首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
富含AU元件的RNA结合蛋白1(AU-rich element binding factor 1,AUF1)具有剪接加工前体mRNA、转运和降解成熟mRNA的功能,同时调节带有富含AU元件(AU-rich element,ARE)的mRNA翻新。AUF1通过介导炎性细胞因子及其反应从而控制炎症进程。研究表明,AUF1与肠道病毒71型的内部核糖体进入位点(internal ribosome entry site,IRES)结合并与其交互负性调节病毒翻译与复制,它还可被募集到柯萨奇病毒B3型和肠道病毒71型诱导的应激颗粒中。  相似文献   

2.
3.
4.
The turnover and translation of many human mRNAs is regulated by AU-rich elements present in their 3′untranslated region, which bind various trans acting factors. We previously identified a trans acting factor that interacts with these cis elements as DAZAP1 (deleted in Azoospermia (DAZ)-Associated Protein 1), whose interaction with the germ cell-specific protein DAZ was disrupted by the phosphorylation of DAZAP1. Here we have identified several other RNA-binding proteins as binding partners for DAZAP1 in non-germinal cells. Unlike DAZ, these interactions occur between the RNA recognition motifs of DAZAP1 and the C-termini of the binding partners and in a phosphorylation-independent manner. The results suggest that DAZAP1 is a component of complexes that are crucial for the degradation and silencing of mRNA.  相似文献   

5.
6.
Early host responses to viral infection rapidly induce an antiviral gene expression program that limits viral replication and recruits sentinel cells of the innate immune system. These responses are mediated by cytokines. The mRNAs that encode cytokines typically harbor destabilizing adenine- and uridine-rich elements (AREs) that direct their constitutive degradation in the cytoplasm. In response to a variety of signals, including viral infection, small pools of cytoplasmic ARE-mRNAs are rapidly stabilized and translated. Thus, mRNA stability plays a key role in antiviral gene expression. Intriguingly, recent studies have identified viral proteins that specifically target ARE-mRNAs for stabilization, suggesting that certain proteins encoded by ARE-mRNAs may be advantageous for infection. Here, we discuss the development of a suite of sensitive and complementary assays to monitor ARE-mRNA turnover. These include luciferase- and destabilized-GFP-based assays that can be adapted for high-throughput screening applications.  相似文献   

7.
Human low-density lipoprotein receptor (LDLR) mRNA is unstable and contains four AU-rich elements (AREs) in the 3′-untranslated region (3′-UTR). The aim of this study was to verify the involvement of the 3′-UTR in the rapid degradation of LDLR mRNA. This study revealed that the 3′-UTR is necessary and sufficient for the degradation, and that the 1st ARE (ARE1) close to the stop codon associates with cytoplasmic proteins, and is primarily responsible for the degradation. Chenodeoxycholic acid (CDCA) treatment stabilized chimeric GFP-LDLR 3′-UTR mRNA and accompanied mitogen-activated protein kinase (MAPK) activation. The UV cross-linking assays showed that a protein of 80 kDa increasingly binds to the region including the ARE1 in response to CDCA-mediated MAPK activation.  相似文献   

8.
9.
10.
Summary Constructed microbial mats, used for studies on the removal and transformation of metals and metalloids, are made by combining cyanobacteria inoculum with a sediment inoculum from a metal-contaminated site. These mats are a heterotrophic and autotrophic community dominated by cyanobacteria and held together by slimy secretions produced by various microbial groups. When contaminated water containing high concentrations of metals is passed over microbial mats immobilized on glass wool, there is rapid removal of the metals from the water. The mats are tolerant of high concentrations of toxic metals and metalloids, such as cadmium, lead, chromium, selenium and arsenic (up to 350 mg L–1). This tolerance may be due to a number of mechanisms at the molecular, cellular and community levels. Management of toxic metals by the mats is related to deposition of metal compounds outside the cell surfaces as well as chemical modification of the aqueous environment surrounding the mats. The location of metal deposition is determined by factors such as redox gradients, cell surface micro-environments and secretion of extra-cellular bioflocculents. Metal-binding flocculents (polyanionic polysaccharides) are produced in large quantities by the cyanobacterial component of the mat. Steep gradients of redox and oxygen exist from the surface through the laminated strata of microbes. These are produced by photosynthetic oxygen production at the surface and heterotrophic consumption in the deeper regions. Additionally, sulfur-reducing bacteria colonize the lower strata, removing and utilizing the reducing H2S, rather than water, for photosynthesis. Thus, depending on the chemical character of the microzone of the mat, the sequestered metals or metalloids can be oxidized, reduced and precipitated as sulfides or oxides. For example precipitates of red amorphous elemental selenium were identified in mats exposed to selenate (Se-VI) and insoluble precipitates of manganese, chromium, cadmium, cobalt, and lead were found in mats exposed to soluble salts of these metals. Constructed microbial mats offer several advantages for use in the bioremediation of metal-contaminated sites. These include low cost, durability, ability to function in both fresh and salt water, tolerance to high concentrations of metals and metalloids and the unique capacity of mats to form associations with new microbial species. Thus one or several desired microbial species might be integrated into mats in order to design the community for specific bioremediation applications.  相似文献   

11.
12.
随着近代微生物学与地质学研究的不断发展和深入,微生物在矿业相关领域的基础和应用研究日益受到重视。本文总结了近年来微生物及其技术在找矿、选矿、采矿等方面的应用研究进展情况,并着重对微生物在矿产的成矿以及废弃矿区的环境修复方面的研究进行了详细介绍。  相似文献   

13.
14.
The zinc finger protein tristetraprolin (TTP) promotes translation repression and degradation of mRNAs containing AU-rich elements (AREs). Although much attention has been directed toward understanding the decay process and machinery involved, the translation repression role of TTP has remained poorly understood. Here we identify the cap-binding translation repression 4EHP-GYF2 complex as a cofactor of TTP. Immunoprecipitation and in vitro pull-down assays demonstrate that TTP associates with the 4EHP-GYF2 complex via direct interaction with GYF2, and mutational analyses show that this interaction occurs via conserved tetraproline motifs of TTP. Mutant TTP with diminished 4EHP-GYF2 binding is impaired in its ability to repress a luciferase reporter ARE-mRNA. 4EHP knockout mouse embryonic fibroblasts (MEFs) display increased induction and slower turnover of TTP-target mRNAs as compared to wild-type MEFs. Our work highlights the function of the conserved tetraproline motifs of TTP and identifies 4EHP-GYF2 as a cofactor in translational repression and mRNA decay by TTP.  相似文献   

15.
16.
Glutamine synthetase (GS) is expressed at various levels in a wide range of tissues, suggesting that a complex network of modules regulates its expression. We explored the interactions between the upstream enhancer, regulatory regions in the first intron, and the 3'-untranslated region and immediate downstream genomic sequences of the GS gene (the GS "tail"), and compared the results with those obtained previously in conjunction with the bovine growth hormone (bGH) tail. The statistical analysis of these interactions revealed that the GS tail was required for full enhancer activity of the combination of the upstream enhancer and either the middle or the 3'-intron element. The GS tail also prevented a productive interaction between the upstream enhancer and the 5'-intron element, whereas the bGH tail did not, suggesting that the 5'-intron element is a regulatory element that needs to be silenced for full GS expression. Using the CMV promoter/enhancer and transfection experiments, we established that the 2.8 kb GS mRNA polyadenylation signal is approximately 10-fold more efficient than the 1.4 kb mRNA signal. Because the steady-state levels of both mRNAs are similar, the intervening conserved elements destabilize the long mRNA. Indeed, one but not all constructs containing these elements had a shorter half life in FTO-2B cells. A construct containing only 300 bases before and 100 bases after the 2.8 kb mRNA polyadenylation site sufficed for maximal expression. A stretch of 21 adenines inside this fragment conferred, in conjunction with the upstream enhancer and the 3'-part of the first intron, sensitivity of GS expression to ambient glutamine.  相似文献   

17.
Regulated mRNA decay is a highly important process for the tight control of gene expression. Inherently unstable mRNAs contain AU-rich elements (AREs) in the 3' untranslated regions that direct rapid mRNA decay by interaction with decay-promoting ARE-binding proteins (ARE-BPs). The decay of ARE-containing mRNAs is regulated by signaling pathways that are believed to directly target ARE-BPs. Here, we show that BRF1 involved in ARE-mediated mRNA decay (AMD) is phosphorylated by MAPK-activated protein kinase 2 (MK2). In vitro kinase assays using different BRF1 fragments suggest that MK2 phosphorylates BRF1 at four distinct sites, S54, S92, S203, and an unidentified site at the C terminus. Coexpression of an active form of MK2 inhibits ARE mRNA decay activity of BRF1. MK2-mediated inhibition of BRF1 requires phosphorylation at S54, S92, and S203. Phosphorylation of BRF1 by MK2 does not appear to alter its ability to interact with AREs or to associate with mRNA decay enzymes. Thus, MK2 inhibits BRF1-dependent AMD through direct phosphorylation. Although the mechanism underlying this inhibition is still unclear, it appears to target BRF1-dependent AMD at a level downstream from RNA binding and the recruitment of mRNA decay enzymes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号