首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh.Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat.Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.Corresponding Editor: R.E. Turner Manuseript  相似文献   

2.
  • 1 The vegetation of New Jersey tidal salt marshes is composed primarily of two grasses, Spartina patens, which occupies a narrow elevational zone of high marsh and varies little in structure from site to site, and Spartina alterniflora, an intertidal species which occurs as two spacially separated growth forms (tall and short). Fulgoroids, polymorphic for wing length, inhabit these grasses.
  • 2 Populations of the common fulgoroid inhabiting short form S.alterniflora were composed of equal numbers of macropters and brachypters. Mesothoracic wings of brachypters were subequal in length to the abdomen allowing for short but inefficient flights compared to macropters.
  • 3 Fulgoroids residing in S.patens produced mostly brachypters having small meso-and vestigial metathoracic wings and were incapable of flight.
  • 4 Brachypter density of all fulgoroids was correlated with the seasonal increase in biomass of the host grass, while macropter density was not.
  • 5 Peak macropter density occurred shortly before maximum biomass of the host grass was attained.
  • 6 The production of macropterous forms was correlated with high levels of crowding incurred during nymphal stages.
  • 7 Spatial and temporal variation in the structure of the host grasses and habitat reliability are suggested as important factors dictating the wing-polymorphism strategies of fulgoroids.
  相似文献   

3.
4.
Summary Tidal flooding is widely believed to be an important determinant of marsh plant distributions but has rarely been tested in the field. In New England the marsh elder Iva frutescens often dominates the terrestrial border of salt marshes and we examined its flood tolerance and distribution patterns. Marsh elders only occur at elevations where their roots are not subject to prolonged water table flooding. Consequently they are found on the terrestrial border of marshes and at lower elevations associated with drainage ditches and locally elevated surfaces. Marsh elders transplanted to elevations lower than they normally occur died within a year with or without neighbors and greenhouse tests revealed that I. frutescens is much less tolerant of flooded soil conditions than plants found at lower marsh elevations. We also manipulated the water table level of field plots and found that increasing or decreasing water table drainage led to enhanced and diminished I. frutescens performance, respectively. Our results demonstrate the importance of water table dynamics in generating spatial patterns in marsh plant communities and provide further evidence that supports the hypothesis that the seaward distributional limits of marsh plant populations are generally dictated by physical processes.  相似文献   

5.
Anthropogenic climate change is predicted to cause widespread biodiversity loss due to shifts in species' distributions, but these predictions rarely incorporate ecological associations such as zonation. Here, we predict the decline of a diverse assemblage of mid-latitude salt marsh plants, based on an ecosystem warming experiment. In New England salt marshes, a guild of halophytic forbs occupies stressful, waterlogged pannes. At three sites, experimental warming of < 4 °C led to diversity declines in pannes and rapid takeover by a competitive dominant, Spartina patens . In Rhode Island, near their southern range limit, pannes were more sensitive to warming than farther north, and panne area also declined in control plots over the three-season experiment. These results suggest that warming will rapidly reduce plant diversity in New England salt marshes by eliminating a high diversity zone. Biodiversity in zoned ecosystems may be more affected by climate-driven shifts in zonation than by individual species' distribution shifts.  相似文献   

6.
7.
In New England salt marshes, man-made earthen barriers, or berms, are generally historic, small-scale (average height = 0.71 m ± 0.12 SE; average length = 166 m ± 41 SE) tidal restrictions which originated from past agricultural, industrial, and environmental practices. The orientation and size depends primarily on the original purpose of the barrier, but this study examines the effects of berms oriented parallel to the incoming tide such that some landward portion of the marsh receives a different tidal signal than the seaward portion. Our hypotheses considered the impacts of the altered hydrology on pore water chemistry and edaphic characteristics. The results indicate that the effect of berms on salt marsh physical structure varies significantly by site. Where the tidal flooding frequency is restricted and drainage is poor, the landward marsh shows pool development, high salinity and sulfide concentrations, and low vegetation cover. In contrast, where tidal flooding is inhibited but the marsh soils are well-drained, salinity and sulfide concentrations decrease and accelerated decomposition results in subsidence and reduced soil organic matter. Given these findings, impacts from berms may impair salt marsh function and resilience to invasive plants and sea level rise.  相似文献   

8.
We examined the linkage between climate and interspecific plant interactions in New England salt marshes. Because harsh edaphic conditions in marshes can be ameliorated by neighboring plants, plant neighbors can have net competitive or facilitative interactions, depending on ambient physical stresses. In particular, high soil salinities, which are largely controlled by solar radiation and the evaporation of marsh porewater, can be ameliorated by plant neighbors under stressful conditions leading to facilitative interactions. Under less stressful edaphic conditions, these same neighbors may be competitors. In this paper, we use this mechanistic understanding of marsh plant interactions to examine the hypothesis that latitudinal and inter-annual variation in climate can influence the nature and strength of marsh plant species interactions. We quantified the relationship between climate and species interactions by transplanting marsh plants into ambient vegetation and unvegetated bare patches at sites north and south of Cape Cod, a major biogeographic barrier on the east coast of North America. We hypothesized that the cooler climate north of Cape Cod would lead to fewer positive interactions among marsh plants. We found both latitudinal and inter-annual variation in the neighbor relations of marsh plants that paralleled latitudinal differences in temperature and salinity. South of Cape Cod, plant neighbor interactions tended to be more facilitative, whereas north of Cape Cod, plant neighbor interactions were more competitive. At all sites, soil salinity increased and plant neighbor interactions were more facilitative in warmer versus cooler years. Our results show that interspecific interactions can be strikingly linked to climate, but also reveal that because the sensitivity of specific species interactions to climatic variation is highly variable, predicting how entire communities will respond to climate change will be difficult, even in relatively simple, well-studied systems.  相似文献   

9.
Ewanchuk PJ  Bertness MD 《Oecologia》2003,136(4):616-626
High latitude salt marsh plant communities are frequently exposed to conspicuous winter ice disturbances, which trigger secondary succession. In this paper, we document the recovery of a northern New England salt marsh from a severe winter icing event in 1998. Ice disturbances that killed plants but that left the underlying peat intact recovered rapidly. However, ice damage that killed plants and removed the underlying peat, led to areas of physiologically harsh edaphic conditions, specifically waterlogged and anoxic soils that limited plant recolonization. A transplant experiment revealed that only the most stress-tolerant plants were capable of invading the most stressful portions of ice disturbances. A second experiment that artificially dried disturbance patches accelerated patch recovery. These data suggest that recovery from intense ice disturbance is dependent on stress-tolerant plants invading edaphically harsh disturbances, eventually facilitating the recolonization of the community. This process likely takes longer than a decade for full recovery to occur in the areas where both plants and the peat base are removed.  相似文献   

10.
The role of salt marshes as nitrogen sink is examined taking into consideration the seasonal variation of above and belowground biomass of Spartina martima and Halimione portulacoides in two marshes from Tagus estuary, Pancas and Corroios, and the degradation rates of belowground litter. Total nitrogen was determined in plant components, decomposing litter and sediment. Biomass was higher in Corroios, the saltier marsh, with 7190 g m−2 y−1 dw of S. maritima and 6593 g m−2 y−1 dw of H. portulacoides and the belowground component contributed to 96% and 90% of total biomass, respectively. In the other marsh, Pancas, belowground biomass contributed to 56% and 76% of total biomass for S. maritima and H. portulacoides, respectively. Litterbag experiment showed that between 25% and 50% of nitrogen is lost within the first month and remained relatively constant in the next four months. Slower decomposition is observed in sediments with higher nitrogen concentration (max. 0.7% N in the saltier marsh). Higher concentrations of N were found in the sediment upper layers. Considering the sediment-root system, most of the nitrogen is stored in the sediment compartment and only about 1–4% of the total N was found in the roots. Considering these results, Tagus salt marshes act as a sink for nitrogen.  相似文献   

11.
Two rice varieties, viz. Nonabokra and Pokkali, have been evaluated for their responses to salinity in terms of some physiological and biochemical attributes. During the exposure to salinity (200 mM concentration of sodium chloride for 24, 48, and 72 h), a significant increase in sodium was recorded which was also concomitant with the changes of other metabolic profiles like proline, phenol, polyamine, etc. The protein oxidation was significantly increased and also varied between the two cultivars. The changes in activities of anti-oxidative enzymes under stress were significantly different to the control. The detrimental effects of salinity were also evident in terms of lipid peroxidation, chlorophyll content, protein profiles, and generation of free radicals; and these were more pronounced in Pokkali than in Nonabokra. The assessment and analysis of these physiological characters under salinity could unravel the mechanism of salt responses revealed in this present study and thus might be useful for selection of tolerant plant types under the above conditions of salinity.  相似文献   

12.
W. G. Beeftink 《Plant Ecology》1985,61(1-3):127-136
  1. The population dynamics of two Salicornia species from the Bergen op Zoom salt marsh (south-west Netherlands) was examined. Based on the results of several field studies three preliminary life tables were constructed, two for S. procumbens agg. populations growing respectively on the mud flats and in the salt marsh, and one for S. europaea agg. living in the upper marsh.
  2. The life cycles are described and quantified in terms of eight phases and the transition probabilities between them, starting from a notional individual representative of each population.
  3. The models depicting the life cycle of S. procumbens show a mean offspring number of 4.26 individuals per parent for the mud-flat population and 0.18 for the salt-marsh population. The S. europaea model gives an output of 0.44 individuals per parent. These results reflect the fluctuations in population size observed in sample plots over the years 1976–78.
  4. Comparison of the transition probabilities reveals that on the mud flats most S. procumbens individuals die during pollination and seed germination, while the population in the salt marsh proper is thinned especially during the seed phase in winter time and during the growth from established seedlings to maturation. S. europaea behaves in a similar but less pronounced way to S. procumbens in the salt marsh.
  5. Probabilities for one flower or one seed to produce a mature flowering plant were calculated, and were compared with those found in the literature. They are roughly of the same order of magnitude as the probabilities for other annual species, but much higher than those reported for biennial species.
  相似文献   

13.
We investigated subsurface hydrology in two fringing tidal marshes and in underlying aquifers in the coastal plain of Virginia. Vertical distributions of hydraulic conductivity, hydraulic head and salinity were measured in each marsh and a nearby subtidal sediment. Discharge of hillslope groundwater into the base of the marshes and subtidal sediment was calculated using Darcy's law. In the marshes, fluxes of pore water across the sediment surface were measured or estimated by water balance methods. The vertical distribution of salt in shoreline sediments was modeled to assess transport and mixing conditions at depth. Hydraulic gradients were upward beneath shoreline sediments; indicating that groundwater was passing through marsh and subtidal deposits before reaching the estuary. Calculated discharge (6 to 10 liters per meter of shoreline per day) was small relative to fluxes of pore water across the marsh surface at those sites; even where discharge was maximal (at the upland border) it was 10 to 50 times less than infiltration into marsh soils. Pore water turnover in our marshes was therefore dominated by exchange with estuarine surface water. In contrast, new interstitial water entering subtidal sediments appeared to be primarily groundwater, discharged from below. The presence of fringing tidal marshes delayed transport and increased mixing of groundwater and solute as it traveled towards the estuaries. Soil-contact times of discharged groundwater were up to 100% longer in marshes than in subtidal shoreline sediments. Measured and modeled salinity profiles indicated that, prior to export to estuaries, the solutes of groundwater, marsh pore water and estuarine surface water were more thoroughly mixed in marsh soils compared to subtidal shoreline sediments. These findings suggest that transport of reactive solutes in groundwater may be strongly influenced by shoreline type. Longer soil-contact times in marshes provide greater opportunity for immobilization of excess nutrients by plants, microbes and by adsorption on sediment. Also, the greater dispersive mixing of groundwater and pore water in marshes should lead to increased availability of labile, dissolved organic carbon at depth which could in turn enhance microbial activity and increase the rate of denitrification in situations where groundwater nitrate is high.  相似文献   

14.
The occurrence of arbuscular mycorrhizal fungi (AMF) was assessed by both morphological and molecular criteria in two salt marshes: (i) a NaCl site of the island Terschelling, Atlantic Coast, the Netherlands and (ii) a K2CO3 marsh at Schreyahn, Northern Germany. The overall biodiversity of AMF, based on sequence analysis, was comparably low in roots at both sites. However, the morphological spore analyses from soil samples of both sites exhibited a higher AMF biodiversity. Glomus geosporum was the only fungus of the Glomerales that was detected both as spores in soil samples and in roots of the AMF-colonized salt plants Aster tripolium and Puccinellia sp. at both saline sites and on all sampling dates (one exception). In roots, sequences of Glomus intraradices prevailed, but this fungus could not be identified unambiguously from DNA of soil spores. Likewise, Glomus sp. uncultured, only deposited as sequence in the database, was widely detected by DNA sequencing in root samples. All attempts to obtain the corresponding sequences from spores isolated from soil samples failed consistently. A small sized Archaeospora sp. was detected, either/or by morphological and molecular analyses, in roots or soil spores, in dead AMF spores or orobatid mites. The study noted inconsistencies between morphological characterization and identification by DNA sequencing of the 5.8S rDNA-ITS2 region or part of the 18S rDNA gene. The distribution of AMF unlikely followed the salt gradient at both sites, in contrast to the zone formation of plant species. Zygotes of the alga Vaucheria erythrospora (Xanthophyceae) were retrieved and should not be misidentified with AMF spores.  相似文献   

15.
We investigated subsurface hydrology in two fringing tidal marshes and in underlying aquifers in the coastal plain of Virginia. Vertical distributions of hydraulic conductivity, hydraulic head and salinity were measured in each marsh and a nearby subtidal sediment. Discharge of hillslope groundwater into the base of the marshes and subtidal sediment was calculated using Darcy's law. In the marshes, fluxes of pore water across the sediment surface were measured or estimated by water balance methods. The vertical distribution of salt in shoreline sediments was modeled to assess transport and mixing conditions at depth. Hydraulic gradients were upward beneath shoreline sediments; indicating that groundwater was passing through marsh and subtidal deposits before reaching the estuary. Calculated discharge (6 to 10 liters per meter of shoreline per day) was small relative to fluxes of pore water across the marsh surface at those sites; even where discharge was maximal (at the upland border) it was 10 to 50 times less than infiltration into marsh soils. Pore water turnover in our marshes was therefore dominated by exchange with estuarine surface water. In contrast, new interstitial water entering subtidal sediments appeared to be primarily groundwater, discharged from below. The presence of fringing tidal marshes delayed transport and increased mixing of groundwater and solute as it traveled towards the estuaries. Soil-contact times of discharged groundwater were up to 100% longer in marshes than in subtidal shoreline sediments. Measured and modeled salinity profiles indicated that, prior to export to estuaries, the solutes of groundwater, marsh pore water and estuarine surface water were more thoroughly mixed in marsh soils compared to subtidal shoreline sediments. These findings suggest that transport of reactive solutes in groundwater may be strongly influenced by shoreline type. Longer soil-contact times in marshes provide greater opportunity for immobilization of excess nutrients by plants, microbes and by adsorption on sediment. Also, the greater dispersive mixing of groundwater and pore water in marshes should lead to increased availability of labile, dissolved organic carbon at depth which could in turn enhance microbial activity and increase the rate of denitrification in situations where groundwater nitrate is high.  相似文献   

16.
Feng  Hongyu  Qiao  Yajun  Xia  Lu  Yang  Wen  Zhao  Yongqiang  Jeelani  Nasreen  An  Shuqing 《Plant and Soil》2022,477(1-2):439-459
Plant and Soil - Although the influences of coastal embankments on soil physicochemical properties and carbon (C) and nitrogen (N) cycling have been widely reported, the mechanisms of their effects...  相似文献   

17.
Bakker  J.P.  Esselink  P.  Dijkema  K.S.  van Duin  W.E.  de Jong  D.J. 《Hydrobiologia》2002,478(1-3):29-51
The conquest of land from the sea has been a long tradition in the Netherlands. When salt marshes were high enough, they were embanked when it was economically feasible, and transformed into intensively exploited agricultural land. This resulted in the transformation of halophytic communities to glycophytic communities. Often as an alternative, a low levee, a summerdike was built, which greatly reduced the flooding frequency of the landward summerpolder, hence creating a sedimentation deficit therein. Such summerpolders now cover 1200 ha in the Netherlands, 2100 ha in NW-Germany and small areas in England. Due to continuous embankments, the present salt-marsh area is relatively small with respect to the tidal basins. Discussions have been started how to increase the salt-marsh area. Two options will be discussed, firstly de-embankment of summerpolders and maintenance of the protective seawall, secondly increase of the effects of saline seepage behind the seawall by top soil removal. Both options include the restoration of salt-marsh communities (target communities) in intensively agriculturally exploited sites that have been salt marshes before. From the few examples abroad and experiments it is discussed (1) to which extent the sedimentation deficit in summerpolders could be compensated for, (2) if the soil seed bank is likely to contribute to re-establishment of salt-marsh communities, (3) if the dispersal of propagules of halophytic plants will be possible by hydrochory when the summerdike is breached, (4) to what extent is dispersal by endozoochory through waterfowl important in case re-establishment in a saline seepage area behind the seawall without open connection to the sea is envisaged. Two case studies of de-embanked summerpolders in the Netherlands revealed that the sedimentation deficit can be counteracted by rapid sedimentation, provided enough transport is possible from the foreshore. Dispersal by incoming tidal water from the nearby salt-marsh source area into the target area is possible for many salt-marsh plant species. The rate of success seems to depend on the relative position of source area and target area. A case study in a saline seepage area after top soil removal in the Netherlands, showed that the number of viable seeds dispersed by droppings from waterfowl is limited. Hence the possibilities for restoration of inland halophytic plant communities seem much lower than after de-embankment of summerpolders.  相似文献   

18.
Seventy-five species and three varieties which belong to thirty-four genera were identified from 74 soil samples collected from salt marshes in Egypt. The most frequent fungi wereAspergillus fumigatus, Aspergillus niger, Cladosporium herbarum andAlternatia alternata, followed byAspergillus terreus,Curvularia spicifera andPenicillium notatum. Six genera were of moderate occurrence:Penicillium, Futarium, Curvularia, Rhizopus, Stachybotrys, andChaetomium. Five genera were of low occurrence:Paecilomyces, Oephalosporium, Epicoccum, Mucor andMyrothecium.  相似文献   

19.
Flooding and high salinity generally induce physiological stress in wetland vascular plants which may increase in intensity with sea-level rise (SLR). We tested the effects of these factors on seedling growth in a transplant experiment in a macrotidal estuary in the Pacific Northwest. Seven common wetland species were grown at mean higher high water (MHHW, a typical mid-marsh elevation), and at 25 and 50 cm below MHHW in oligohaline, mesohaline, and polyhaline marshes. Increased flooding reduced shoot and root growth in all species, including those typically found at middle or lower tidal elevations. It also generally disproportionately reduced root biomass. For more sensitive species, biomass declined by >50 % at only 25 cm below MHHW at the oligohaline site. Plant growth was also strongly reduced under polyhaline conditions relative to the less saline sites. By combining inundation and salinity time-series measurements we estimated a salt exposure index for each site by elevation treatment. Higher values of the index were associated with lower root and shoot biomass for all species and a relatively greater loss of below-ground than above-ground production in most species. Our results suggest that inundation and salinity stress individually and (often) interactively reduce productivity across a suite of common marsh species. As relative SLR increases the intensity of stress on coastal marsh plants, negative effects on biomass may occur across a range of species and especially on below-ground production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号