首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Grosvenor  Anita J.  Morton  James D.  Dyer  Jolon M. 《Amino acids》2010,39(1):285-296
Protein and peptide oxidation is a key feature in the progression of a variety of disease states and in the poor performance of protein-based products. The present work demonstrates a mass spectrometry-based approach to profiling degradation at the amino acid residue level. Synthetic peptides containing the photosensitive residues, tryptophan and tyrosine, were used as models for protein-bound residue photodegradation. Electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was utilised to characterise and provide relative quantitative information on the formation of photoproducts localised to specific residues, including the characterisation of low abundance photomodifications not previously reported, including W + 4O modification, hydroxy-bis-tryptophandione and topaquinone. Other photoproducts observed were consistent with the formation of tyrosine-derived dihydroxyphenylalanine (dopa), trihydroxyphenylalanine, dopa-quinone and nitrotyrosine, and tryptophan-derived hydroxytryptophan, dihydroxytryptophan/N-formylkynurenine, kynurenine, hydroxyformylkynurenine, tryptophandiones, tetrahydro-β-carboline and nitrotryptophan. This approach combined product identification and abundance tracking to generate a photodegradation profile of the model system. The profile of products formed yields information on formative mechanisms. Profiling of product formation offers new routes to identify damage markers for use in tracking and controlling oxidative damage to polypeptides.  相似文献   

2.
Endotoxins are the major contributors to the pyrogenic response caused by contaminated pharmaceutical products, formulation ingredients, and medical devices. Recombinant biopharmaceutical products are manufactured using living organisms, including Gram-negative bacteria. Upon the death of a Gram-negative bacterium, endotoxins (also known as lipopolysaccharides) in the outer cell membrane are released into the lysate where they can interact with and form bonds with biomolecules, including target therapeutic compounds. Endotoxin contamination of biologic products may also occur through water, raw materials such as excipients, media, additives, sera, equipment, containers closure systems, and expression systems used in manufacturing. The manufacturing process is, therefore, in critical need of methods to reduce and remove endotoxins by monitoring raw materials and in-process intermediates at critical steps, in addition to final drug product release testing. This review paper highlights a discussion on three major topics about endotoxin detection techniques, upstream processes for the production of therapeutic molecules, and downstream processes to eliminate endotoxins during product purification. Finally, we have evaluated the effectiveness of endotoxin removal processes from a perspective of high purity and low cost.  相似文献   

3.
Stability of formulations over shelf-life is critical for having a quality product. Choice of excipients, manufacturing process, storage conditions, and packaging can either mitigate or enhance the degradation of the active pharmaceutical ingredient (API), affecting potency and/or stability. The purpose was to investigate the influence of processing and formulation factors on stability of levothyroxine (API). The API was stored at long-term (25°C/60%RH), accelerated (40°C/75%RH), and low-humidity (25°C/0%RH and 40°C/0%RH) conditions for 28 days. Effect of moisture loss was evaluated by drying it (room temperature, N2) and placed at 25°C/0%RH and 40°C/0%RH. The API was incubated with various excipients (based on package insert of marketed tablets) in either 1:1, 1:10, or 1:100 ratios with 5% moisture at 60°C. Commonly used ratios for excipients were used. The equilibrium sorption data was collected on the API and excipients. The API was stable in solid state for the study duration under all conditions for both forms (potency between 90% and 110%). Excipients effect on stability varied and crospovidone, povidone, and sodium laurel sulfate (SLS) caused significant API degradation where deiodination and deamination occurred. Moisture sorption values were different across excipients. Crospovidone and povidone were hygroscopic whereas SLS showed deliquescence at high RH. The transient formulation procedures where temperature might go up or humidity might go down would not have major impact on the API stability. Excipients influence stability and if possible, those three should either be avoided or used in minimum quantity which could provide more stable tablet formulations with minimum potency loss throughout its shelf-life.  相似文献   

4.
Photodegradation kinetics of fleroxacin were investigated in different injections. Five commercial formulations were analyzed before and after irradiation by determining residual volumes of fleroxacin with high-pressure liquid chromatography (HPLC), and different decomposition functions and models were obtained. Concentration levels of fleroxacin in injections caused the differences in photodegradation kinetics instead of ingredients. Influences of different pH values and presence of NaCl on photodegradation of fleroxacin were observed. Low pH value decreased the efficacy of photolysis and enhanced photostability of fleroxacin injections. Tentative structure of a new degradation product afforded was proposed. An acute toxicity assay using the bioluminescent bacterium Q67 was performed for fleroxacin injections after exposure to light. The research proved that fleroxacin was more photolabile in dilute injection, and acute toxicity of dilute injection increased more rapidly than that of concentrated injection during irradiation.  相似文献   

5.
《Biologicals》2014,42(6):322-333
Development studies were performed to design a pharmaceutical composition that allows the stabilization of a parenteral rhEGF formulation in a lyophilized dosage form. Unannealed and annealed drying protocols were tested for excipients screening. Freeze-dry microscopy was used as criterion for excipients and formulation selection; as well as to define freeze-drying parameters. Excipients screening were evaluated through their effect on freeze-drying recovery and dried product stability at 50 °C by using a comprehensive set of analytical techniques assessing the chemical stability, protein conformation and bioactivity. The highest stability of rhEGF during freeze-drying was achieved by the addition of sucrose or trehalose. After storing the dried product at 50 °C, the highest stability was achieved by the addition of dextran, sucrose, trehalose or raffinose. The selected formulation mixture of sucrose and dextran could prevent protein degradation during the freeze-drying and delivery processes. The degradation rate assessed by RP-HPLC could decrease 100 times at 37 °C and 70 times at 50 °C in dried with respect to aqueous formulation. These results indicate that the freeze-dried formulation represents an appropriate technical solution for stabilizing rhEGF.  相似文献   

6.
The crystal structures of active pharmaceutical ingredients and excipients should be strictly controlled because they influence pharmaceutical properties of products which cause the change in the quality or the bioavailability of the products. In this study, we investigated the effects of microcrystalline cellulose (MCC) crystallinity on the hydrophilic properties of tablets and the hydrolysis of active pharmaceutical ingredient, acetylsalicylic acid (ASA), inside tablets by using tablets containing 20% MCC as an excipient. Different levels of grinding were applied to MCC prior to tablet formulation, to intentionally cause structural variation in the MCC. The water penetration and moisture absorbability of the tablets increased with decreasing the crystallinity of MCC through higher level of grinding. More importantly, the hydrolysis of ASA inside tablets was also accelerated. These results indicate that the crystallinity of MCC has crucial effects on the pharmaceutical properties of tablets even when the tablets contain a relatively small amount of MCC. Therefore, controlling the crystal structure of excipients is important for controlling product qualities.  相似文献   

7.
Monoclonal antibodies have proved to be a highly successful class of therapeutic products. Large-scale manufacturing of pharmaceutical antibodies is a complex activity that requires considerable effort in both process and analytical development. If a therapeutic protein cannot be stabilized adequately, it will lose partially or totally its therapeutic properties or even cause immunogenic reactions thus potentially further endangering the patients' health. The phenomenon of protein aggregation is a common issue that compromises the quality, safety, and efficacy of antibodies and can happen at different steps of the manufacturing process, including fermentation, purification, final formulation, and storage. Aggregate levels in drug substance and final drug product are a key factor when assessing quality attributes of the molecule, since aggregation might impact biological activity of the biopharmaceutical. In this review it is analyzed how aggregates are formed during monoclonal antibody industrial production, why they have to be removed and the manufacturing process steps that are designed to either minimize or remove aggregates in the final product.  相似文献   

8.
The choice of excipients constitutes a major part of preformulation and formulation studies during the preparation of pharmaceutical dosage forms. The physical, mechanical, and chemical properties of excipients affect various formulation parameters, such as disintegration, dissolution, and shelf life, and significantly influence the final product. Therefore, several studies have been performed to evaluate the effect of drug-excipient interactions on the overall formulation. This article reviews the information available on the physical and chemical instabilities of excipients and their incompatibilities with the active pharmaceutical ingredient in solid oral dosage forms, during various drug-manufacturing processes. The impact of these interactions on the drug formulation process has been discussed in detail. Examples of various excipients used in solid oral dosage forms have been included to elaborate on different drug-excipient interactions.  相似文献   

9.
不同介质中多环芳烃光降解及与生物耦合降解研究现状   总被引:2,自引:0,他引:2  
多环芳烃(PAHs)是环境中广泛存在的一类有机污染物。它的降解一直是人们关注的课题。光降解就是多环芳烃降解的一种重要形式。对在气相、液相和固相不同介质中的PAHs光降解研究进行了综合论述,重点对PAHs在液相介质的降解速率及影响因素、中间产物及降解机制和反应动力学进行了深入探讨,并介绍了光-生物耦合降解多环芳烃的研究进展。建立系统而有效的PAHs光降解研究技术与方法,是目前当务之急。进一步完善PAHs光降解研究的技术与方法,可更准确地研究PAHs光降解机制及影响因素。  相似文献   

10.
The effect of counterion was evaluated on the photodegradation behavior of six prazosin salts, viz., prazosin hydrochloride anhydrous, prazosin hydrochloride polyhydrate, prazosin tosylate anhydrous, prazosin tosylate monohydrate, prazosin oxalate dihydrate, and prazosin camsylate anhydrous. The salts were subjected to UV–Visible irradiation in a photostability test chamber for 10 days. The samples were analyzed for chemical changes by a specific stability-indicating high-performance liquid chromatography method. pH of the microenvironment was determined in 10% w/v aqueous slurry of the salts. The observed order of photostability was: prazosin hydrochloride anhydrous > prazosin camsylate anhydrous ∼ prazosin-free base > prazosin hydrochloride polyhydrate > prazosin tosylate anhydrous > prazosin oxalate dihydrate ∼ prazosin tosylate monohydrate. Multivariate analysis of the photodegradation behavior suggested predominant contribution of the state of hydration and also intrinsic photosensitivity of the counterion. Overall, hydrated salts showed higher photodegradation compared to their anhydrous counterparts. Within the anhydrous salts, aromatic and carbonyl counterion-containing salts showed higher susceptibility to light. The pH of microenvironment furthermore contributed to photodegradation of prazosin salts, especially for drug counterions with inherent higher pH. The study reveals importance of selection of a suitable drug salt form for photosensitive drugs during preformulation stage of drug development.  相似文献   

11.
The role of mRNA and protein stability in gene expression   总被引:28,自引:0,他引:28  
How important is the stability of gene products in the process of gene expression? We use a dual-compartment mathematical model to demonstrate the effects that changing the rates of synthesis and degradation of hypothetical mRNAs and proteins would have on the final concentration of protein. The model predicts that the concentration of protein at steady state equals the product of the rate constants for synthesis of mRNA and protein (ks1 and ks2) divided by the product of the rate constants for degradation (kd1 and kd2) and that the rate at which protein concentration changes depends on the rate constants for degradation of both the mRNA and the protein. This permits great flexibility in controlling induction kinetics for particular gene products, since their synthesis, translation, and degradation may be regulated coordinately to permit induction to be stable or transient or to amplify the final yield of protein. We suggest single exons may encode structural features that cause both mRNAs and proteins to be labile, thereby ensuring that modal stabilities of highly regulated macromolecules are similar.  相似文献   

12.
The manufacture of a blend containing the active pharmaceutical ingredient (API) and inert excipients is a precursor for the production of most pharmaceutical capsules and tablets. However, if there is a net water gain or preferential loss of API during production, the potency of the final drug product may be less than the target value. We use a mass balance to predict the mean potency loss during the production of a blend via wet granulation and fluidized bed drying. The result is an explicit analytical equation for the change in blend potency a function of net water gain, solids losses (both regular and high-potency), and the fraction of excipients added extragranularly. This model predicts that each 1% gain in moisture content (as determined by a loss on drying test) will decrease the API concentration of the final blend at least 1% LC. The effect of pre-blend solid losses increases with their degree of superpotency. This work supports Quality by Design by providing a rational method to set the process design space to minimize blend potency losses. When an overage is necessary, the model can help justify it by providing a quantitative, first-principles understanding of the sources of potency loss. The analysis is applicable to other manufacturing processes where the primary sources of potency loss are net water gain and/or mass losses.  相似文献   

13.
This review gives a brief overview about microbial contamination in pharmaceutical products. We discuss the distribution and potential sources of microorganisms in different areas, ranging from manufacturing sites, pharmacy stores, hospitals, to the post-market phase. We also discuss the factors that affect microbial contamination in popular dosage forms (e.g., tablets, sterile products, cosmetics). When these products are contaminated, the microorganisms can cause changes. The effects range from mild changes (e.g., discoloration, texture alteration) to severe effects (e.g., changes in activities, toxicity). The most common method for countering microbial contamination is the use of preservatives. We review some frequently used preservatives, and we describe the mechanisms by which microorganisms develop resistance to these preservatives. Finally, because preservatives are inherently toxic, we review the efforts of researchers to utilize water activity and other non-preservative approaches to combat microbial contamination.  相似文献   

14.
Doxycycline hyclate (DOX) is a highly photosensitive drug, a feature that limits the stability of the corresponding dosage forms. The main objectives of this work were the preparation and characterization of an inclusion complex of DOX with β-cyclodextrin (βCD) and to investigate if this approach could improve the photostability of the drug. Guest-host interactions were investigated using nuclear magnetic resonance, which were afterwards combined with molecular modeling methods to study the complex formation and its three-dimensional structure was proposed. A freeze-drying method was applied to obtain the complex in the solid state, which was further confirmed by thermal and spectroscopic techniques. To evaluate the complexation effect on DOX integrity, the photostability of the inclusion complex was studied, with a significant decrease in the photodegradation of DOX being found in aqueous solution upon complexation. Finally, the photoprotection produced by the complexation was evaluated by means of an antimicrobial assay. Overall, the presented results suggest that the formulation of DOX complexed with βCD constitutes an interesting approach for the preparation of pharmaceutical dosage forms of DOX with enhanced stability properties.KEY WORDS: β-cyclodextrin, doxycycline hyclate, microbiological assay, molecular modeling, photostability  相似文献   

15.
We developed a new machine learning-based method in order to facilitate the manufacturing processes of pharmaceutical products, such as tablets, in accordance with the Process Analytical Technology (PAT) and Quality by Design (QbD) initiatives. Our approach combines the data, available from prior production runs, with machine learning algorithms that are assisted by a human operator with expert knowledge of the production process. The process parameters encompass those that relate to the attributes of the precursor raw materials and those that relate to the manufacturing process itself. During manufacturing, our method allows production operator to inspect the impacts of various settings of process parameters within their proven acceptable range with the purpose of choosing the most promising values in advance of the actual batch manufacture. The interaction between the human operator and the artificial intelligence system provides improved performance and quality. We successfully implemented the method on data provided by a pharmaceutical company for a particular product, a tablet, under development. We tested the accuracy of the method in comparison with some other machine learning approaches. The method is especially suitable for analyzing manufacturing processes characterized by a limited amount of data.KEY WORDS: artificial intelligence, machine learning, process analytical technology, process optimization, tablet manufacture  相似文献   

16.
In addition to active pharmaceutical ingredient (API), antibiotics may contain small amounts of excipients and impurities and be prone to accumulation of degradation products. There has been limited work characterizing how these substances impact bacterial growth and antibiotic resistance development. We investigated how two ciprofloxacin (CIP) impurities, fluoroquinolonic acid (FQA) and ciprofloxacin ethylenediamine analogue (CEA), impact growth and antibiotic resistance in Escherichia coli. Additionally, we investigated how these impurities impact a frequently used API content assay. Both impurities displayed modest antimicrobial activity compared to the CIP API. The effective antimicrobial activity of a medicine containing increased impurity levels may permit bacterial growth and resistance development. Our results also suggest that increasing exposure concentration and duration to CEA and FQA, independent of CIP, can promote antibiotic resistance development. However, at concentrations of 100% and below the MIC of the API, impurities had limited contributions to resistance development compared to the CIP API. From a methodological standpoint, we found that UV spectrophotometry may be inadequate to account for antibiotic impurities or degradation products. This can lead to incorrect estimations of API content and we propose additional multi-wavelength measures when using UV spectrophotometry to help identify impurities or degradation.  相似文献   

17.
It has been half a century since investigators first began experimenting with adding ion exchange resins during the fermentation of microbial natural products. With the development of nonionic polymeric adsorbents in the 1970s, the application of in situ product adsorption in bioprocessing has grown slowly, but steadily. To date, in situ product adsorption strategies have been used in biotransformations, plant cell culture, the production of biofuels, and selected bulk chemicals, such as butanol and lactic acid, as well as in more traditional natural product fermentation within the pharmaceutical industry. Apart from the operational gains in efficiency from the integration of fermentation and primary recovery, the addition of adsorbents during fermentation has repeatedly demonstrated the capacity to significantly increase titers by sequestering the product and preventing or mitigating degradation, feedback inhibition and/or cytotoxic effects. Adoption of in situ product adsorption has been particularly valuable in the early stages of natural product-based drug discovery programs, where quickly and cost-effectively generating multigram quantities of a lead compound can be challenging when using a wild-type strain and fermentation conditions that have not been optimized. While much of the literature involving in situ adsorption describes its application early in the drug development process, this does not imply that the potential for scale-up is limited. To date, commercial-scale processes utilizing in situ product adsorption have reached batch sizes of at least 30,000 l. Here we present examples where in situ product adsorption has been used to improve product titers or alter the ratios among biosynthetically related natural products, examine some of the relevant variables to consider, and discuss the mechanisms by which in situ adsorption may impact the biosynthesis of microbial natural products.  相似文献   

18.
Demonstrations of bio-similarity between subsequent entry (follow-on) biologics and innovator’s formulated drug products may depend upon methods that either remove excipients completely or allow the exchange of excipients to give equivalent formulations. Excipient exchange through dialysis is perhaps the simplest of such methods but its use has been hotly debated. This debate, in the absence of published data, has relied largely on theoretical considerations. This study presents data that indicate that excipient exchange can allow comparisons of different formulations of the same therapeutic protein. The use of excipient exchange to and from one concentration of mannitol to another or to a mixture of glycine and mannitol was reproducibly demonstrated for recombinant human growth hormone (rhGH). We show that marketed rhGH products from several different manufacturers exhibit differences in conformational stability when compared directly. These differences, however, are shown to be the result of differences in formulation rather than in the drug substance itself and were removed through excipient exchange. The data presented, therefore, also indicate that failure to assure a common excipient background can lead to erroneous conclusions about the similarities and differences in the physico-chemical properties of two preparations of the same therapeutic protein made by different manufacturing processes.  相似文献   

19.
Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing.  相似文献   

20.
Desonide is a topical corticoid used in the treatment of skin diseases and is marketed in different pharmaceutical dosage forms. Recently, the poor photostability of a commercially available hair solution after direct exposure to UVA light was verified. In this study, we investigated the ability of the antioxidants ascorbic acid, butylhydroxyanisole (BHA), butylhydroxytoluene (BHT), α-tocopherol, and the UV filter benzophenone-3 (BP-3) to prevent the photodegradation of desonide in hair solution (desonide 0.1%) and the stability of the proposed formulation under environmental conditions. The tested antioxidants were not able to prevent the photolysis of desonide, whereas the addition of 0.3% BP-3 enhanced the photostability of the drug. After 15 h of direct exposure to UVA radiation, the desonide remaining content in the hair solution with BP-3 was approximately 98%. Higher photostability was also verified under UVC radiation. Additionally, the results indicated that the formulation was stable under accelerated and room temperature conditions for 70 days, corresponding to the total period of the study.KEY WORDS: antioxidants, benzophenone-3, desonide, photostability, stability  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号