails, including three adult male Yuma Ridgway’s Rails with breeding territories in the United States that wintered in Mexico and returned to the United States the following year. The rails flew > 900 km in the fall to mangrove wetlands along the coast of Sonora and Sinaloa, Mexico, and returned to their breeding areas in the United States the following breeding season. Of the rails in our study, 40.0% (20 of 50) of adults and 21.4% (3 of 14) of juveniles initiated fall migratory movements. Our results invalidate existing paradigms about Yuma Ridgway’s Rails by demonstrating that not all individuals remain in their breeding areas throughout the year. Instead, some migrate long distances over inhospitable terrain to reach wintering areas that, in some cases, are in wetland types different from those in their breeding territories. Our results provide actionable data to expand conservation strategies to better account for the annual life cycle of this endangered species and highlight the need for United States-Mexico cooperation, given the regular migration of this rare bird between the two countries.  相似文献   

18.
Charismatic megafauna have been used as icons and financial drivers of conservation efforts worldwide given that they are useful surrogates for biodiversity in general. However, tests of this premise have been constrained by data limitations, especially at large scales. Here we overcome this problem by combining large-scale citizen-sourced data with intensive expert observations of two endangered charismatic species, Blakiston’s fish owl (forest specialist) and the red-crowned crane (wetland specialist). We constructed large-scale maps of species richness for 52 forest and 23 grassland/wetland bird species using hierarchical community modeling and citizen-sourced data at 1, 2, 5, and 10-km grid resolutions. We compared the species richness of forest and grassland/wetland birds between the breeding and non-breeding sites of the two charismatic birds at each of the four spatial resolutions, and then assessed the scale dependency of the biodiversity surrogates. Regardless of the habitat amounts, owl and crane breeding sites had higher forest and grassland/wetland bird species richness, respectively. However, this surrogacy was more effective at finer scales (1–2-km resolutions), which corresponds to the charismatic species’ home range sizes (up to 9.4 ± 2.0 km2 for fish owls, and 3–4 km2 for cranes). Species richness showed the highest spatial variations at 1–2-km resolutions. We suggest that the agreement of functional scales between surrogate species and broader biodiversity is essential for successful surrogacy, and that habitat conservation and restoration targeting multiple charismatic species with different specialties can complement to biodiversity conservation.  相似文献   

19.
青岛胶州湾四种类型湿地AM真菌多样性   总被引:1,自引:0,他引:1  
对青岛胶州湾4种类型湿地(盐田、滩涂、湖泊和河口)中芦苇Phragmites communis、香蒲Typha orientalis和碱蓬Suaeda glauca 根围土壤中丛枝菌根(arbuscular mycorrhizal,AM)真菌进行孢子分离与鉴定,分析湿地生态系统中植物根围AM真菌群落特征。共分离到AM真菌5属10种,包括斗管囊霉属Funneliformis 2种、无梗囊霉属Acaulospora 3种、近明球囊霉属Claroideoglomus 2种、球囊霉属Glomus 1种、巨孢囊霉属Gigaspora 2种,其中,斗管囊霉属Funneliformis及地斗管囊霉Funneliformis geosporum的分离频度和相对多度最高,分别为湿地中AM真菌优势属和优势种。滩涂和河口湿地中植物AM真菌侵染率显著高于湖泊和盐田湿地植物,AM真菌孢子密度以滩涂湿地最高(572个/20mL),湖泊湿地最低(220个/20mL);滩涂湿地的种丰度和Shannon-Wiener指数最高,分别为3.8和1.2。从植物种类来看,AM真菌侵染率总体呈现出香蒲>碱蓬>芦苇,AM真菌孢子密度以香蒲最高,芦苇最低,植物种类对AM真菌种丰度和Shannon-Wiener指数影响不显著(P>0.05)。二因素方差分析和典型RDA相关分析表明,寄主植物种类对AM真菌孢子密度有一定影响,但湿地类型对AM真菌多样性的影响更为显著(P<0.05),胶州湾湿地土壤因子Ca 2+、速效P含量与AM真菌孢子密度、物种丰度和多样性指数显著负相关,而速效K、Na +、pH与其显著正相关。结果表明植物种类主要影响AM真菌孢子密度,AM真菌多样性受植物种类和湿地类型综合影响,滩涂湿地较丰富的AM真菌多样性可能与该湿地较良好的理化性质有关。  相似文献   

20.
Functional responses of estuarine fish species to environmental perturbations such as wetland impoundment, changes in water quality, and sediment accretion are investigated. The study focuses on the feeding, growth and habitat use by California killifish (Fundulus parvipinnis), topsmelt (Antherinops affinis), and juvenile California halibut (Paralichthys californicus) in impacted coastal wetlands to provide an ecological basis for guidance on the management and restoration of these ecosystems. The ecology of California killifish, Fundulus parvipinnis, is closely tied with the marsh surface, which they access at high tide to feed and grow. Field estimates of food consumption show that killifish can increase their food intake by two-fold to five-fold by adding marsh surface foods to their diet. Bioenergetics modeling predicts that killifish can grow over an order of magnitude faster if they add intertidal marsh surfaces to their subtidal feeding areas. Tidal inlet closures and increased marsh surface elevations due to sediment accretion can restrict killifish access to the marsh surface, affecting its growth and fitness. An open tidal inlet and tidal creek networks that allow killifish to access the marsh at high tide must be incorporated into the restoration design. Topsmelt and California halibut are also adversely affected by tidal inlet closures. Food consumption rates of topsmelt are 50% lower when the tidal inlet is closed, compared to when the estuary is tidally-flushed. Tidal inlet closures inadvertently induce variations in water temperature and salinity and negatively affect growth of juvenile California halibut. Tidal creek networks which consist of channels and creeks of various orders are also important to halibut. Large halibut (>200 mm TL) inhabit deeper, high order channels for thermal refuge, while small halibut (<120 mm TL) are abundant in lower order channels where they can feed on small-sized prey which are typically less abundant in high order channels. Maintaining an open tidal inlet, implementing sediment management programs and designing coastal wetlands with tidal creek networks adjacent to intertidal salt marsh habitat (for fish access) are key elements that need to be considered during the planning and implementation of coastal wetland restoration projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号