首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Implication of different dietary specific lipids such as phytantriol (PT) and glyceryl monooleate (GMO) on enhancing the oral bioavailability of amphotericin B (AmB) was examined. Liquid crystalline nanoparticles (LCNPs) were prepared using hydrotrope method, followed by in vitro characterization, Caco-2 cell monolayer uptake, and in vivo pharmacokinetic and toxicity evaluation. Optimized AmB-LCNPs displayed small particle size (<?210 nm) with a narrow distribution (~?0.2), sustained drug release and high gastrointestinal stability, and reduced hemolytic toxicity. PLCNPs presented slower release, i.e., ~?80% as compared to ~?90% release in case of GLCNPs after 120 h. Significantly higher uptake in Caco-2 monolayer substantiated the role of LCNPs in increasing the intestinal permeability followed by increased drug titer in plasma. Pharmacokinetic studies demonstrated potential of PT in enhancing the bioavailability (approximately sixfold) w.r.t. of its native counterpart with reduced nephrotoxicity as presented by reduced nephrotoxicity biomarkers and histology studies. These studies established usefulness of PLCNPs over GLCNPs and plain drug. It can be concluded that acid-resistant lipid, PT, can be utilized efficiently as an alternate lipid for the preparation of LCNPs to enhance bioavailability and to reduce nephrotoxicity of the drug as compared to other frequently used lipid, i.e., GMO.  相似文献   

2.
The objective of this study was to develop a nanodelivery system containing a mucoadhesive polymer hyaluronic acid (HA) for oral delivery. Metformin was used as a model drug. Blank and drug-loaded HA nanostructures were prepared by precipitation method and characterized for particle size (PS), zeta potential (ZP), physical stability (over 65 days), surface morphology, moisture content, and physical state of the drug in the nanostructures. The cytotoxicity and hemolysis potential of the delivery system was assessed in Caco-2 cells and whole human blood, respectively. The in vitro release of metformin and its uptake in Caco-2 cells was evaluated using high-performance liquid chromatography. Ex vivo permeability of metformin was measured through goat intestinal membrane. The nanoparticles were physically stable and neutrally charged with an average PS of 114.53?±?12.01 nm. This nanodelivery system existed as nanofibers containing metformin in a crystalline state. This delivery system released the drug rapidly with >?50% of metformin released within 1 h. Cellular uptake studies on Caco-2 cells indicated higher uptake of metformin from nanoparticle as compared to metformin in solution, up to first 45 min. Ex vivo permeability studies on the other hand showed a higher metformin permeability from solution relative to that from nanoparticles through the goat intestinal membrane. Metformin nanoparticles were non-toxic at therapeutic concentrations in Caco-2 cells and showed no hemolytic effect to RBCs. This study indicates the preparation, characterization, as well as the potential use of HA nanostructures for oral delivery.  相似文献   

3.
This study was conducted to develop formulations of hydrocortisone butyrate (HB)-loaded poly(d,l-lactic-co-glycolic acid) nanoparticles (PLGA NP) suspended in thermosensitive gel to improve ocular bioavailability of HB for the treatment of bacterial corneal keratitis. PLGA NP with different surfactants such as polyvinyl alcohol (PVA), pluronic F-108, and chitosan were prepared using oil-in-water (O/W) emulsion evaporation technique. NP were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential, and crystallinity. In vitro release of HB from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when nanoparticles were suspended in thermosensitive gels and zero-order release kinetics was observed. In HCEC cell line, chitosan-emulsified NP showed the highest cellular uptake efficiency over PVA- and pluronic-emulsified NP (59.09?±?6.21%, 55.74?±?6.26%, and 62.54?±?3.30%, respectively) after 4 h. However, chitosan-emulsified NP indicated significant cytotoxicity of 200 and 500 μg/mL after 48 h, while PVA- and pluronic-emulsified NP exhibited no significant cytotoxicity. PLGA NP dispersed in thermosensitive gels can be considered as a promising drug delivery system for the treatment of anterior eye diseases.  相似文献   

4.
Our objective was to prepare nanoparticulate system using a simple yet attractive innovated method as an ophthalmic delivery system for fluocinolone acetonide to improve its ocular bioavailability. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared by adopting thin film hydration method using PLGA/poloxamer 407 in weight ratios of 1:5 and 1:10. PLGA was used in 75/25 and 50/50 copolymer molar ratio of DL-lactide/glycolide. Results revealed that using PLGA with lower glycolic acid monomer ratio exhibited high particle size (PS), zeta potential (ZP) and drug encapsulation efficiency (EE) values with slow drug release pattern. Also, doubling the drug concentration during nanoparticles preparation ameliorated its EE to reach almost 100%. Furthermore, studies for separating the un-entrapped drug in nanoparticles using centrifugation method at 20,000 rpm for 30 min showed that the separated clear supernatant contained nanoparticles encapsulating an important drug amount. Therefore, separation of un-entrapped drug was carried out by filtrating the preparation using 20–25 μm pore size filter paper to avoid drug loss. Aiming to increase the PLGA nanoparticles mucoadhesion ability, surface modification of selected formulation was done using different amount of stearylamine and chitosan HCl. Nanoparticles coated with 0.1% w/v chitosan HCl attained most suitable results of PS, ZP and EE values as well as high drug release properties. Transmission electron microphotographs illustrated the deposition of chitosan molecules on the nanoparticles surfaces. Pharmacokinetic studies on Albino rabbit’s eyes using HPLC indicated that the prepared novel chitosan-coated PLGA nanoparticles subjected to separation by filtration showed rapid and extended drug delivery to the eye.  相似文献   

5.
There are several data concerning transporters expression and/or regulation in cell lines maintained in different conditions, such as medium glucose concentration. This work aimed to evaluate the influence of two different extracellular glucose concentrations, commonly used in culture media, on the intestinal absorption of organic cations. Thus, the effect of 5.5 mM glucose and 25 mM glucose (HG) in culture media, was studied on [3H]-MPP+ (1-methyl-4-phenylpyridinium iodide) uptake in Caco-2 cells. Expression of human organic cation transporter type 1 (hOCT1) and human organic cation transporter type 3 (hOCT3) was investigated in cells cultured at both glucose concentrations. [3H]-MPP+ uptake, as well as its affinity for the transporter, were significantly decreased in HG cells. Moreover, hOCT3 mRNA levels were reduced in HG cells. Functional confirmation of this result was made using hOCT3 inhibitors. In conclusion, maintenance of Caco-2 cells (commonly used in several in vitro studies on membrane transport) in HG conditions affects organic cation transport at the intestinal level. Hence, results obtained in these conditions must be analysed with great care, since extracellular glucose levels may originate changes in organic cation nutrient and drug bioavailability.  相似文献   

6.
Quercetin (QT) was formulated into a novel self-emulsifying drug delivery system (SEDDS) to improve its oral bioavailability and antioxidant potential compared to free drug. Capmul MCM was selected as the oily phase on the basis of optimum solubility of QT in oil. Tween 20 and ethanol were selected as surfactant and cosurfactant from a large pool of excipients, depending upon their spontaneous self-emulsifying ability with the selected oily phase. Pseudoternary-phase diagrams were constructed to identify the efficient self-emulsification regions in various dilution media, viz., water, pH 1.2, and pH 6.8. The ratio of 40:40:20 w/w, Capmul MCM:QT (19:1)/Tween 20/ethanol was optimized based on its ability to form a spontaneous submicrometer emulsion in simulated gastrointestinal fluids. DPPH scavenging assay showed comparable antioxidant activity of QT-SEDDS to free QT. QT-SEDDS was robust in terms of stability against short-term excursion of freeze/thaw cycles and accelerated stability for 6 months as per International Conference on Harmonisation guidelines. A fluorescent dye-loaded SEDDS formulation showed rapid internalization within 1 h of incubation with Caco-2 cells as evident by confocal laser scanning microscopy. QT-SEDDS showed a significant increase in cellular uptake by 23.75-fold in comparison with free QT cultured with Caco-2 cells. The SEDDS demonstrated ~5-fold enhancement in oral bioavailability compared to free QT suspension. The in vitro–in vivo relation between in vitro Caco-2 cell uptake and in vivo pharmacokinetics of QT-SEDDS showed a correlation coefficient of ~0.9961, as evident from a Levy plot. Finally, QT-SEDDS showed a significantly higher in vivo antioxidant potential compared to free QT when evaluated as a function of ability to combat doxorubicin- and cyclosporin A-induced cardiotoxicity and nephrotoxicity, respectively.  相似文献   

7.
8.
Olmesartan medoxomil (OM) is an antihypertensive drug with poor water solubility and low oral bioavailability (28.6%). Accordingly, this study aimed to formulate and evaluate OM nanosuspension incorporated into oral fast-dissolving films (FDFs) for bioavailability enhancement. OM nanosuspension was prepared by antisolvent-precipitation-ultrasonication method and characterized regarding particle size (122.67?±?5.03 nm), span value (1.40?±?0.51), and zeta potential (??46.56?±?1.20 mV). Transmission electron microscopy (TEM) of the nanosuspension showed spherical non-aggregating nanoparticles. The nanosuspension was then directly loaded into FDFs by solvent casting technique. A full factorial design (22?×?31) was implemented for optimization of the FDFs using Design-Expert® software. Physical and mechanical characteristics in addition to dissolution profiles of the FDFs were investigated. The optimum formula (FDF1) showed 0.43?±?0.02 kg/mm2 tensile strength, 20.50?±?2.12 s disintegration time, and 87.53?±?2.50 and 95.99?±?0.25% OM dissolved after 6 and 10 min, respectively. Accelerated and long-term shelf stability studies confirmed the stability of FDF1. More than 75% OM was dissolved within 10 min from FDF1 compared with 9.80 and 47.80% for films prepared using coarse drug powder and market tablet, respectively. Relative bioavailability of FDF1 compared to market tablet was assessed in healthy human volunteers. The Cmax value increased significantly from 66.62?±?14.95 to 179.28?±?23.96 ng/mL for market tablet and FDF1, respectively. Similarly, the AUC0–72 value significantly increased from 498.36?±?217.46 to 1083.67?±?246.32 ng h/mL for market tablet and FDF1, respectively. Relative bioavailability of FDF1 was 209.28%. The highlighted results verified the effectiveness of OM nanosuspension-loaded FDFs in improving OM bioavailability.  相似文献   

9.
The aim of this study was to formulate and characterize Eudragit® L100 and Eudragit® L100-poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing diclofenac sodium. Diclofenac generates severe adverse effects with risks of toxicity. Thus, nanoparticles were prepared to reduce these drawbacks in the present study. These nanoparticles were evaluated for surface morphology, particle size and size distribution, percentage drug entrapment, and in vitro drug release in pH 6.8. The prepared nanoparticles were almost spherical in shape, as determined by atomic force microscopy. The nanoparticles with varied size (241–274 nm) and 25.8–62% of entrapment efficiency were obtained. The nanoparticles formulations produced the release profiles with an initial burst effect in which diclofenac sodium release ranged between 38% and 47% within 4 h. The extent of drug release from Eudragit® L100 nanoparticles was up to 92% at 12 h. However, Eudragit®/PLGA nanoparticles showed an initial burst release followed by a slower sustained release. The cumulative release at 72 h was 56%, 69%, and 81% for Eudragit®/PLGA (20:80), Eudragit®/PLGA (30:70) and Eudragit®/PLGA (50:50) nanoparticles, respectively. The release profiles and encapsulation efficiencies depended on the amount of Eudragit in the blend. These data demonstrated the efficacy of these nanoparticles in sustaining the diclofenac sodium release profile.  相似文献   

10.
Phe-Tyr dipeptide which was investigated in Wakame food with greatest ACE-inhibitory activity is used as a pharmaceutical drug for the treatment of hypertension, cardiovascular diseases, and diabetic nephropathy. To improve the bioavailability of Phe-Tyr, a delivery system based on poly (lactic-co-glycolic acid) (PLGA) nanoparticles loaded with Phe-Tyr (Phe-Tyr-PLGA NPs) for treating hypertension and cardiovascular diseases was prepared in this study. In the experiments, poly(lactic-co-glycolic acid) (PLGA) and Phe-Tyr dipeptide-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w) method. The characterizations of the nanoparticles were performed with a UV–vis spectrometer, the Zeta-sizer system, and FTIR spectrometer. The optimum size of the Phe-Tyr dipeptide-loaded PLGA nanoparticle was obtained with a 213.8 nm average particle size, and a 0.061 polydispersity index, ?19.5 mV zeta potential, 34% of loaded and 90.09% of encapsulation efficiency. From TEM analysis, it was clearly seen that the dipeptide loaded nanoparticles had the spherical and non-aggregated morphology and Phe-Tyr dipeptide loaded-PLGA nanoparticles were obtained successfully. Cell toxicity of nanoparticles at different concentrations was assayed with XTT methods on L929 fibroblast cells. This study determined that the nanoparticles have low toxicity at lower concentration and toxicity augmented with increasing concentration of dipeptide. To analyze the effect of solvents on structure of Phe-Tyr, Molecular dynamics simulation was performed with GROMACS program and molecular orbital calculations were carried out to obtain structural and electronic properties of dipeptide. Moreover, molecular docking calculations were also employed to model and predict protein–drug interactions.  相似文献   

11.
脂质纳米粒是由固体脂肪酸或其酯类制成的一类纳米制剂,其生物相容性好、安全性好,所以在药物递送领域受到广泛关注.难溶性药物、多肽及蛋白质药物由于溶解度、跨膜能力以及稳定性等问题,导致口服生物利用度低,而利用脂质纳米粒作为其载体,口服给药后能显著改善药物的生物利用度,这使得脂质纳米粒在口服给药系统中得到了广泛的应用与研究.本文从口服脂质纳米粒的处方、制备工艺、吸收机制以及应用四个方面对其进行了详细的综述.  相似文献   

12.
Carvedilol, a beta-adrenergic blocker, suffers from poor systemic availability (25%) due to first-pass metabolism. The aim of this work was to improve carvedilol bioavailability through developing carvedilol-loaded solid lipid nanoparticles (SLNs) for nasal administration. SLNs were prepared by emulsion/solvent evaporation method. A 23 factorial design was employed with lipid type (Compritol or Precirol), surfactant (1 or 2% w/v poloxamer 188), and co-surfactant (0.25 or 0.5% w/v lecithin) concentrations as independent variables, while entrapment efficiency (EE%), particle size, and amount of carvedilol permeated/unit area in 24 h (Q 24) were the dependent variables. Regression analysis was performed to identify the optimum formulation conditions. The in vivo behavior was evaluated in rabbits comparing the bioavailability of carvedilol after intravenous, nasal, and oral administration. The results revealed high drug EE% ranging from 68 to 87.62%. Carvedilol-loaded SLNs showed a spherical shape with an enriched core drug loading pattern having a particle size in the range of 66 to 352 nm. The developed SLNs exhibited significant high amounts of carvedilol permeated through the nasal mucosa as confirmed by confocal laser scanning microscopy. The in vivo pharmacokinetic study revealed that the absolute bioavailability of the optimized intranasal SLNs (50.63%) was significantly higher than oral carvedilol formulation (24.11%). Hence, we conclude that our developed SLNs represent a promising carrier for the nasal delivery of carvedilol.  相似文献   

13.
Colorectal cancer is a global concern, and its treatment is fraught with non-selective effects including adverse side effects requiring hospital visits and palliative care. A relatively safe drug formulated in a bioavailability enhancing and targeting delivery platform will be of significance. Metformin-loaded solid lipid nanoparticles (SLN) were designed, optimized, and characterized for particle size, zeta potential, drug entrapment, structure, crystallinity, thermal behavior, morphology, and drug release. Optimized SLN were 195.01?±?6.03 nm in size, ?17.08?±?0.95 mV with regard to surface charge, fibrous in shape, largely amorphous, and release of metformin was controlled. The optimized size, charge, and shape suggest the solid lipid nanoparticles will migrate and accumulate in the colon tumor preventing its proliferation and subsequently leading to tumor shrinkage and cell death.  相似文献   

14.
The aim of this study is to investigate the potential of nanostructured lipid carriers (NLCs) in improving the oral bioavailability of a lipid lowering agent, fenofibrate (FEN). FEN-loaded NLCs (FEN-NLCs) were prepared by hot homogenization followed by an ultrasonication method using Compritol 888 ATO as a solid lipid, Labrafil M 1944CS as a liquid lipid, and soya lecithin and Tween 80 as emulsifiers. NLCs were characterized in terms of particle size and zeta pote\ntial, surface morphology, encapsulation efficiency, and physical state properties. Bioavailability studies were carried out in rats by oral administration of FEN-NLC. NLCs exhibited a spherical shape with a small particle size (84.9 ± 4.9 nm). The drug entrapment efficiency was 99% with a loading capacity of 9.93 ± 0.01% (w/w). Biphasic drug release manner with a burst release initially, followed by prolonged release was depicted for in vitro drug release studies. After oral administration of the FEN-NLC, drug concentration in plasma and AUCt-∞ was fourfold higher, respectively, compared to the free FEN suspension. According to these results, FEN-NLC could be a potential delivery system for improvement of loading capacity and control of drug release, thus prolonging drug action time in the body and enhancing the bioavailability.KEY WORDS: bioavailability, fenofibrate, nanoparticles, nanostructured lipid carriers  相似文献   

15.
The aim of this study was to explore the transport properties of chitosan nanoparticles and molecules in Caco-2 cells. Fluorescein isothiocyanate-labeled chitosan (f-CS) was synthesized and prepared into nanoparticles (f-CNP). The f-CNP exhibit a mean size of 58.04 nm and a mean charge with +41.63 mV. Cytotoxicities of the f-CNP and the f-CS against Caco-2 cells were disregarded in the transport study. The transport was observed under fluorescence microscope. The f-CNP could be transported into Caco-2 cells across the cell membrane, and showed concentration-dependent and saturable intracellular fluorescence signal at 37 °C. Meanwhile, the energy-dependence of the trans-membrane transport of f-CNP was not observed at 4 °C. The f-CS was mainly accumulated in the cell peripheral and showed a concentration-dependent intercellular fluorescence signal. Thus, formulation of chitosan into nanoparticles significantly improved its trans-membrane transport in Caco-2 cells.  相似文献   

16.
The aim of the present study was to investigate the feasibility of the inclusion of a water-insoluble drug (diazepam, DZ) into solid lipid nanoparticles (SLNs), which offer combined advantages of rapid onset and prolonged release of the drug. This work also describes a new approach to prepare suppositories containing DZ-loaded SLN dispersions, as potential drug carrier for the rectal route. Modified high-shear homogenization and ultrasound techniques were employed to prepare SLNs. The effect of incorporation of different concentrations of Compritol® ATO 888 or Imwitor® 900K and Poloxamer 188 or Tween 80 was investigated. Results showed that varying the type or concentration of lipid matrix or surfactant had a noticeable influence on the entrapment efficiencies, particle size, and release profiles of prepared SLNs. Differential scanning calorimetry and X-ray diffraction measurements showed that the majority of SLNs possessed less ordered arrangements of crystals than the corresponding bulk lipids, which was favorable for increasing the drug loading capacity. Transmission electron microscopy and laser diffractometry studies revealed that the prepared nanoparticles were round and homogeneous and 60% of the formulations were less than 500 nm. Additionally, SLN formulations showed significant (P?in vitro release of DZ from the suppositories prepared using DZ-loaded SLN dispersions (equivalent to 2 mg DZ) was significantly (P?相似文献   

17.
Stable solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) formulations to enhance the dissolution rates of poorly soluble drug spironolactone (SP) were being developed. Probe ultra-sonication method was used to prepare SLNs and NLCs. All NLCs contained stearic acid (solid lipid carrier) and oleic acid (liquid lipid content), whereas, SLNs were prepared and optimised by using the solid lipid only. The particles were characterised in terms of particle size analysis, thermal behaviour, morphology, stability and in vitro release. The zeta sizer data revealed that the increase in the concentration of oleic acid in the formulations reduced the mean particle size and the zeta potential. The increase in concentration of oleic acid from 0 to 30% (w/w) resulted in a higher entrapment efficiency. All nanoparticles were almost spherically shaped with an average particle size of about ~170 nm. The DSC traces revealed that the presence of oleic acid in the NLC formulations resulted in a shift in the melting endotherms to a higher temperature. This could be attributed to a good long-term stability of the nanoparticles. The stability results showed that the particle size remained smaller in NLC compared to that of SLN formulations after 6 months at various temperatures. The dissolution study showed about a 5.1- to 7.2-fold increase in the release of the drug in 2 h compared to the raw drug. Comparing all nanoparticle formulations indicated that the NLC composition with a ratio of 70:30 (solid:liquid lipid) is the most suitable formulation with desired drug dissolution rates, entrapment efficiency and physical stability.  相似文献   

18.
Paliperidone (PPD) is the most recent second-generation atypical antipsychotic approved for the treatment of schizophrenia. An immediate release dose causes extrapyramidal side effects. In this work, a novel nanolipomer carrier system for PPD with enhanced intestinal permeability and sustained release properties has been developed and optimized. PPD was successfully encapsulated into a lipomer consisting of a specific combination of biocompatible materials including poly-ε-caprolactone as a polymeric core, Lipoid S75, and Gelucire® 50/13 as a lipid shell and polyvinyl alcohol as a stabilizing agent. The lipomer system was characterized by dynamic light scattering, TEM, DSC, and FTIR. An optimized lipomer formulation possessed a particle size of 168 nm, PDI of 0.2, zeta potential of ?23 mV and an encapsulation efficiency of 87.27%?±?0.098. Stability in simulated gastrointestinal fluids investigated in terms of particle size, zeta potential, and encapsulation efficiency measurements ensured the integrity of the nanoparticles upon oral administration. PPD-loaded nanolipomers demonstrated a superior sustained release behavior up to 24 h and better ex vivo intestinal permeation for PPD compared to the corresponding polymeric and solid lipid nanoparticles and drug suspension. The in vitro hemocompatibility test on red blood cells revealed no hemolytic effect of PPD-loaded lipomers which reflects its safety. The elaborated nanohybrid carrier system represents a promising candidate for enhancing the absorption of PPD providing a 2.6-fold increase in the intestinal permeation flux compared to the drug suspension while maintaining a sustained release behavior. It is a convenient alternative to the commercially available dosage form of PPD.  相似文献   

19.
In continuation of our studies on the bioaccessibility of phenolic compounds from food grains as influenced by domestic processing, we examined the uptake of phenolics from native/sprouted finger millet (Eleucine coracana) and green gram (Vigna radiata) and native/heat-processed onion (Allium cepa) in human Caco-2 cells. Absorption of pure phenolic compounds, as well as the uptake of phenolic compounds from finger millet, green gram, and onion, was investigated in Caco-2 monolayer model. Transport of individual phenolic compounds from apical compartment to the basolateral compartment across Caco-2 monolayer was also investigated. Sprouting enhanced the uptake of syringic acid from both these grains. Open-pan boiling reduced the uptake of quercetin from the onion. Among pure phenolic compounds, syringic acid was maximally absorbed, while the flavonoid isovitexin was least absorbed. Apparent permeability coefficient P(app) of phenolic compounds from their standard solutions was 2.02 × 10?6 cm/s to 8.94 × 10?6 cm/s. Sprouting of grains enhanced the uptake of syringic acid by the Caco-2 cells. Open-pan boiling drastically reduced the uptake of quercetin from the onion. The permeability of phenolic acids across Caco-2 monolayer was higher than those of flavonoids.  相似文献   

20.
Peptidic drugs have many advantages as compared to small chemical molecules; however, they also possess some limitations as their poor membrane transducing properties. Our group has recently reported the potent anti-HIV antiviral activity of CIGB-210, a peptide derived from human keratin 10. Previous experiments showed that this peptide is internalized in MT4 cells. The aim of this study was to expand our knowledge on the uptake of CIGB-210 by assessing the peptide penetration in four other human cell lines. Cells were treated with 10, 20 and 40 µM of fluorescein-labelled CIGB-210 and the percentage of fluorescent cells was determined by flow cytometry at 15 min, 1 and 24 h. The uptake of fluorescein-labelled CIGB-210 in THP-1, HEp-2, HepG2 and PC-3 cell lines was directly proportional to both, peptide concentration and incubation times. However, some differences in the kinetics of cell entry were found. While the initial uptake was faster in HepG2 and PC-3 cells, after 24 h of incubation the percentage of fluorescence cells was equalized, although HEp-2 cells exhibited the higher numbers. The efficiency of CIGB-210 uptake was lower than a control cell penetrating peptide. However, despite the differences found, CIGB-210 was capable of transducing four human cell lines of different origins without any help. Finally, circular dichroism spectrometry data indicated that the peptide adopt a mostly disordered structure in aqueous solution, with an estimated alpha helical content of less than 5%. This study contributes to the characterization of CIGB-210 as a novel drug candidate against HIV/AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号