首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Great Wall of China: a physical barrier to gene flow?   总被引:4,自引:0,他引:4  
Su H  Qu LJ  He K  Zhang Z  Wang J  Chen Z  Gu H 《Heredity》2003,90(3):212-219
One population from each of six plant species along both sides of the Juyong-guan Great Wall, together with one population from each of five species along both sides of a path on a mountain top near Juyong-guan, were selected to study the effect of the Great Wall as a barrier on genetic differentiation between two subpopulations using RAPD markers. Significant genetic differentiation was found between the subpopulations on both sides of the Great Wall. A wind-pollinated woody species, Ulmus pumila, showed less genetic differentiation than four insect-pollinated species: Prunus armeniaca, Ziziphus jujuba, Vitex negundo, and Heteropappus hispidus. Cleistogenes caespitosa, a wind-pollinated perennial herb, displayed more genetic differentiation between subpopulations than the insect-pollinated species because of its propagation strategy. Although AMOVA analysis showed that subpopulations divided by a mountain path had diverged genetically, the variance component between the subpopulations on both sides of the Great Wall was significantly larger than that between the subpopulations at the control site. Therefore, it is reasonable to deduce that the Juyong-guan Great Wall has served as a physical barrier to gene flow between subpopulations separated for more than 600 years.  相似文献   

2.
About 15,000 years earlier, the Northern half of Europe and North America was buried under a few kilometres of ice. Since then, many organisms have colonized and rapidly adapted to the new, vacant habitats. Some, like the threespine stickleback fish, have done so more successfully than others: from the sea, stickleback have adapted to a multitude of lake and stream habitats with a vast array of complex phenotypes and life histories. Previous studies showed that most of these “ecotypes” differ in multiple divergently selected genes throughout the genome. But how are well‐adapted ecotypes of one habitat protected from maladaptive gene flow from ecotypes of another, adjacent habitat? According to a From the Cover meta‐analysis in this issue of Molecular Ecology (Samuk et al., 2017), low recombination rate regions in the genome offer such protection. While inversions have often been highlighted as an efficient way to maintain linkage disequilibrium among sets of adaptive variants in the face of gene flow, Samuk et al. (2017) show that variation in recombination rate across the genome may perform a similar role in threespine stickleback. With this study, theoretical predictions for the importance of low recombination regions in adaptation are for the first time tested with a highly replicated population genomic data set. The findings from this study have implications for the adaptability of species, speciation and the evolution of genome architecture.  相似文献   

3.
Latitude-correlated polymorphisms can be due to either selection-driven evolution or gene flow. To discriminate between them, we propose an approach that studies subpopulations springing from a single population that have lived for generations at different latitudes and have had a low genetic admixture. These requirements are fulfilled to a large extent by Ashkenazi and Sephardi Jews. The original population lived at a latitude of 35 degrees N, where the Sephardis still live. The Ashkenazis, however, moved to a latitude of 50 degrees N, starting about 10 centuries ago. The present study examines 3 latitude-correlated polymorphisms: PGP, PGM1, and AHSG. We found that PGP*2 and AHSG*2 alleles most likely underwent selection-driven evolution, but that PGM1*ts allele was not similarly affected. Since temperature might have been considered a reasonable selective factor, we also studied a population living at >800 m above sea level from Aosta Valley (Italy).  相似文献   

4.
Using evolutionary theory to predict the dynamics of populations is one of the aims of evolutionary conservation. In endangered species, with geographic range extending over continuous areas, the predictive capacity of evolutionary‐based conservation measures greatly depends on the accurate identification of reproductive units. The endangered European eel (Anguilla anguilla) is a highly migratory fish species with declining population due to a steep recruitment collapse in the beginning of the 1980s. Despite punctual observations of genetic structure, the population is viewed as a single panmictic reproductive unit. To understand the possible origin of the detected structure in this species, we used a combination of mitochondrial and nuclear loci to indirectly evaluate the possible existence of cryptic demes. For that, 403 glass eels from three successive cohorts arriving at a single location were screened for phenotypic and genetic diversity, while controlling for possible geographic variation. Over the 3 years of sampling, we consistently identified three major matrilines which we hypothesized to represent demes. Interestingly, not only we found that population genetic models support the existence of those matriline‐driven demes over a completely panmictic mode of reproduction, but also we found evidence for asymmetric gene flow amongst those demes. We uphold the suggestion that the detection of demes related to those matrilines reflect a fragmented spawning ground, a conceptually plausible consequence of the low abundance that the European eel has been experiencing for three decades. Furthermore, we suggest that this cryptic organization may contribute to the maintenance of the adaptive potential of the species.  相似文献   

5.
Population genetic and biological distance studies of Late Woodland and Mississippian populations from west-central Illinois have provided insight into a number of prehistoric demographic processes at the regional level. However, a formal analysis of diachronic interregional gene flow has not been attempted within a population genetics framework. In this study, cranial measurements of 489 individuals from 13 skeletal samples across the central and lower Illinois valleys are analyzed to address two central issues. First, the potential impact of Cahokia's decline and associated demographic events on the population structure of west-central Illinois Mississippians is examined. Second, the Mississippian and Late Woodland interregional migration patterns are compared to determine if geographic and/or cultural boundaries affected local population structure. Following Relethford and Blangero ([1990] Hum Biol 62:5-25), R matrix methods are utilized to calculate observed and expected phenotypic variances, minimum genetic distances, and F(ST) values in order to detect patterns of differential external gene flow over time. The results indicate that Late Woodland peoples had a larger sphere of biological interaction than Mississippians. In the Mississippian period, culturally imposed barriers paralleled geographic boundaries between regions such that the geographic distribution of biological variation closely adheres to a classic isolation-by-distance model. Further, intraregional population movement was a more significant contributor to Mississippian population structure than interregional gene flow, even during periods of sociopolitical strife. Small-scale intraregional shuffling is consistent with other recent studies of prehistoric Mississippian biocultural and geographic landscapes in the southeast United States.  相似文献   

6.
In the Sahel of Africa, farmers often modify their cultivation practices to adapt to environmental changes. How these changes shape the agro-biodiversity is a question of primary interest for the conservation of plant genetic resources. We addressed this question in a case study on pearl millet in south western Niger where farmers used to cultivate landraces with different cycle length in order to cope with rain uncertainty. Early and late landraces were previously grown on distant fields. Nowadays, mostly because of human population pressure and soil impoverishment, it happens that the two types of landraces are grown on adjacent fields, opening the question whether gene flow between them may occur. This question was tackled through a comparative study among contrasting situations pertaining to the spatial distribution of early and late landraces. Observations of flowering periods showed that pollen flow between the two landraces is possible and has a preferential direction from early to late populations.  相似文献   

7.
Rotifers are ubiquitous freshwater animals for which many complexes of cryptic species (i.e. distinct species that are morphologically difficult to distinguish) are described. Keratella cochlearis occurs globally and shows a wide phenotypic diversity indicating the potential presence of a species complex. We sampled lakes of the Trentino-South Tyrol region (Italy) and investigated mitochondrial genetic diversity in K. cochlearis in relation to detailed lorica measurements. We sequenced the mitochondrial cytochrome c oxidase subunit I and used the generalised mixed Yule coalescent approach, Poisson tree process model and automatic barcode gap discovery to delimit mitochondrial groups, associated with putative evolutionary significant units (ESUs). Based on 248 sequences, eight putative ESUs were indicated that could only partially be delimited by lorica morphology. Specifically, several morphological characteristics (i.e. spinelets, bended median ridge, and posterior spine) were found in specimens of different putative ESUs, and thus, these characters seem to be of poor discriminatory value. Furthermore, different putative ESUs of K. cochlearis were found in the same lake. We conclude that the high mitochondrial genetic diversity may be linked to tolerance of K. cochlearis to varying environmental conditions.  相似文献   

8.
Wetlands are naturally patchy habitats, but patchiness has been accentuated by the extensive wetlands loss due to human activities. In such a fragmented habitat, dispersal ability is especially important to maintain gene flow between populations. Here we studied population structure, genetic diversity and demographic history of Iberian and North African populations of two wetland passerines, the Eurasian reed warbler Acrocephalus scirpaceus and the moustached warbler Acrocephalus melanopogon. These species are closely related and sympatric in our study sites, but the reed warbler is a widespread long‐distance migrant while the moustached warbler's breeding range is patchier and it is resident or migrates over short distances. Using microsatellite and mtDNA data, we found higher differentiation in moustached than in reed warblers, indicating higher dispersal capability of the latter species. Our results also suggest that the sea limits dispersal in the moustached warbler. However, we found evidence of gene flow between the study sites in both species, indicating a capability to compensate for habitat fragmentation. In most cases, the gene flow was restricted, possibly because of the large distances between study sites (from ca 290 to 960 km) or breeding site fidelity. The reed warbler had higher haplotype diversity, likely due to dispersal from different populations, past admixture event and a larger population size. We found also signs of postglacial population growth for both species and evidence of a recent colonization or re‐colonization of the Mallorca Island by the moustached warbler.  相似文献   

9.
Character displacement – trait evolution stemming from selection to lessen resource competition or reproductive interactions between species – has long been regarded as important in finalizing speciation. By contrast, its role in initiating speciation has received less attention. Yet because selection for character displacement should act only where species co‐occur, individuals in sympatry will experience a different pattern of selection than conspecifics in allopatry. Such divergent selection might favour reduced gene flow between conspecific populations that have undergone character displacement and those that have not, thereby potentially triggering speciation. Here, we explore these ideas empirically by focusing on spadefoot toads, Spea multiplicata, which have undergone character displacement, and for which character displacement appears to cause post‐mating isolation between populations that are in sympatry with a heterospecific and those that are in allopatry. Using mitochondrial sequence data and nuclear microsatellite genotypes, we specifically asked whether gene flow is reduced between populations in different selective environments relative to that between populations in the same selective environment. We found a slight, but statistically significant, reduction in gene flow between selective environments, suggesting that reproductive isolation, and potentially ecological speciation, might indeed evolve as an indirect consequence of character displacement. Generally, character displacement may play a largely underappreciated role in instigating speciation.  相似文献   

10.
11.
The extent of evolutionary divergence of phenotypes between habitats is predominantly the result of the balance of differential natural selection and gene flow. Lava lizards (Microlophus albemarlensis) on the small island of Plaza Sur in the Galápagos archipelago inhabit contrasting habitats: dense vegetation on the western end of the island thins rapidly in a transitional area, before becoming absent on the eastern half. Associated with these habitats are phenotypic differences in traits linked to predator avoidance (increased wariness, sprint speed, and endurance in lizards from the sparsely vegetated habitat). This population provides an opportunity to test the hypothesis that reduced gene flow is necessary for phenotypic differentiation. There was no evidence of any differences among habitats in allele frequencies at six out of seven microsatellite loci examined, nor was there any indication of congruence between patterns of genetic variability and the change in vegetation regime. We infer that gene flow between the habitats on Plaza Sur must be sufficiently high to overcome genetic drift within habitats but that it does not preclude phenotypic differentiation.  相似文献   

12.
13.
In order to increase the size of declining salmonid populations, supplementation programmes intentionally release fish raised in hatcheries into the wild. Because hatchery-born fish often have lower fitness than wild-born fish, estimating rates of gene flow from hatcheries into wild populations is essential for predicting the fitness cost to wild populations. Steelhead trout (Oncorhynchus mykiss) have both freshwater resident and anadromous (ocean-going) life history forms, known as rainbow trout and steelhead, respectively. Juvenile hatchery steelhead that 'residualize' (become residents rather than go to sea as intended) provide a previously unmeasured route for gene flow from hatchery into wild populations. We apply a combination of parentage and grandparentage methods to a three-generation pedigree of steelhead from the Hood River, Oregon, to identify the missing parents of anadromous fish. For fish with only one anadromous parent, 83% were identified as having a resident father while 17% were identified as having a resident mother. Additionally, we documented that resident hatchery males produced more offspring with wild anadromous females than with hatchery anadromous females. One explanation is the high fitness cost associated with matings between two hatchery fish. After accounting for all of the possible matings involving steelhead, we find that only 1% of steelhead genes come from residualized hatchery fish, while 20% of steelhead genes come from wild residents. A further 23% of anadromous steelhead genes come from matings between two resident parents. If these matings mirror the proportion of matings between residualized hatchery fish and anadromous partners, then closer to 40% of all steelhead genes come from wild trout each generation. These results suggest that wild resident fish contribute substantially to endangered steelhead 'populations' and highlight the need for conservation and management efforts to fully account for interconnected Oncorhynchus mykiss life histories.  相似文献   

14.
Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability. In less dispersive species, we predict greater genetic divergence and reduced gene flow. This could lead to covariation in life‐history traits due to local adaptation, although plasticity or drift could mirror these patterns. We compare genome‐wide patterns of genetic structure in four phenotypically variable grasshopper species along a steep elevation gradient near Boulder, Colorado, and test the hypothesis that genomic differentiation is greater in short‐winged grasshopper species, and statistically associated with variation in growth, reproductive, and physiological traits along this gradient. In addition, we estimate rates of gene flow under competing demographic models, as well as potential gene flow through surveys of phenological overlap among populations within a species. All species exhibit genetic structure along the elevation gradient and limited gene flow. The most pronounced genetic divergence appears in short‐winged (less dispersive) species, which also exhibit less phenological overlap among populations. A high‐elevation population of the most widespread species, Melanoplus sanguinipes, appears to be a sink population derived from low elevation populations. While dispersal ability has a clear connection to the genetic structure in different species, genetic distance does not predict growth, reproductive, or physiological trait variation in any species, requiring further investigation to clearly link phenotypic divergence to local adaptation.  相似文献   

15.
16.

Background

Multifactor dimensionality reduction (MDR) is widely used to analyze interactions of genes to determine the complex relationship between diseases and polymorphisms in humans. However, the astronomical number of high-order combinations makes MDR a highly time-consuming process which can be difficult to implement for multiple tests to identify more complex interactions between genes. This study proposes a new framework, named fast MDR (FMDR), which is a greedy search strategy based on the joint effect property.

Results

Six models with different minor allele frequencies (MAFs) and different sample sizes were used to generate the six simulation data sets. A real data set was obtained from the mitochondrial D-loop of chronic dialysis patients. Comparison of results from the simulation data and real data sets showed that FMDR identified significant gene–gene interaction with less computational complexity than the MDR in high-order interaction analysis.

Conclusion

FMDR improves the MDR difficulties associated with the computational loading of high-order SNPs and can be used to evaluate the relative effects of each individual SNP on disease susceptibility. FMDR is freely available at http://bioinfo.kmu.edu.tw/FMDR.rar.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1717-8) contains supplementary material, which is available to authorized users.  相似文献   

17.
Most models of ecological speciation concern phytophagous insects in which speciation is thought to be driven by host shifts and subsequent adaptations of populations. Despite the ever-increasing number of studies, the current evolutionary status of most models remains incompletely resolved, as estimates of gene flow between taxa remain extremely rare. We studied the population genetics of two taxa of the Ostrinia genus--one feeding mainly on maize and the other on mugwort and hop--occurring in sympatry throughout France. The actual level of divergence of these taxa was unknown because the genetic structure of populations had been investigated over a limited geographical area and the magnitude of gene flow between populations had not been estimated. We used 11 microsatellite markers to investigate the genetic structure of populations throughout France and the extent of gene flow between the two Ostrinia taxa at several sites at which they are sympatric. We observed clear genetic differentiation between most populations collected on the typical respective hosts of each taxon. However, populations displaying intermediate allelic frequencies were found on hop plants in southern France. Individual assignments revealed that this result could be accounted for by the presence of both taxa on the same host. Gene flow, estimated by determining the proportion of hybrids detected, was low: probably<1% per generation, regardless of site. This indicates that the two Ostrinia taxa have reached a high level of genetic divergence and should be considered sibling species rather than host races.  相似文献   

18.
After the emancipation of African slaves in the Caribbean, the labor void left by out-migrating former slaves was filled by in-migrating indentured servants from prepartition India and China. In some areas of the Caribbean such as Trinidad, Suriname, and Guyana, the East-Indian migrants formed large communities. In this article, we report a study based on mtDNA and Y-chromosomal markers of a small East-Indian community from Limón, Costa Rica. The purpose of the project is to determine the place of origin in the Indian subcontinent of the ancestors of our group and the contributions to its gene pool through gene flow by members of other ethnic groups. Both Y-chromosome and mtDNA suggest that the Indo-Costa Ricans descend from migrants primarily from Central India. While both paternal and maternal markers indicate that this group is overwhelmingly of Indian origin, they also indicate that males and females of African, European, and Amerindian origin contributed to it differently. We discuss our results in the historical context of the virtual extinction of Amerindian Caribbean groups, the forced migration of African slaves to the Caribbean, and the gene flow between Amerindians, Europeans, East-Indians, and Africans that eventually produced the Caribbean's currently diverse gene pool.  相似文献   

19.
Kashin–Beck disease (KBD) is a complex endemic osteoarthropathy, which mainly occurs in the northeast to southwest China. Iodothyronine deiodinases 3 (DIO3) is one of the selenoproteins, which is closely related to bone metabolism and unclear to KBD. This study aims to investigate the role and associated mechanisms of methylation and expression of DIO3 with disease severity in patients with KBD. We performed a bioinformatics analysis first to identify the biological mechanisms involved in selenoproteins. The methylation status of the DIO3 gene and DIO3 gene expression, as well as DIO3-related regulatory genes in patients with KBD, were analyzed. We found that 15 CpG sites of six selenoproteins were hypomethylated with 5-azacytidine treatment. DIO3 hypermethylation was associated with an increased risk of KBD and may lead to downregulation of DIO3 gene expression as well as be an indicator of the severity of KBD, which may provide a new insight for gene–environment correlations and interactions in etiology and pathogenesis of KBD.  相似文献   

20.
A model which was used by Prothero and Burton to simulate a particular configuration in capillary blood vessels is investigated from a hydrodynamic point of view. In this model, the erythrocytes are approximated by rigid pistons, and plasma is assumed to be an incompressible Newtonian fluid. An order of magnitude analysis using the physiologically realistic values for various parameters reduces the exact equations of motion to an equation describing the creeping motion of the fluid. An analytical approach to the solution of the equation is proposed and some results are reported here. The solution of the flow field is given in terms of a stream function which is represented by two infinite series composed of known functions. Two coupled infinite systems of algebraic equations determining the coefficients of the two series have been derived. This method of solution is proposed as an alternative to the entirely numerical procedure of solving the similar problem proposed by Bugliarelloet al. A limiting case of large aspect ratio (the ratio of the axial spacing of the two successive erythrocytes to the capillary diameter) is studied and the solution, valid away from the erythrocyte surface, has been obtained in simple form. It resembles the classical Poisenille flow, but the pressure gradient is related to the erythrocyte speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号