共查询到20条相似文献,搜索用时 15 毫秒
1.
Influence of physical processes on the design, functioning and evolution of restored tidal wetlands in California (USA) 总被引:1,自引:0,他引:1
J. Haltiner J. B. Zedler K. E. Boyer G. D. Williams J. C. Callaway 《Wetlands Ecology and Management》1997,4(2):73-91
The performance of two intertidal wetland mitigation projects constructed by the California Department of Transportation (Caltrans) in the Sweetwater Marsh National Wildlife Refuge (SMNWR) in San Diego Bay was evaluated over 5 years. Most of the Sweetwater wetland complex has been altered this century, including diking (with subsequent subsidence), filling, modification of the tidal regime, freshwater inflow and sediment fluxes. The mitigation project goals included a range of functional criteria intended to support two endangered bird species (light-footed clapper rail and California least tern) and one endangered plant (salt marsh bird's-beak). While the mitigation projects have achieved some of the performance criteria established in the regulatory permits (particularly, those related to fish), vegetation criteria for one of the bird species have not been met. The initial grading (in relation to local tidal datums) should support the target plant species, but growth has been less than required. Shortcomings of the habitat include elevated soil and groundwater salinity, low nutrient levels (especially nitrogen, which is readily leached from the coarse substrate), and eroding topography (where a single oversized and overly sinous channel and the lower-than-natural marshpalin result in high velocity surface water flow and erosion). The failure to achieve a large plain at low-marsh elevations highlights the importance of a more complete understanding of the relationship between the site physical processes (topography, hydrology, climate, geomorphology), substrate conditions, and biotic responses.Corresponding editor: R.E. Turner 相似文献
2.
We analyzed data from Section 404 permits issued in California from January 1971 through November 1987 that involved impacts to wetlands and required compensatory mitigation (wetland creation, restoration, or preservation). The purpose of this study was to determine patterns and trends in permitting activity and to document cumulative effects of associated management decisions on the California wetland resource. The 324 permits examined documented that 387 compensatory wetlands (1255.9 ha) were required as mitigation for impacts to 368 wetlands (1176.3 ha). The utility of the data on wetland area was limited, however, since 38.0% of the impacted wetlands and 41.6% of the compensatory wetlands lacked acreage data. The wetland type most frequently impacted (37.8% of impacted wetlands) and used in compensation (38.2% of compensatory wetlands) was palustrine forested wetlands. Estuarine intertidal emergent wetlands had the most area impacted (52.3%) and compensated (62.5%). The majority of the wetlands were small (less than or equal to 4.0 ha in size). Wildlife habitat was the most frequently listed function of impacted wetlands (90.7% of the permits) and objective of compensatory wetlands (83.3%). Endangered species were listed as affected in 20.4% of impacted and 21.0% of compensatory projects. The number of permits requiring compensatory mitigation and the number of impacted and compensatory wetlands increased from 1971 to 1986.Documentation of the details of Section 404 permit decisions was inadequate for the permits we examined. Area information and specific locations of impacted and compensatory wetlands were lacking or of poor quality. Follow-up information was also inadequate. For example, project completion dates were specified in the permit for only 2.2% of compensatory wetlands. Furthermore, less than one-third (31.5%) of the permits required the compensatory wetland to be monitored by at least one site visit. We recommend improved documentation, regular reporting, and increased monitoring for better evaluation of the Section 404 permitting system. 相似文献
3.
Vegetation and environmental conditions in recently restored wetlands in the prairie pothole region of the USA 总被引:1,自引:0,他引:1
How closely the vegetation of restored wetlands resembles that of comparable natural wetlands is a function of the probability of propagules of wetland species reaching reflooded wetlands and how similar environmental conditions in the restored wetland are those in the natural wetlands. Three years after reflooding, we examined the vegetation composition, water level fluctuations, soil organic carbon content, and soil bulk density as well as surface water pH, alkalinity, conductivity, and calcium and magnesium concentrations of 10 restored and 10 natural wetlands. In the restored wetlands, more species of submersed aquatics colonized than were found in natural wetlands, and they rapidly spread to form extensive beds that were larger than those found in natural wetlands. Emergent and wet meadow species in restored wetlands, however, were found in only sparse stands as were a variety of annuals. The vegetation of natural wetlands was predominantly large stands of emergent species. Fluctuations in water storage volume and basin surface area were similar for both restored and natural wetlands. The surface water in restored wetlands had higher pH and lower alkalinity, conductivity, and calcium and magnesium concentrations than that in natural wetlands. Soils of restored wetlands have a lower organic carbon content and higher bulk density than do those of natural wetlands. Our results suggest that for submersed aquatics, dispersal of propagules to restored wetlands is rapid and environmental conditions in restored wetlands are very suitable for their establishment. For other guilds of wetland species, e.g., sedges and other wet meadow species, dispersal to restored wetlands is likely much slower and may pose a serious problem for the re-establishment of these species in restored wetlands. Even if dispersal is not limiting, low surface organic carbon and high bulk density may prevent the establishment of these species in restored wetlands. 相似文献
4.
The impact of man-made earthen barriers on the physical structure of New England tidal marshes (USA)
In New England salt marshes, man-made earthen barriers, or berms, are generally historic, small-scale (average height = 0.71 m ± 0.12 SE; average length = 166 m ± 41 SE) tidal restrictions which originated from past agricultural, industrial, and environmental practices. The orientation and size depends primarily on the original purpose of the barrier, but this study examines the effects of berms oriented parallel to the incoming tide such that some landward portion of the marsh receives a different tidal signal than the seaward portion. Our hypotheses considered the impacts of the altered hydrology on pore water chemistry and edaphic characteristics. The results indicate that the effect of berms on salt marsh physical structure varies significantly by site. Where the tidal flooding frequency is restricted and drainage is poor, the landward marsh shows pool development, high salinity and sulfide concentrations, and low vegetation cover. In contrast, where tidal flooding is inhibited but the marsh soils are well-drained, salinity and sulfide concentrations decrease and accelerated decomposition results in subsidence and reduced soil organic matter. Given these findings, impacts from berms may impair salt marsh function and resilience to invasive plants and sea level rise. 相似文献
5.
David B. Herbst 《Hydrobiologia》1990,197(1):193-205
The distribution and abundance of larval, pupal, and adult stages of the alkali fly Ephydra hians Say were examined in relation to location, benthic substrate type, and shoreline features at Mono Lake. Generation time was calculated as a degree-day model for development time at different temperatures, and compared to the thermal environment of the lake at different depths.Larvae and pupae have a contagious distribution and occur in greatest abundance in benthic habitats containing tufa (a porous limestone deposit), and in least abundance on sand or sand/mud substrates. Numbers increase with increasing area of tufa present in a sample, but not on other rocky substrates (alluvial gravel/cobble or cemented sand). Standing stock densities are greatest at locations around the lake containing a mixture of tufa deposits, detrital mud sediments, and submerged vegetation. Shoreline adult abundance is also greatest in areas adjacent to tufa. The shore fly (ephydrid) community varies in composition among different shoreline habitats and shows a zonation with distance from shore.The duration of pupation (from pupa formation to adult eclosion) becomes shorter as temperature increases. The temperature dependence of pupa development time is not linear and results in prolonged time requirements to complete development at temperatures below 20 °C. About 700 to 1000 degree-days are required to complete a generation. Degree-days of time available in nature declines by 10 to 50% at depths of 5 and 10 metres relative to surface waters (depending on the extent of mixing), resulting in fewer possible generations. Essentially no growth would be expected at 15 m, where temperature seldom exceeds the developmental minimum. It is concluded that reduced substrate availability and low temperatures may limit productivity of the alkali fly at increasing depths in Mono Lake. 相似文献
6.
Simulation modeling with uncertainty analysis was applied to the question of nonpoint source pollution control through extensive wetland restoration. The model was applied to the Quanicassee River basin, a tributary stream to Saginaw Bay on Lake Huron in northeastern Michigan, USA. An estimate of the role of the existing 695 ha of riverside and lake-side wetlands in the lower Quanicassee River basin suggests that they retain 1.2 metric tons of phosphorus per year (mt P/yr), or 2.5% of the total phosphorus load from the basin. A simple Vollenweider-type model of phosphorus retention by created wetlands, calibrated with 3-years of data from two wetland sites in Midwestern USA, was used to estimate the effect of major wetland restoration in the basin. For a wetland restoration project involving 15% of the Quanicassee River basin or 3,120 ha of wetlands, an estimated 33 mt P/yr could be retained, assuming a proper hydrologic connection between the wetlands and the river. This would represent a reduction of two-thirds of the existing phosphorus load to the Bay from the Quanicassee River basin. Large-scale wetland restoration appears to be a viable management practice for controlling phosphorus and other nonpoint source pollution from entering Saginaw Bay. It is an alternative that meets two major resource goals – developing wetland habitat and controlling pollution to the Great Lakes. 相似文献
7.
8.
Five three- to four-year old created palustrine/emergent wetland sites were compared with five nearby natural wetlands of comparable size and type. Hydrologic, soil and vegetation data were compiled over a nearly two-year period (1988-90). Created sites, which were located along major highways, exhibited more open water, greater water depth, and greater fluctuation in water depth than natural wetlands. Typical wetland soils exhibiting mottling and organic accumulation were wanting in created sites as compared with natural sites. Typha latifolia (common cattail) was the characteristic emergent vegetation at created sites, whereas a more diverse mosaic of emergent wetland species was often associated with Typha at the natural sites. Species richness was slightly higher in created (22–45) vs. natural (20–39) wetlands, but the mean difference (33 vs. 30) was not significant. Nearly half (44%) of the 54 wetland taxa found at the various study sites were more frequently recorded at created than natural wetlands. The presence of mycorrhizae in roots of Typha angustifolia (narrow-leaved cattail) and Phragmites australis (common reed) was greater at created than natural wetlands, which may be related to differential nutrient availability. Wildlife use at all sites ranged from occasional to rare, with more sightings of different species in the natural (39) than created (29) wetlands. The presence of P. australis and introduced Lythrum salicaria (purple loosestrife) may pose a threat to future species richness at the created sites. One created site has permanent flow-through hydrology, and its vegetation and wildlife somewhat mimic a natural wetland; however, the presence of P. australis and its potential spread pose an uncertain future for this site. This study suggests the possibility of creating small palustrine/emergent wetlands having certain functions associated with natural wetlands, such as flood water storage, sediment accretion and wildlife habitat. It is premature to evaluate fully the outcome of these wetland creation efforts. A decade or more is needed, emphasizing the importance of long term monitoring and the need to establish demonstration areas. 相似文献
9.
Mikhailov AI Shilova IA Shalimov PM Gurfinkel YI Voeikov VL 《Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology》2002,9(1):P335-P336
The present work reveals the helio-geophysical factors HGF) influence on natural surroundings, human and society, health state and professional reliability of human functioning in technogenic and social systems of extreme risk. The interdisciplinary complex investigations were performed on the social-population, organismal, organ cell and molecular levels. The HGF synergistic influence on a human state and functioning and the society especially within megalopolises' non-equilibrium geo-dynamic zones was studied in details. We analyzed the HGF influence on the causes and development of instabilities in ecology-social processes and the formation of intellectual and social climate. We also worked out some recommendations on stabilizing the society development concerning the geo-space and ecology-humanitarian imperative on the threshold of the current maximum of solar activity in 2000 - 2003. 相似文献
10.
Riparian wetlands are important components of the lake ecosystem, and they play essential roles in maintaining system health.
Remediation of degraded lakeshore wetlands is an essential component of lake restoration. A study was conducted to investigate
the restoration of lakeshore wetlands, which were converted to rice fields and then abandoned for 2, 5, 10 and 15 years, near
Lake Taihu. Soil samples (0–20 cm and 20–40 cm) were taken and plant species were investigated. The carbon content in the
soil had increased significantly, rising from 0.71% to 1.85% between 2 and 15 years. Organic matter accumulation improved
soil texture, and water stable aggregate content (>0.25 mm) and soil porosity increased. Total nitrogen in the soil increased
from 0.06% to 0.13%, and total Kjeldahl nitrogen increased from 124.4 mg kg−1 to 351.5 mg kg−1. Total phosphorus in the soil increased from 0.045% to 0.071%, and the Olsen-P value increased from 5.13 mg kg−1 to 16.0 mg kg−1. Results showed that phosphorous did not increase as much as nitrogen. In the vegetation restoration process, plant species
composition moved towards a natural wetland community, and spatial heterogeneity and landscape diversity increased. The richness
of plant biodiversity increased rapidly in the first 2 years, then more slowly in later restoration stages. The wetlands recovery
process may be complicated by interactions of biota and soil and hydrological conditions. 相似文献
11.
Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California’s central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee. 相似文献
12.
A total of 270 soil samples from 30 different habitats in 10 geographic regions of California were evaluated for the presence of rhabditid entomopathogenic nematodes. Nematodes were isolated from 26.3% of the samples. The recovered isolates were identified as Steinernema carpocapsae, S. feltiae, S. kraussei, S. longicaudum, S. oregonense, Heterorhabditis marelatus and H.bacteriophora. Among the steinernematids, S. kraussei and S. feltiae were the most commonly encountered species, generally occurring in acidic soils high in organic matter. Among the heterorhabditids, H. bacteriophora was isolated along the southern coast, whereas H. marelatus was recovered along the northern coast of California. Steinernematids were recovered from coniferous forests, oak woodlands and grasslands whereas heterorhabditids were isolated from coastal marshes. 相似文献
13.
Large carnivores are frequently used as focal species for landscape-level planning and conservation purposes. Information on cougars Puma concolor , for example, is being used to predict movement corridors and linkage areas in habitats influenced by rapid urbanization. However, animal movement through habitat terrain is a function of multiple factors, including complex topographic features. To assess the use of topographic position during movements by cougars in the Santa Ana Mountain Range of southern California, we analyzed the travel paths of 10–17 radio-tagged individuals monitored during 44 overnight sessions. We examined selection for canyon bottom, gentle slope, steep slope and ridgeline topography at the scale of the movement session and at the scale of the home range. At both scales of selection, our results suggest that traveling or hunting cougars discriminated in their use of topographic position, that canyon bottoms and gentle slopes (<6°) ranked highest in compositional analyses of selection, and that these patterns were not highly confounded by the presence of preferred vegetation types. Ridgelines were used significantly less often than other positions. Our novel method of quantifying availability and use of topographic positions permits the assessment of terrain features, such as canyon bottoms, in facilitating cougar movements. For complex landscapes, models of animal movement should consider the topographic context that motivates patterns of habitat use, and should be developed using data obtained and analyzed at the appropriate spatial and temporal scales. 相似文献
14.
Question: Are changes in plant species composition, functional group composition and rates of species turnover consistent among early successional wetlands, and what is the role of landscape context in determining the rate of succession? Location: Twenty‐four restored wetlands in Illinois, USA. Methods: We use 4 years of vegetation sampling data from each site to describe successional trends and rates of species turnover in wetlands. We quantify: (1) the rate at which composition changes from early‐successional to late‐successional species and functional groups, as indicated by site movement in ordination space over time, and (2) the rate of change in the colonization and local extinction of individual species. We correlate the pace of succession to site area, isolation and surrounding land cover. Results: Some commonalities in successional trends were evident among sites. Annual species were replaced by clonal perennials, and colonization rates declined over time. However, differences among sites outweighed site age in determining species composition, and the pace of succession was influenced by a site's landscape setting. Rates of species turnover were higher in smaller wetlands. In addition, wetlands in agricultural landscapes underwent succession more rapidly, as indicated by a rapid increase in dominance by late‐successional plants. Conclusions: Although the outcome of plant community succession in restored wetlands was somewhat predictable, species composition and the pace of succession varied among sites. The ability of restoration practitioners to accelerate succession through active manipulation may be contingent upon landscape context. 相似文献
15.
Discrete red patches of water were observed in South San FranciscoBay (USA) on 30 April 1993, and examination of live samplesshowed that this red tide was caused by surface accumulationsof the pigmented ciliate Mesodinium rubrum. Vertical profilesshowed strong salinity and temperature stratification in theupper 5 m, peak chlorophyll fluorescence in the upper meter,and differences in the small-scale density structure and fluorescencedistribution among red patches. Events preceding this Mesodiniumred tide included: (i) heavy precipitation and run-off, allowingfor strong salinity stratification; (ii) a spring diatom bloomwhere the chlorophyll a concentration reached 50 mg m3;(ii) depletions of dissolved inorganic N and Si in the photiczone; and (iv) several days of rapid warming and stabilizationof the upper surface layer. These conditions may be generalprerequisites for M.rubrum blooms in temperate estuaries. 1Present address: Station Marine d'Endoume, Centre d'Oceanologiede Marseille, rue Batterie des Lions, 13007 Marseille, France 相似文献
16.
Paula I. Johnson Richard M. Gersberg Mark Rigby Sujoy Roy 《Ecological Engineering》2009,35(5):908-913
The New River Wetlands Project is comprised of two constructed treatment wetland sites supplied with water from the New River and agricultural drainage water from the Imperial Valley in California. Bioaccumulation of selenium has created toxic conditions for wildlife in similar wetlands in other areas. Selenium levels in water (at wetland inflow and outflow), sediments, plants, invertebrates, and fish were analyzed for both wetland sites from 2006 to 2007. An average of 56% of the total mass of selenium in the inflow was removed at the Imperial site, and 70% was removed at the Brawley site. Most of the retained selenium (8 kg at the Imperial site and 2 kg at the Brawley site) was in the sediments. Less than 1% of the selenium accumulated in plant tissues. Mass balance calculations estimated that 17–61% of the selenium was lost through volatilization. After 6 years of operation of these wetlands, concentrations of selenium in fish and invertebrates were at or above threshold ranges for reproductive effects in birds and fish. Constructed wetlands are an efficient method for removing selenium from agricultural drainwater, although they need to be monitored over the long-term for potential risks posed by bioaccumulation of selenium. 相似文献
17.
Development of vegetation in dune slack wetlands of Cape Cod National Seashore (Massachusetts,USA) 总被引:1,自引:0,他引:1
Interdunal seasonal wetlands, known as dune slack wetlands, were mapped and their vegetation surveyed across a large region
of dunes within the Cape Cod National Seashore. Wetland sizes and ages were estimated from digitized, georeferenced aerial
photographs available from 1938, 1947, 1960, 1986, 1994, and 2001, and from LIDAR elevation data. A total of 346 sites were
found, covering an area of ∼45.4 ha., in which 97 species of vascular plants were identified. Vegetation structure and composition
exhibited a distinct sequence of development with age, following a pattern of succession from herbaceous, graminoid-dominated
communities to shrub- and tree-dominated communities. Floristic variables were not related to proximity to the coast and although
wetland size appeared to have some bearing on species richness, the correlation was statistically weak. Soil organic matter
determined for a subset of 60 wetlands was positively correlated with age and woody cover but showed no relationship with
water depth. The results suggest that vegetation development is primarily driven by the internal mechanisms of succession.
Notwithstanding, any changes in the environment that alter the process of succession will collectively influence these wetlands.
In addition, stabilization of the dunes resulting in a reduction in the formation of new wetlands, may translate into permanent
loss of early and mid-successional dune slack communities. Maintenance of these communities will depend on succession being
periodically reset by disturbance or active management. 相似文献
18.
A comparison of created and natural wetlands in Pennsylvania,USA 总被引:7,自引:0,他引:7
Campbell Deborah A. Cole Charles Andrew Brooks Robert P. 《Wetlands Ecology and Management》2002,10(1):41-49
Recent research suggests that created wetlands do not look, or function, like the natural systems they are intended to replace. Proper planning, construction, and the introduction of appropriate biotic material should initiate natural processes which continue indefinitely in a successful wetland creation project, with minimal human input. To determine if differences existed between created and natural wetlands, we compared soil matrix chroma, organic matter content, rock fragment content, bulk density, particle size distribution, vegetation species richness, total plant cover, and average wetland indicator status in created (n = 12) and natural (n = 14)wetlands in Pennsylvania (USA). Created wetlands ranged in age from two to 18 years. Soils in created wetlands had less organic matter content, greater bulk densities, higher matrix chroma, and more rock fragments than reference wetlands. Soils in reference wetlands had clay loam textures with high silt content, while sandy clay loam textures predominated in the created sites. Vegetation species richness and total cover were both greater in natural reference wetlands. Vegetation in created wetlands included a greater proportion of upland species than found in the reference wetlands. There were significant differences in soils and vegetation characteristics between younger and older created wetlands, though we could not say older created sites were trending towards the reference wetland condition. Updated site selection practices, more careful consideration of monitoring period lengths, and, especially, a stronger effort to recreate wetland types native to the region should result in increased similarity between created and natural wetlands. 相似文献
19.
Rehabilitation of impounded estuarine wetlands by hydrologic reconnection to the Indian River Lagoon, Florida (USA) 总被引:3,自引:0,他引:3
R. E. Brockmeyer Jr. J. R. Rey R. W. Virnstein R. G. Gilmore L. Earnest 《Wetlands Ecology and Management》1997,4(2):93-109
Salt marshes of the Indian River Lagoon, Florida (USA) were once prolific producers of mosquitoes. Mosquitoes lay their eggs on the infrequently-flooded high marsh surface when the soil surface is exposed. The eggs hatch when the high marsh is flooded by the infrequent high tides or summer rains. To control mosquito production, most of the salt marshes (over 16.200 ha) were impounded by the early 1970s. Flooding, usually by pumping water from the Lagoon, effectively controlled mosquitoes.However, impounding had a profoundly negative impact on the wetland plant, fish, and invertebrate communities. Isolation from the Lagoon cut off aquatic access by transient estuarine species that used the wetlands for feeding or as nursery area. In one study, the number of fish species dropped from 16 to 5 after impounding. Wetland vegetation within some impoundments was totally eliminated; other impoundments developed into freshwater systems.When tidal exchange is restored through hydrologic connection, usually by culverts installed through the perimeter dike, recovery to more natural conditions is often rapid. In one impoundment where wetland vegetation was totally eliminated, recovery of salt-tolerant plants began almost immediately. In another, cover of salt-tolerant plants increased 1,056% in less than 3 years. Fisheries species that benefitted the most were snook, ladyfish, and striped mullet. Over 1,500 juvenile snook were captured in a single 3-hr flood-tide culvert trap as they attempted to migrate into an impoundment. The zooplankton community rapidly returned to the more typical marsh-Lagoon community. Water quality and sediment sulfides returned to typical marsh values. Overall, reconnection enhances natural productivity and diversity, although water quality in the perimeter ditch, an artifact of dike construction, remains problematic.Earlier experiments demonstrated that flooding only during the summer mosquito breeding season provided as effective mosquito control as year-round flooding. In standard management, the impoundment is flooded in summer, then left open to the Lagoon through culverts the rest of the year. Culverts are typically opened when the fall sea level rise first floods the high marsh.Impoundment reconnection is being implemented by a multi-agency partnership. The total reconnected area is expected to reach 9,454 ha by the end of 1998, representing 60% of the impounded wetlands in the entire IRL system. One stumbling block is private ownership of many of the remaining isolated impoundments.University of Florida, IFAS, Journal Series No. R-05201.Harbor Branch Contribution Number 1152.Corresponding editor: R.E. Turner 相似文献
20.
Introduced Spartina alterniflora (smooth cordgrass) is rapidly invading intertidal mudflats in San Francisco Bay, California. At several sites, S. alterniflora co-occurs with native S. foliosa (California cordgrass), a species endemic to California salt marshes. In this study, random amplified polymorphic DNA markers (RAPDs) specific to each Spartina species were identified and used to test for hybridization between the native and introduced Spartina species in the greenhouse and in the field. Greenhouse crosses were made using S. alterniflora as the pollen donor and S. foliosa as the maternal plant, and these crosses produced viable seeds. The hybrid status of the crossed offspring was confirmed with the RAPD markers. Hybrids had low self-fertility but high fertility when back-crossed with S. foliosa pollen. Hybrids were also found established at two field sites in San Francisco Bay; these hybrids appeared vigorous and morphologically intermediate between the parental species. Field observations suggested that hybrids were recruiting more rapidly than the native S. foliosa. Previous work identified competition from introduced S. alterniflora as a threat to native S. foliosa. In this study, we identify introgression and the spread of hybrids as an additional, perhaps even more serious threat to conservation of S. foliosa in San Francisco Bay. 相似文献