首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laser light scattering technology, as applied in the Lasentec focussed beam reflectance measurement (FBRM) system, was used to characterise two morphologically dissimilar plant cell suspension cultures, Morinda citrifolia and Centaurea calcitrapa. Shake-flask suspensions were analysed in terms of biomass concentration and aggregate size/shape over the course of typical batch growth cycles. For the heavily aggregated C. calcitrapa, biomass levels [from 10-160 g fresh weight (fw) l(-1))] were linearly correlated with FBRM counts. For M. citrifolia, which grows in unbranched chains of 2-10 elongated cells, linear correlation of biomass concentration with FBRM counts was applicable in the range 0-100 g fw l(-1); at higher levels (100-300 g fw l(-1)), biomass was non-linearly correlated with FBRM counts and length-weighted average FBRM chord length. For both cell systems, particle morphology (size/shape) was quantified using semi-automated digital image analysis. The average aggregate equivalent diameter (C. calcitrapa) and average chain length (M. citrifolia), determined using image analysis, closely tracked the FBRM average chord length. The data clearly demonstrate the potential for applying the FBRM technique for rapid characterisation of plant cell suspension cultures.  相似文献   

2.
The purpose of this work was to evaluate the potential of grewia gum (GG) as a suspending agent in pharmaceutical oral formulation using ibuprofen as model drug. Ibuprofen pediatric suspension (25 mg/5 mL) was formulated with grewia gum (0.5% w/v) as the suspending agent. Similar suspensions of Ibuprofen containing either sodium carboxymethylcellulose (Na-CMC) or hydroxymethylpropylcellulose (HPMC) were also produced. The suspensions were evaluated for ease of redispersion, sedimentation, rheological properties, and the effect of aging on the rheological properties at 25°C. The particle size and particle size distributions of the dispersed solute were determined. The redispersion time was 19, 11, and 0.5 min, respectively, for formulation containing Na-CMC, HPMC, and GG .The sedimentation volumes were 0.05, 0.05, and 0.125 mL, respectively, for Na-CMC, HPMC, and GG . Viscosities of suspensions at spindle speed of 25 rpm were of the order: GG > HPMC > Na-CMC when freshly prepared and of the order: HPMC > GG > Na-CMC within 6 months of storage. The particles size was 72.72, 73.82, 81.93, and 83.41 μm, respectively, for suspensions containing Na-CMC, ibuprofen alone, HPMC, and GG. Greatest hysteresis was observed in formulation containing HPMC. All the formulations were stable. It was our conclusion that the difference in the physicochemical properties of ibuprofen pediatric formulations was influenced more by the suspending agent used in the formulations than the drug. GG combined better redispersion with minimal changes in viscosity on storage compared to Na-CMC and HPMC as suspending agent. Thus GG may serve as a good suspending agent requiring no further aid in suspension redispersibility.KEY WORDS: grewia gum, oral pharmaceutical formulations, physicochemical properties, potential suspending agent  相似文献   

3.
The rate of ampicillin transfer into solution from suspensions of 2 types, i.e. suspensions of anhydrous ampicillin and suspensions of ampicillin trihydrate was studied. Conditions for estimation of the rate of ampicillin dissolution from the suspensions were developed. The pharmacokinetics of the pharmaceutical forms was studied on dogs. Definite advantages of the anhydrous ampicillin suspension were shown as compared to the ampicillin trihydrate suspension.  相似文献   

4.
Tok AT  Goh X  Ng WK  Tan RB 《AAPS PharmSciTech》2008,9(4):1083-1091
The purpose of this research was to analyze and compare the responses of three Process Analytical Technology (PAT) techniques applied simultaneously to monitor a pilot-scale fluidized bed granulation process. Real-time measurements using focused beam reflectance measurement (Lasentec FBRM) and near-infra red spectroscopy (Bruker NIR) were taken by inserting in-line probes into the fluidized bed. Non-intrusive acoustic emission measurements (Physical Acoustic AE) were performed by attaching piezoelectric sensors on the external wall of the fluidized bed. Powder samples were collected at regular intervals during the granulation process and characterized offline using laser diffraction, scanning electron microscopy, stereo-optical microscopy and loss on drying method. PAT data comprising chord length distribution and chord count (from FBRM), absorption spectra (from NIR) and average signal levels and counts (from AE) were compared with the particle properties measured using offline samples. All three PAT techniques were able to detect the three granulation regimes or rate processes (wetting and nucleation, consolidation and growth, breakage) to varying degrees of sensitivity. Being dependent on optical signals, the sensitivities of the FBRM and NIR techniques were susceptible to fouling on probe windows. The AE technique was sensitive to background fluidizing air flows and external interferences. The sensitivity, strengths and weaknesses of the PAT techniques examined may facilitate the selection of suitable PAT tools for process development and scale-up studies.  相似文献   

5.
Focused beam reflectance measurement (FBRM) was used as a process analytical technology tool to perform inline real-time particle size analysis of a proprietary granulation manufactured using a continuous twin-screw granulation–drying–milling process. A significant relationship between D20, D50, and D80 length-weighted chord length and sieve particle size was observed with a p value of <0.0001 and R2 of 0.886. A central composite response surface statistical design was used to evaluate the effect of granulator screw speed and Comil® impeller speed on the length-weighted chord length distribution (CLD) and particle size distribution (PSD) determined by FBRM and nested sieve analysis, respectively. The effect of granulator speed and mill speed on bulk density, tapped density, Compressibility Index, and Flowability Index were also investigated. An inline FBRM probe placed below the Comil-generated chord lengths and CLD data at designated times. The collection of the milled samples for sieve analysis and PSD evaluation were coordinated with the timing of the FBRM determinations. Both FBRM and sieve analysis resulted in similar bimodal distributions for all ten manufactured batches studied. Within the experimental space studied, the granulator screw speed (650–850 rpm) and Comil® impeller speed (1,000–2,000 rpm) did not have a significant effect on CLD, PSD, bulk density, tapped density, Compressibility Index, and Flowability Index (p value > 0.05).Key words: continuous granulation-drying-milling, focused beam reflectance measurement (FBRM), process analytical technology (PAT), real-time particle size measurement  相似文献   

6.
Development of bioreactor systems utilizing plant suspension cultures has been hindered by the lack of on-line sensors for monitoring important process variables such as biomass concentration and aggregate size. An optical technique, the focused beam reflectance method (FBRM developed by Lasentec Inc., Redmond, WA), was used to characterize several plant suspension cultures: rice (Oryza sativa), tobacco (Nicotiana benthamiana) and wild Chinese cucumber (Trichosanthes kirilowii). These cultures differ in a number of respects such as individual cell size and morphology, aggregate shape and size distribution, initial culture density, and color. For plant suspensions comprised of relatively spherical aggregates (rice and cucumber), the area under the cube-weighted FBRM chord length distribution was linearly correlated to biomass concentration (R 2>0.99) while the mean of the cube-weighted FBRM chord length distribution was nonlinearly related to aggregate size.  相似文献   

7.
To improve solid particle suspensions in liquids in a shaking vessel, a pole was installed at the axis of the shaking vessel, which was referred to as the "current pole". The performance of a shaking vessel with current pole at its central axis was examined experimentally with respect to particle dispersion, power consumption, mixing time and solid-liquid mass transfer coefficient. The current pole improved the particle suspension without an increase in power consumption and reduced the critical circulating frequency for complete suspension. The current pole was very effective in eliminating the stagnation point on the vessel bottom and to decrease the mixing time. The mass transfer coefficient with a current pole had the same value as that without a current pole above the critical circulating frequency for complete suspension. As the diameter of the current pole increased, the mixing time decreased. A pole diameter of 5% of the vessel diameter was effective for suspension.  相似文献   

8.
The potential of focussed beam reflectance measurement (FBRM) as a tool to monitor changes in biomass concentration was investigated in a number of biological systems. The measurement technique was applied to two morphologically dissimilar plant cell suspension cultures, Morinda citrifolia and Centaurea calcitrapa, to a filamentous bacteria, Streptomyces natalensis, to high density cultures of Escherichia coli and to a murine Sp2/0 hybridoma suspension cell line, 3-2.19. In all cases, the biomass concentration proved to be correlated with total FBRM counts. The nature of the correlation varied between systems and was influenced by the concentration, nature, size and morphology of the particle under investigation.  相似文献   

9.
Human serum albumin (HSA) nanometer or micron particles represent promising drug-carrier systems. The azimuthal and radial variations of a linear polarization-sensitive backscattering Mueller matrix were experimentally studied in two cases: the scattering particle was smaller or larger in size to the probing wavelength of 780 nm. The results show that the twofold and fourfold structures are characteristic of small particle size suspension, whereas the eightfold structure is characteristic of large particle size suspension. Moreover, for both particle size suspensions, the element patterns have strong radial dependence when the suspension concentration and the incident power of laser change. In addition, for both particle size suspensions, the rotational symmetry of each element is lost in the case of oblique incidence but the multifold structure is maintained. Some suggestions for applications of Mueller matrix imaging in biomedical optics are provided.  相似文献   

10.
A device is described which maintains homogeneous aerobic or anaerobic cell and organelle suspensions within an NMR sample tube. Line broadening due to magnetic field inhomogeneity is reduced by elimination of gas bubbles from the area of the probe receiver coils. The linewidth of the extracellular orthophosphate resonance of a yeast suspension in 31P NMR was 0.21 ppm compared with 0.4-0.7 ppm in conventionally aerated suspensions. Recirculation of the sample results in complete mixing within 90 s of addition of aliquots of acid or alkali. The maximum rate of oxygen transfer from the gaseous to the liquid phase was approximately 600 microM min-1 when aerated with 95% oxygen/5% carbon dioxide. A 60% wet weight suspension of yeast cells was recirculated for 20 h without settling of cells occurring. A method for estimating oxygen transfer rate is described.  相似文献   

11.
PKZh means "device for liquid purity control". A possibility is considered to use the native PKZh type device for carrying out quantitative analyses of cellular suspension components, for routine bacterial suspension, agglutinated bacterial suspension and erythrocyte suspension. The flowing photometric principle of particle recording, used in the device, allows to analyse biological suspensions with small amounts of components. The device provides a differential count of some cells and their conglomerates in six dimensional ranges, within the frames of 1-25 micron or higher. The time consumption for one sample analysis is 10-15 seconds.  相似文献   

12.
The steady flow viscosity at shear rates 0 to 120 sec-1 and dynamic viscoelasticity at frequencies 0.02 to 0.8 Hz were determined for aqueous suspensions of uniform polystyrene microspheres of 1.0 micron diameter. Rheological properties of the microsphere suspensions were Newtonian for particle concentrations up to 32%. By introducing dextran and calcium chloride into the particle suspensions, non-Newtonian behavior was produced similar to that observed for human blood. The cooperative effects of dextran and calcium ions promoted aggregation of particles at a concentration as low as 12%. Thus, a suspension of uniform sized spherical polystyrene particles in aqueous solution of dextran may be made to mimic blood by controlling the surface charge on the polystyrene spheres using addition of calcium ions to the medium.  相似文献   

13.
《Process Biochemistry》2010,45(11):1821-1825
This study examines the freezing step that occurs in a scraped-surface heat exchanger during the manufacturing of sorbet. During this step, the product enters the exchanger as a liquid, then it is cooled and partially crystallized before exiting the exchanger as a mixture of liquid and ice, also called sorbet. The freezing step governs the final quality of the product, particularly its texture. Most existing studies have focused on the product after freezing at the exchanger exit. The aim of this work was both to follow the evolution of the ice crystals’ granulometry during the freezing of sorbet in the exchanger and to relate this evolution to process parameters such as refrigeration temperature, scraper speed and initial sucrose concentration. Few in situ sensors exist to follow granulometry, and this fact is especially true for rapid kinetics and concentrated suspensions. Focused-beam reflectance measurement (FBRM), an original tool, was used in this study. FBRM is currently used in the chemical and pharmaceutical industries to follow product granulometry, but it is not used in food-related applications. In our study, an experimental protocol was developed to assure identical initial thermal and crystallization conditions. First, the sensor sensitivity and the repeatability of the results were verified. The measurements performed with the FBRM probe showed that this technique can be used to follow crystal granulometry in a sorbet consisting of up to 30% of ice. The effect of process parameters was then analyzed. It appears that a decrease in refrigeration temperature accelerates ice crystallization and yields slightly smaller crystals. The same effect is observed with increasing scraper speed. Additionally, when the initial sucrose concentration in the solution is increased, the ice fraction increases more slowly but the mean chord length is smaller.  相似文献   

14.
A morphological interpretation is presented for data collected during growth of a filamentous organism, using a focused beam reflectance measurement (FBRM) system. The morphology of the organism was also obtained using conventional semiautomatic image analysis to support the interpretation of the FBRM data. The model organism employed is the filamentous soil-borne actinomycete Streptomyces natalensis, which produces the antifungal agent pimaricin. The organism was cultivated both in shake flasks and in a bench-scale stirred tank bioreactor. It was found that FBRM could be used to track changes in the morphology of the organism throughout the course of its growth on both scales. These changes were highlighted using both the median chord length and length-weighted mean chord length obtained from the chord length distribution measured with the FBRM probe. The ability of the FBRM probe to respond to changes in both the size and morphology of mycelial aggregates was supported by standard image analysis parameters, including equivalent diameter, convex area, and compactness.  相似文献   

15.
The shear flow behavior of potato powder suspensions prepared from two different particle sizes and with a range of solids volume fraction (Φ) was studied. A concentrated sucrose solution was used as the continuous phase to maintain particle buoyancy. The shear flow properties were measured at 20, 50 and 80 °C. The suspensions obeyed a power-law equation in the dilute regime while the Herschel-Bulkley equation was the best fit for almost all semi-dilute and more concentrated suspensions. With increasing Φ, particle size and temperature, a gradual development of shear-thinning behavior was evident which coincided with an increase in the consistency index and the development of a yield stress in the suspensions. Potato powder suspensions therefore behave very differently to potato starch suspensions, with flow properties dominated by the effect of intra- and inter-cellular components in the potato powder particles that are transferred to the continuous phase and that alter suspension properties.  相似文献   

16.
A double infusion flow system and particle sizing technique were developed to study the effect of time and shear rate on adenosine diphosphate-induced platelet aggregation in Poiseuille flow. Citrated platelet-rich plasma, PRP, and 2 microM ADP were simultaneously infused into a 40-microliters cylindrical mixing chamber at a fixed flow ratio, PRP/ADP = 9:1. After rapid mixing by a rotating magnetic stirbar, the platelet suspension flowed through 1.19 or 0.76 mm i.d. polyethylene tubing for mean transit times, t, from 0.1 to 86 s, over a range of mean tube shear rate, G, from 41.9 to 1,000 s-1. Known volumes of suspension were collected into 0.5% buffered glutaraldehyde, and all particles in the volume range 1-10(5) microns 3 were counted and sized using a model ZM particle counter (Coulter Electronics Inc., Hialeah, FL) and a logarithmic amplifier. The decrease in the single platelet concentration served as an overall index of aggregation. The decrease in the total particle concentration was used to calculate the collision capture efficiency during the early stages of aggregation, and aggregate growth was followed by changes in the volume fraction of particles of successively increasing size. Preliminary results demonstrate that both collision efficiency and particle volume fraction reveal important aspects of the aggregation process not indicated by changes in the single platelet concentration alone.  相似文献   

17.
Aim of this study was to elaborate an efficient method for the micronization of the decapeptide cetrorelix (a GnRH-antagonist), in order to obtain a microsuspension as basis for other pharmaceutical preparations, such as e.g. inhalation aerosols. A modified pearl-mill coupled with a cryostat was used for the micronization of cetrorelix in fluid propellant and operated under different conditions. The obtained cetrorelix suspensions were analyzed for particle size distribution, purity of cetrorelix, and for metal contamination through abrasion from parts of the mill. The method allowed an effective micronization of cetrorelix. The mean particle size of the initial cetrorelix lyophilizate bulk ware was reduced from 52.5 μ (Volume Mean Diameter, VMD) down to 14.9, 6.1 and 3.1 μm, respectively, respectively. The HPLC analysis of all cetrorelix suspensions after micronization did not show signs of decomposition as compared to the initial product. The elementary analysis of the suspensions performed by inductively coupled plasma mass spectrometry revealed a negligible amount of contaminants in the suspension (Zr=max. 0.6 ppm; Fe, Cr, Ni, Ba, below limit of quantification, i.e.<0.14 ppm). The only appreciable contaminant. Aluminum (Al=1.1 ppm), was derived from the mechanical capping of aluminum canisters prior to analysis. The Zr determination in the suspension of 0.6 ppm, is still considered to be negligible as compared to the legally tolerated limit of air contamination. By low-temperature micronization in fluid propellant, fine drug suspensions of cetrorelix for pMDIs can be directly manufactured in one-step procedure without destruction of the peptide structure and without appreciable product contamination. Published: July 12, 2001.  相似文献   

18.
Flow cytometry has been used to make direct measurements of rates of uptake of latex microspheres from dilute, monodisperse suspensions by Tetrahymena pyriformis. Measurements were made for five different sizes of microspheres, ranging from 1.09 to 6.17 μm diameter. Fractions of cells in the population that did not ingest the microspheres offered were also determined. In addition, the size distributions, as indicated by the forward angle light scattering intensity which is measured by the instrument, were determined for the whole population and for the subpopulations of cells that did and did not ingest the particles, for each particle size used. It was found that the fraction of cells that did not ingest the particles was small and independent of particle size when this was less than about 2.7 μm, but increased with particle size when particle size was increased above this value. The so-called maximum clearance rate, which can be calculated from the data, was found to increase monotonically with particle size if it were based only on those cells which actually ingested the particles offered. However, a plot of maximum clearance rate vs. particle size exhibited a maximum if the clearance rate were based on all cells present in the population.  相似文献   

19.
Protein aggregate growth and breakage in agitated suspensions are modeled. The model includes growth of particles by a turbulent collision mechanism and breakage by a hydrodynamic shear mechanism. In the model, breakage results in the splitting of the particles into several small fragments. The model parameters are a growth rate constant and a breakage rate constant. Aggregate size distributions were measured with a Coulter counter and the data interpreted using a population balance that governs the steady-state particle size distribution in a continuous stirred tank reactor. Effects of changes in the operating variables pH, concentration, mean residence time, ionic strength, and mixing power input on the model kinetic parameters are investigated.  相似文献   

20.
Concentration profiles of 2.5 microns latex beads were measured to demonstrate lateral transport of platelet-sized objects in flows of blood suspensions; the flows had equivalent Poiseuille wall shear rates (WSRs) from 250 to 1220 s-1. Each experimental trial began with a steady flow of suspension without beads in a thin-walled capillary tube (219 microns ID; 10.2 microns SD). The tube entrance was then switched to a reservoir containing suspension of equal hematocrit, but with beads, for a short interval of flow at the same WSR. This process established a paraboloidal tongue of labeled suspension with a transient concentration gradient at its surface. The tube and contents were rapidly frozen to fix the suspended particles in flow-determined locations. Segments of frozen tube were collected at distances from the entrance corresponding to 13%, 39%, and 65% of the axial extent of the ideal paraboloidal tongue. Concentration profiles were estimated from distances measured on fluorescence microscope images of cross-cut tube segments. Experiments used tubes either 40 or 50 cm long, suspension hematocrits of 0, 15, or 40%, and bead concentrations in the range of 1.5-2.2 x 10(5)/mm3. Profiles for 0% hematocrit suspension, a dilute, single-component suspension, had features expected in normal diffusive mixing in a flow. Distinctly different profiles and more lateral transport occurred when the suspensions contained red cells; then, all profiles for 13% extent had regions of excess bead concentration near the wall. Suspension flows with 40% hematocrit exhibited the largest amount of lateral transport. A case is made that, to a first approximation, the rate of lateral transport grew linearly with WSR; however, statistical analysis showed that for 40% hematocrit, less lateral transport occurred when the WSR was 250 s-1 or 1220 s-1 than 560 s-1, thus indicating that the rate behavior is more complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号