首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postprandial hyperlipidemia is frequently accompanied with intra-abdominal visceral accumulation in human subjects. We have found that the decreased lipoprotein lipase (LPL) mass and activity is negatively associated with the amount of visceral fat accumulation. Here, we studied the postprandial hyperlipidemia using the OLETF rat, a model with visceral obesity, in order to clarify the molecular mechanism causing postprandial hyperlipidemia accompanied with visceral obesity. At the same age of 32 weeks, the OLETF rats showed obviously higher plasma leptin, total cholesterol, triglyceride, and HDL-cholesterol levels than the control LETO rats, although the plasma glucose level was not significantly different. Fat-loading test revealed the delayed metabolism of exogenous fat in the OLETF rats compared to the LETO rats, similar to human subjects with visceral obesity. In the obese rats, plasma levels of LPL mass and activities were 60 and 49% of control rats. The expression of LPL gene was decreased in subcutaneous adipose tissues and skeletal muscle of OLETF rats to 40 and 52% compared to those of LETO rats. In OLETF rats, plasma tumor necrosis factor-alpha (TNF-alpha) and insulin levels were increased to 2.0- and 2.3-folds compared to those in control rats. Furthermore, plasma insulin and TNF-alpha levels in OLETF rats were negatively correlated with the expression levels of LPL gene in subcutaneous fat and muscle. These results indicate that decreased LPL mass and activity in the animal model with visceral obesity is possibly caused by decreased expression of LPL gene in tissues mediated by the increased levels of insulin and TNF-alpha. The different expression of LPL gene in tissues associated with the increased levels of insulin and TNF-alpha possibly elucidate the underlying mechanisms involving the postprandial hyperlipidemia observed in visceral obesity.  相似文献   

2.
人群调查发现肥胖人群网膜素水平较正常人群低,而正常及肥胖大鼠血清网膜素水平及其基因表达情况尚不清楚.将SD大鼠随机分为正常组(n=10)和高脂组(n=30),分别喂养普通饲料和高脂饲料.6 w后从高脂组选取体重增长最快的20只,再从中随机抽取10只继续喂养高脂饲料,12 w后两组各剩9只,采用全自动生化仪ADVIA2400测定血糖及血脂、ELISA检测血清胰岛素及网膜素水平、RT-PCR检测网膜脂肪组织网膜素mRNA表达水平.结果显示高脂组大鼠体重、体重增加值、肥胖指数、低密度脂蛋白、胰岛素、血清网膜素水平及网膜脂肪组织网膜素mRNA表达水平均高于正常组(P<0.05).首次发现肥胖大鼠血清网膜素水平及网膜脂肪组织中网膜素mRNA表达水平较正常大鼠显著增高,与人群调查结果不一致.  相似文献   

3.
Elevated plasma angiotensinogen (AGT) levels have been demonstrated in insulin-resistant states such as obesity and type 2 diabetes mellitus (DM2), conditions that are directly correlated to hypertension. We examined whether hyperinsulinemia or hyperglycemia may modulate fat and liver AGT gene expression and whether obesity and insulin resistance are associated with abnormal AGT regulation. In addition, because the hexosamine biosynthetic pathway is considered to function as a biochemical sensor of intracellular nutrient availability, we hypothesized that activation of this pathway would acutely mediate in vivo the induction of AGT gene expression in fat and liver. We studied chronically catheterized lean (approximately 300 g) and obese (approximately 450 g) Sprague-Dawley rats in four clamp studies (n = 3/group), creating physiological hyperinsulinemia (approximately 60 microU/ml, by an insulin clamp), hyperglycemia (approximately 18 mM, by a pancreatic clamp using somatostatin to prevent endogenous insulin secretion), or euglycemia with glucosamine infusion (GlcN; 30 micromol. kg(-1). min(-1)) and equivalent saline infusions (as a control). Although insulin infusion suppressed AGT gene expression in fat and liver of lean rats, the obese rats demonstrated resistance to this effect of insulin. In contrast, hyperglycemia at basal insulin levels activated AGT gene expression in fat and liver by approximately threefold in both lean and obese rats (P < 0.001). Finally, GlcN infusion simulated the effects of hyperglycemia on fat and liver AGT gene expression (2-fold increase, P < 0.001). Our results support the hypothesis that physiological nutrient "pulses" may acutely induce AGT gene expression in both adipose tissue and liver through the activation of the hexosamine biosynthetic pathway. Resistance to the suppressive effect of insulin on AGT expression in obese rats may potentiate the effect of nutrients on AGT gene expression. We propose that increased AGT gene expression and possibly its production may provide another link between obesity/insulin resistance and hypertension.  相似文献   

4.
Human obesity and high fat feeding in rats are associated with the development of insulin resistance and perturbed carbohydrate and lipid metabolism. It has been proposed that these metabolic abnormalities may be reversible by interventions that increase plasma leptin. Up to now, studies in nongenetic animal models of obesity and in human obesity have concentrated on multiple injection therapy with mixed results. Our study sought to determine whether a sustained, moderate increase in plasma leptin, achieved by administration of a recombinant adenovirus containing the leptin cDNA (AdCMV-leptin) would be effective in reversing the metabolic abnormalities of the obese phenotype. Wistar rats fed a high-fat diet (HF) were heavier (P < 0.05), had increased fat mass and intramuscular triglycerides (mTG), and had elevated plasma glucose, insulin, triglyceride, and free fatty acids compared with standard chow-fed (SC) control animals (all P < 0.01). HF rats also had impaired glucose tolerance and were markedly insulin resistant, as demonstrated by a 40% reduction in insulin-stimulated muscle glucose uptake (P < 0.001). Increasing plasma leptin levels to 29.0 +/- 1.5 ng/ml (from 7.0 +/- 1.4 ng/ml, P < 0.001) for a period of 6 days decreased adipose mass by 40% and normalized plasma glucose and insulin levels. In addition, insulin-stimulated skeletal muscle glucose uptake was normalized in hyperleptinemic rats, an effect that correlated closely with a 60% (P < 0.001) decrease in mTG. Importantly, HF rats that received a control adenovirus containing the beta-galactosidase cDNA and were calorically matched to AdCMV-leptin-treated animals remained hyperglycemic, hyperinsulinemic, insulin resistant, and maintained elevated mTG. We conclude that a gene-therapeutic intervention that elevates plasma leptin moderately for a sustained period reverses diet-induced hyperglycemia, hyperinsulinemia, and skeletal muscle insulin resistance, and that these improvements are tightly linked to leptin-induced reductions in mTG.  相似文献   

5.
A catabolic and hypolipemic effect of glucagon has been described in normal animals. We therefore studied the role of glucagon in genetically obese, hyperlipemic rats. Twelve genetically obese hyperlipemic LA/N-cp/cp (corpulent) rats and 12 lean littermates were fed either 54% starch or 54% sucrose for 12 weeks. Plasma glucagon and insulin levels and glucagon and insulin binding to liver membranes were measured. Comparing all corpulent and lean animals regardless of diet, a significant (P less than 0.0001) phenotypical effect (cp/cp greater than lean) was observed in plasma insulin levels (464 +/- 54 vs 70.3 +/- 7.6 muu/ml, mean +/- SEM). Insulin binding (2.68 vs 16.1%/50 micrograms protein) and glucagon binding (25.6 vs 47.3%/50 micrograms protein) were both significantly lower (P less than 0.0001) in corpulent rats as compared to their lean littermates. Sucrose feeding had marginal effect on plasma insulin or insulin binding. It, however, decreased glucagon binding in corpulent rats but not in their controls. A significant negative correlation was observed between plasma insulin and insulin binding, while a positive correlation was seen for plasma glucagon and glucagon binding. A significant negative correlation was observed between plasma glucagon and lipogenic enzymes (glucose-6-phosphate dehydrogenase and malic enzyme) in liver and between glucagon binding and these enzymes. We propose that in these genetically obese rats, in addition to hyperinsulinemia, impaired glucagon activity as manifested by decreased glucagon binding to target cells may be an important contributor to the hyperlipemia and obesity. A further decrease in glucagon binding in rats fed sucrose indicates that sucrose, per se, may be an additional contributory factor.  相似文献   

6.
目的:探讨运动对老年肥胖大鼠内脏脂肪组织脂联素mRNA和蛋白质表达、血浆脂联素浓度及胰岛素抵抗的影响。方法:取雄性SD大鼠,鼠龄21 d,分青春期、壮年期和老年期三个阶段喂养高脂饲料(脂肪率为36.3%~40.0%),建立老年肥胖模型。鼠龄达到60周后,取自然生长老年大鼠随机分为对照组(C)和老年运动组(AE),n=6;取老年肥胖大鼠随机分为肥胖对照组(OC)和肥胖运动组(OE),n=6。动物跑台坡度0°,运动速度及时间为(15 m/min×15 min),4组/次,组间休息5 min,每次共运动60 min,5次/周,持续运动8周。8周后,检测内脏脂肪组织脂联素mRNA和蛋白质表达,测定血糖、血浆脂联素浓度和胰岛素浓度,计算胰岛素抵抗。结果:运动干预后,与对照组比较,肥胖对照组大鼠脂联素mRNA和蛋白质表达显著减低,血糖浓度和胰岛素抵抗明显增高;而老年运动组大鼠脂联素mRNA和蛋白质表达显著增高。与肥胖对照组大鼠比较,肥胖运动组大鼠脂联素mRNA和蛋白质表达显著增高、血浆脂联素水平增高,血糖浓度和胰岛素抵抗明显减低。结论:老年肥胖大鼠内脏脂肪组织脂联素mRNA和蛋白质表达均降低,伴随胰岛素抵抗、血糖升高。运动能显著增加其内脏脂肪组织脂联素mRNA和蛋白质表达,升高血浆脂联素水平,改善胰岛素抵抗,降低血糖。  相似文献   

7.
Calcium channel blockers, verapamil or felodipine, were given to genetically obese 6 and 11-month-old female SHHF/Mcc-facp (SHHF: Spontaneous Hypertension Heart Failure) rats for 8 weeks to investigate their effects on glucose and lipid metabolism and obesity. Both antihypertensive agents significantly decreased systolic blood pressure. In 11-month-old rats, verapamil treatment significantly decreased body weight after 4 weeks whereas with felodipine it was only significantly reduced after 8 weeks. In 6-month-old rats, verapamil significantly curtailed body weight gain. Subcutaneous fat depots were smaller, and abdominal fat depots were larger in verapamil rats compared to felodipine or control rats. Oral glucose tolerance tests in the 6-month-old verapamil and the 11-month-old felodipine groups showed improved glucose tolerance compared to their respective control groups. After 8 weeks of treatment, fasting plasma glucose levels were lower in 6-month-old verapamil rats compared to felodipine and control rats and were decreased by both verapamil and felodipine treatments as compared to control in 11-month-old rats. During the oral glucose tolerance test in 6-month-old rats, both fasting plasma insulin and the area under the insulin curve were increased in verapamil compared to both control and felodipine groups. When compared to controls, plasma cholesterol was increased by verapamil in both age groups, but was significantly decreased by felodipine after 8 weeks of treatment in the 11-month-old group. Plasma triglycerides increased in all control rats compared to initial levels; however, verapamil and felodipine groups showed lower triglycerides in both age groups. In 6-month-old rats, the percentages of plasma HDL significantly increased in both treatment groups as compared to control. This study shows that verapamil and felodipine depressed body weight gain in the young rats, reduced body weight in the old rats, improved lipid parameters and glucose tolerance, but had the opposite effects on body fat distribution and insulin levels in obese female SHHF rats.  相似文献   

8.
9.
The chronic influence of dietary fat composition on obesity and insulin action is not well understood. We examined the effect of amount (20% vs 60% of total calories) and type (saturated vs polyunsaturated) of fat on insulin action and body composition in mature male rats. Six months of feeding a high fat (HF) diet led to obesity and impaired insulin action (determined by a euglycemic-hyperinsulinemic clamp), neither of which were reversed by a subsequent 6 months of feeding a low fat (LF) diet. Within HF fed rats, type of fat did not affect body composition or insulin action. Six months of feeding a low fat diet led to only a slight decline in insulin action, with no difference due to type of dietary fat. From 6–9 months, insulin action became more impaired in LF rats fed the saturated diet than in LF rats fed the polyunsaturated diet. By 12 months, all groups were obese and had a similar impairment in insulin action. The amount and type of fat in the diet did not influence the overall degree of impairment in insulin action but did affect the time course. Both feeding a high fat diet and feeding a low fat saturated diet accelerated the impairment in insulin action relative to rats fed a low fat polyunsaturated fat diet.  相似文献   

10.
目的:研究有氧运动同时补充玉米肽对高脂饮食诱导的肥胖大鼠减脂的作用及其与脂肪分解关键酶甘油三酯脂肪酶(ATGL)和脂蛋白酯酶(LPL)关系。方法:4周龄健康雄性SD大鼠150只,体重160~180 g,随机选取15只作为普通膳食不运动组,给予普通饲料喂养。剩余135只大鼠进行8周的高脂饲料喂养建立肥胖大鼠模型,以体重超过普通膳食不运动组大鼠平均体重的20%作为肥胖大鼠建模成功的标准。将建模成功的肥胖大鼠40只随机分为5组(n=8):肥胖对照组、酪蛋白组、玉米肽组、运动组和运动+玉米肽组。除酪蛋白组、玉米肽组喂养自制饲料外,其余各组均用普通饲料喂养,运动组每天进行15 m/min,持续时间60 min的跑台运动,每周6天。4周运动和玉米肽干预后取血,检测大鼠血浆中TG、TC、HDL、LDL的含量;取大鼠肾周、附睾脂肪和肝,检测肾周和附睾脂肪的重量,Western blot检测大鼠肝ATGL、脂肪LPL的蛋白表达水平。结果:与肥胖对照组大鼠相比:①运动组、运动+玉米肽组大鼠的体重、附睾和肾周脂肪含量明显降低(P<0.05),且运动+玉米肽组比运动组下降得更明显(P<0.05),而其它组大鼠无显著差异。②运动组大鼠血浆TG显著降低,运动+玉米肽组的血浆TG、TC显著降低(P<0.05),其它组大鼠的TG、TC无显著差异;血浆HDL和LDL各组间均无显著性差异。③运动组和运动+玉米肽组大鼠的肝ATGL、脂肪组织LPL的蛋白水平明显增加(P<0.01),且运动+玉米肽组比运动组的更显著(P<0.05);其他两组无显著差异。结论:有氧运动、有氧运动同时补充玉米肽都可以明显降低大鼠的体脂和血脂水平,且后者的作用更强,这可能与其更显著地增加肥胖大鼠肝ATGL和脂肪LPL的蛋白水平有关。而仅仅补充玉米肽不能降低大鼠的体脂和血脂水平。  相似文献   

11.
Fatty acids have been shown to be involved in the development of insulin resistance associated with obesity. We used sucrose loading in rats to analyze changes in fatty acid composition in the progression of obesity and the related metabolic disorder. Although rats fed a sucrose diet for 4 weeks had body weights similar to those of control animals, their visceral fat pads were significantly larger, and serum triglyceride levels were higher; however, neither plasma glucose nor insulin levels were significantly higher. After 20 weeks of sucrose loading, body weight and visceral and subcutaneous fat pads had increased significantly compared with those in control rats. Moreover, plasma glucose, insulin, and triglyceride levels were significantly higher. An analysis of individual fatty acid components in the blood and peripheral tissues demonstrated phase- and tissue-dependent changes. After 20 weeks of sucrose loading, palmitoleic acid (16:1 n-7) and oleic acid (18:1 n-9), the major components of monounsaturated fatty acid, showed a ubiquitous increase in plasma and all tissues analyzed. In contrast, linoleic acid (18:2 n-6) and arachidonic acid (20:4 n-6), the major components of polyunsaturated fatty acid in the n-6 family, decreased in plasma and all tissues analyzed. After 4 weeks of sucrose loading, these changes in fatty acid composition were observed only in the liver and plasma and not in fat and muscle. This led us to conclude that elevation of plasma glucose and insulin develop at the late phase of sucrose-induced obesity, when changes in fatty acid composition appear in fat and muscle. Furthermore, changes in fatty acid composition in liver seen after 4 weeks of sucrose loading, when increases in neither plasma glucose nor insulin were detected, suggest that liver may be the initial site of fatty acid imbalance and that aberrations in hepatic fatty acid composition may lead to fatty acid imbalances in other tissues.  相似文献   

12.
Objective: The effects of a very low‐carbohydrate (VLC), high‐fat (HF) dietary regimen on metabolic syndrome were compared with those of an isocaloric high‐carbohydrate (HC), low‐fat (LF) regimen in dietary obese rats. Research Methods and Procedures: Male Sprague‐Dawley rats, made obese by 8 weeks ad libitum consumption of an HF diet, developed features of the metabolic syndrome vs. lean control (C) rats, including greater visceral, subcutaneous, and hepatic fat masses, elevated plasma cholesterol levels, impaired glucose tolerance, and fasting and post‐load insulin resistance. Half of the obese rats (VLC) were then fed a popular VLC‐HF diet (Weeks 9 and 10 at 5% and Weeks 11 to 14 at 15% carbohydrate), and one‐half (HC) were pair‐fed an HC‐LF diet (Weeks 9 to 14 at 60% carbohydrate). Results: Energy intakes of pair‐fed VLC and HC rats were less than C rats throughout Weeks 9 to 14. Compared with HC rats, VLC rats exhibited impaired insulin and glycemic responses to an intraperitoneal glucose load at Week 10 and lower plasma triacylglycerol levels but retarded loss of hepatic, retroperitoneal, and total body fat at Week 14. VLC, HC, and C rats no longer differed in body weight, plasma cholesterol, glucose tolerance, or fasting insulin resistance at Week 14. Progressive decreases in fasting insulin resistance in obese groups paralleled concomitant reductions in hepatic, retroperitoneal, and total body fat. Discussion: When energy intake was matched, the VLC‐HF diet provided no advantage in weight loss or in improving those components of the metabolic syndrome induced by dietary obesity and may delay loss of hepatic and visceral fat as compared with an HC‐LF diet.  相似文献   

13.
Objective: To characterize the gastrointestinal tract at the onset and in well‐established obesity. Methods and Procedures: Lean (+/?) and obese (cp/cp) male JCR:LA‐cp rats lacking a functional leptin receptor were killed at 3.5 weeks and 9 months of age and plasma concentrations of satiety hormones determined. The small intestine, colon, and stomach were measured, weighed, and mRNA levels of satiety genes quantified. Results: At the onset of obesity, obese rats had greater intestine, colon, and liver mass when adjusted for body weight compared to lean rats. Conversely, adult rats with established obesity had lower intestine and colon mass and length after adjustment for body weight. Early changes in gene expression included decreased ghrelin mRNA levels in stomach and increased peptide YY (PYY) mRNA levels in duodenum of young obese rats. After massive accumulation of adipose tissue had occurred, adult obese rats had increased proglucagon and ghrelin mRNA expression in the proximal intestine. In the distal small intestine, obese rats had lower proglucagon, ghrelin, and PYY mRNA levels. Finally, at the onset and in well‐established obesity, obese rats had higher plasma insulin, amylin, glucagon like peptide‐1 (GLP‐1), and PYY, a finding, with the exception of insulin, unique to this model. Plasma total ghrelin levels were significantly lower at the onset of obesity and established obesity compared to the lean rats. Discussion: Several defects are manifested in the obese gut early on in the disease before the accumulation of large excesses of body fat and represent potential targets for early intervention in obesity.  相似文献   

14.
The aim of the study was to determine, in rats of both sexes, the effect of HF diet feeding on the expression of adipokines involved in inflammatory status and insulin sensitivity and on the levels of proteins involved in lipid handling of retroperitoneal adipose tissue. Eight‐week‐old Wistar rats of both sexes were fed a control diet (2.9% w/w fat) or an HF diet (30% w/w fat) for 14 weeks. Adiponectin, peroxisome proliferator–activated receptor γ and inflammatory marker mRNA levels were analyzed by real‐time polymerase chain reaction. Levels of insulin receptor, glucose transporter 4, carnitine palmitoyltransferase 1, fatty acid synthase, hormone‐sensitive lipase and lipoprotein lipase were determined by Western blot. HF diet feeding did not induce hyperphagia or body weight gain but did promote an increase in adiposity although only in male rats. HF diet impaired glucose tolerance and the expression of inflammatory and insulin sensitivity markers in adipose tissue of male rats, but not in female rats. Male rats seem to be more prone to disorders associated with an unbalanced composition of the diet, even in the absence of hyperphagia. In contrast, female rats counteract excessive fat intake by improving their ability to use lipid fuels, which limits adiposity and maintains insulin sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The effects of vanadate administration on the plasma lipids and hepatic lipogenic enzymes were investigated in Zucker (fa/fa) rat, a model for obesity and non insulin-dependent diabetes. These animals were administered sodium orthovanadate through drinking water for a period of four months. The plasma levels of insulin, triacylglycerols and total cholesterol were significantly (p<0.001) elevated in untreated obese control rats as compared to the lean animals. In the livers of obese rats, the number of insulin receptors decreased by 60% and the activities of lipogenic enzymes acetyl-CoA carboxylase and ATP-citrate lyase increased by 4.7- and 5.6-folds, respectively. The messenger RNA for ATP-citrate lyase as measured by Northern blot analysis showed a parallel increase in obese control rats. Treatment of these rats with vanadate caused 56–77% decreases in the plasma levels of insulin, triacylglycerols and total cholesterol. The insulin receptor numbers in vanadate-treated obese rats increased (119%) compared to levels in untreated obese animals. The elevated activities of acetyl-CoA carboxylase and ATP-citrate lyase observed in livers of obese rats were significantly reduced by vanadate. The messenger RNA for ATP-citrate lyase also decreased in vanadate-treated obese rats back to the lean control levels. This study demonstrates that vanadate exerts potent actions on lipid metabolism in diabetic animals in addition to the recognized effects on glucose homeostasis.  相似文献   

16.
Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks (n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity.  相似文献   

17.
The effect of dietary Platycodon grandiflorum on the improvement of insulin resistance and lipid profile was investigated in lean (Fa/-) and obese (fa/fa) Zucker rats, a model for noninsulin dependent diabetes mellitus. Dietary Platycodon grandiflorum feeding for 4 weeks resulted in a significant decrease in the concentration of plasma triglyceride in both lean and obese Zucker rats. Furthermore, dietary Platycodon grandiflorum markedly decreased both plasma cholesterol and fasting plasma insulin levels, and significantly decreased the postprandial glucose level at 30 min during oral glucose tolerance test in obese Zucker rats. Although there was no statistical significance, the crude glucose transporter 4 protein level of obese rats fed Platycodon grandiflorum tended to increase when compared with that of obese control rats. Therefore, the present results suggested that dietary Platycodon grandiflorum may be useful in prevention and improvement of metabolic disorders characterized by hyperinsulinemia states such as noninsulin dependent diabetes mellitus, syndrome X, and coronary artery disease.  相似文献   

18.
A role for circadian neuroendocrine rhythms in the age-related development of obesity and insulin resistance was investigated in the male Sprague-Dawley rat. The phases and amplitudes of the plasma rhythms of several metabolic hormones (i.e. corticosterone, prolactin, insulin, and triiodothyronine) differed in lean, insulin-sensitive (3-week-old rats). insulin-resistant (8-week-old rats) and obese, insulin-resistant (44-week-old rats) animals. Simulation of the daily rhythms of endogenous corticosterone and prolactin by daily injections of the hormones at times corresponding to the peak levels found in 3-week-old rats reversed age-related increases in insulin resistance and body fat in older (5-6-month-old) rats. Ten such daily injections of corticosterone and prolactin in 12-14-week-old rats produced long-term reductions in body fat stores (30%). plasma insulin concentration (40%″). and insulin resistance (60%) (determined by a glucose tolerance test) measured 11-14 weeks after the treatment. Alterations in circadian neuroendocrine rhythms may account for age-related changes in carbohydrate and lipid metabolism in the male Sprague-Dawley rat, and resetting of these rhythms by appropriately timed daily injections of corticosterone and prolactin may help maintain metabolism characteristic of younger animals.  相似文献   

19.
"At-risk" severely obese subjects are characterized by insulin resistance, and higher visceral fat and plasma lipid levels compared with metabolically healthy obese (MHO) subjects, although both groups have a high BMI and fat mass. The aim of this study was to measure several serum adipokines and gastrointestinal hormones in a young severely obese population from Southern Italy to identify biochemical markers of the "at-risk" insulin-resistant obese profile. We studied 160 unrelated white young adults (mean age = 25.2 years, mean BMI = 44.9 kg/m(2), 65% women) affected by obesity for at least 5 years. Serum concentrations of glucagon, ghrelin, gastric inhibitory peptide, glucagon like peptide-1, interleukin-6, tumor necrosis factor α, leptin, adiponectin, adipsin, and visfatin were measured. The leptin/adiponectin (L/A) ratio and fatty liver index (FLI) were calculated. We found a prevalence of 21.3% of MHO patients in our young severely obese patients. At univariate analysis, the "at-risk" group had higher mean levels of BMI (P < 0.0001), leptin (P = 0.039, men) and the L/A ratio (P = 0.003), and lower mean levels of visfatin (P = 0.026) than the MHO group. The L/A ratio, serum triglycerides, and male sex were significantly associated with "at-risk" obesity and accounted for 19.5% of insulin resistance at multivariate analysis. In conclusion, we demonstrate that a high serum L/A ratio and high levels of serum triglycerides may be markers of "at-risk" obesity, independent of waist circumference (WC) and BMI, in young severely obese population.  相似文献   

20.
A role for circadian neuroendocrine rhythms in the age-related development of obesity and insulin resistance was investigated in the male Sprague-Dawley rat. The phases and amplitudes of the plasma rhythms of several metabolic hormones (i.e. corticosterone, prolactin, insulin, and triiodothyronine) differed in lean, insulin-sensitive (3-week-old rats). insulin-resistant (8-week-old rats) and obese, insulin-resistant (44-week-old rats) animals. Simulation of the daily rhythms of endogenous corticosterone and prolactin by daily injections of the hormones at times corresponding to the peak levels found in 3-week-old rats reversed age-related increases in insulin resistance and body fat in older (5-6-month-old) rats. Ten such daily injections of corticosterone and prolactin in 12-14-week-old rats produced long-term reductions in body fat stores (30%). plasma insulin concentration (40%'). and insulin resistance (60%) (determined by a glucose tolerance test) measured 11-14 weeks after the treatment. Alterations in circadian neuroendocrine rhythms may account for age-related changes in carbohydrate and lipid metabolism in the male Sprague-Dawley rat, and resetting of these rhythms by appropriately timed daily injections of corticosterone and prolactin may help maintain metabolism characteristic of younger animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号