首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic hepatitis B infection is caused by hepatitis B virus (HBV) and a total cure is yet to be achieved. The viral covalently closed circular DNA (cccDNA) is the key to establish a persistent infection within hepatocytes. Current antiviral strategies have no effect on the pre-existing cccDNA reservoir. Therefore, the study of the molecular mechanism of cccDNA formation is becoming a major focus of HBV research. This review summarizes the current advances in cccDNA molecular biology and the latest studies on the elimination or inactivation of cccDNA, including three major areas: (1) epigenetic regulation of cccDNA by HBV X protein, (2) immune-mediated degradation, and (3) genome-editing nucleases. All these aspects provide clues on how to finally attain a cure for chronic hepatitis B infection.
  相似文献   

2.
Natural killer (NK) cell is a key component of innate immunity and plays an important role in host defense against virus infection by directly destroying infected cells. Influenza is a respiratory disease transmitted in the early phase of virus infection. Evasion of host innate immunity including NK cells is critical for the virus to expand and establish a successful acute infection. Previously, we showed that human influenza H1N1 virus infects NK cells and induces cell apoptosis, as well as inhibits NK cell activity. In this study, we further demonstrated that avian influenza virus also directly targeted NK cells as an immunoevasion strategy. The avian virus infected human NK cells and induced cell apoptosis. In addition, avian influenza virion and HA protein inhibited NK cell cytotoxicity. This novel strategy has obvious advantages for avian influenza virus, allowing the virus sufficient time to expand and subsequent spread before the onset of the specific immune response. Our findings provide an important clue for the immunopathogenesis of avian influenza, and also suggest that direct targeting NK cells may be a common strategy used by both human and avian influenza viruses to evade NK cell immunity.
  相似文献   

3.
Herpesviruses are remarkable pathogens that have evolved multiple mechanisms to evade host immunity, ensuring their proliferation and egress. Among these mechanisms, herpesviruses utilize elaborate extracellular vesicles, including exosomes, for the intricate interplay between infected host and recipient cells. Herpesviruses incorporate genome expression products and direct cellular products into exosomal cargoes. These components alter the content and function of exosomes released from donor cells, thus affecting the downstream signalings of recipient cells. In this way, herpesviruses hijack exosomal pathways to ensure their survival and persistence, and exosomes are emerging as critical mediators for virus infection-associated intercellular communication and microenvironment alteration. In this review, the function and effects of exosomes in herpesvirus infection will be discussed, so that we will have a better understanding about the pathogenesis of herpesviruses.
  相似文献   

4.
An effective vaccine for human immunodeficiency virus (HIV) is urgently needed to prevent HIV infection and progression to acquired immune deficiency syndrome (AIDS). As glycosylation of viral proteins becomes better understood, carbohydrate-based antiviral vaccines against special viruses have attracted much attention. Significant efforts in carbohydrate synthesis and immunogenicity research have resulted in the development of multiple carbohydrate-based HIV vaccines. This review summarizes recent advances in synthetic carbohydrate-based vaccines design strategies and the applications of these vaccines in the prevention of HIV.
  相似文献   

5.
Dengue virus (DENV) belongs to the genus Flavivirus of the family Flaviviridae and it is primarily transmitted via Aedes aegypti and Aedes albopictus mosquitoes. The life cycle of DENV includes attachment, endocytosis, protein translation, RNA synthesis, assembly, egress, and maturation. Recent researches have indicated that a variety of host factors, including cellular proteins and microRNAs, positively or negatively regulate the DENV replication process. This review summarizes the latest findings (from 2014 to 2016) in the identification of the host factors involved in the DENV life cycle and Dengue infection.
  相似文献   

6.
Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus with a fatality rate of up to 50% in humans. CCHFV is widely distributed in countries around the world. Outbreaks of CCHFV infection in humans have occurred in prior years in Xinjiang Province, China. Epidemiological surveys have detected CCHFV RNA in ticks and animals; however, few isolates were identified. In this study, we identified and isolated a new CCHFV strain from Hyalomma asiaticum asiaticum ticks collected from north of Tarim Basin in Xinjiang, China. A preliminary investigation of infection and antigens expression of CCHFV was performed in newborn mice. The target tissues for CCHFV replication in newborn mice were identified. The analysis of the phylogenetic relationships with other Chinese strains suggested that diverse genotypes of CCHFV have circulated in Xinjiang for years. These findings provide important insights into our understanding of CCHFV infection and evolution as well as disease prevention and control for local residents.
  相似文献   

7.
8.
正Dear Editor,Since April 2010,an outbreak of a new disease has elicited symptoms of high fever,loss of appetite,and reduction in egg production in layer ducks in eastern China;this phenomenon has now spread throughout China(Cao et al.,2011;Su et al.,2011).The causative agent of the disease was identified as Tembusu virus(TMUV),which was classified into the genus Flavivirus,  相似文献   

9.
<正>Dear Editor,Hepatitis C virus(HCV)is a positive-strand RNA virus that belongs to the genus Hepacivirus within the Flaviviridae family.HCV causes chronic liver diseases,and185 million people are infected(Messina et al.,2015).Currently,there is no approved vaccine to prevent hepatitis C.HCV induces autophagy through elevating reactive oxygen species(ROS)levels via the unfolded  相似文献   

10.
Human cytomegalovirus(HCMV) infection is a leading cause of birth defects, primarily affecting the central nervous system and causing its maldevelopment. As the essential downstream effector of Notch signaling pathway, Hes1, and its dynamic expression, plays an essential role on maintaining neural progenitor/stem cells(NPCs) cell fate and fetal brain development. In the present study, we reported the first observation of Hes1 oscillatory expression in human NPCs, with an approximately1.5 hour periodicity and a Hes1 protein half-life of about 17(17.6 ± 0.2) minutes. HCMV infection disrupts the Hes1 rhythm and down-regulates its expression. Furthermore, we discovered that depleting Hes1 protein disturbed NPCs cell fate by suppressing NPCs proliferation and neurosphere formation, and driving NPCs abnormal differentiation. These results suggested a novel mechanism linking disruption of Hes1 rhythm and down-regulation of Hes1 expression to neurodevelopmental disorders caused by congenital HCMV infection.  相似文献   

11.
12.
The dengue virus(DENV) is a vital global public health issue. The 2014 dengue epidemic in Guangzhou, China, caused approximately 40,000 cases of infection and five deaths. We carried out a comprehensive investigation aimed at identifying the transmission sources in this dengue epidemic. To analyze the phylogenetics of the 2014 dengue strains, the envelope(E) gene sequences from 17 viral strains isolated from 168 dengue patient serum samples were sequenced and a phylogenetic tree was reconstructed. All 17 strains were serotype Ⅰ strains, including 8genotype Ⅰ and 9 genotype V strains. Additionally, 6 genotype Ⅰ strains that were probably introduced to China from Thailand before 2009 were widely transmitted in the 2013 and 2014 epidemics, and they continued to circulate until 2015, with one affinis strain being found in Singapore. The other 2 genotype Ⅰ strains were introduced from the Malaya Peninsula in 2014. The transmission source of the 9 genotype Ⅴ strains was from Malaysia in 2014. DENVs of different serotypes and genotypes co-circulated in the 2014 dengue outbreak in Guangzhou. Moreover, not only had DENV been imported to Guangzhou, but it had also been gradually exported, as the viruses exhibited an enzootic transmission cycle in Guangzhou.  相似文献   

13.
Skin-resident dendritic cells (DCs) likely encounter incoming viruses in the first place, and their migration to lymph nodes following virus capture may promote viral replication. However, the molecular mechanisms underlying these processes remain unclear. In the present study, we found that compared to cell-free viruses, DC-bound viruses showed enhanced capture of JEV by T cells. Additionally, JEV infection was increased by co-culturing DCs and T cells. Blocking the C-type lectin receptor DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) with neutralizing antibodies or antagonists blocked JEV transmission to T cells. Live-cell imaging revealed that DCs captured and transferred JEV viral particles to T cells via virological synapses formed at DC-T cell junctions. These findings indicate that DC-SIGN plays an important role in JEV transmission from DCs to T cells and provide insight into how JEV exploits the migratory and antigen-presenting capabilities of DCs to gain access to lymph nodes for dissemination and persistence in the host.
  相似文献   

14.
Rabies virus (RABV) is a highly neurotropic virus that follows clathrin-mediated endocytosis and pH-dependent pathway for trafficking and invasion into endothelial cells. Early (Rab5, EEA1) and late (Rab7, LAMP1) endosomal proteins play critical roles in endosomal sorting, maturity and targeting various molecular cargoes, but their precise functions in the early stage of RABV neuronal infection remain elusive. In this study, the relationship between enigmatic entry of RABV with these endosomal proteins into neuronal and SH-SY5Y cells was investigated. Immunofluorescence, TCID50 titers, electron microscopy and western blotting were carried out to determine the molecular interaction of the nucleoprotein (N) of RABV with early or late endosomal proteins in these cell lines. The expression of N was also determined by down-regulating Rab5 and Rab7 in both cell lines through RNA interference. The results were indicative that N proficiently colocalized with Rab5/EEA1 and Rab7/LAMP1 in both cell lines at 24 and 48 h post-infection, while N titers significantly decreased in early infection of RABV. Down-regulation of Rab5 and Rab7 did not inhibit N expression, but it prevented productive infection via blocking the normal trafficking of RABV in a low pH environment. Ultrathin sections of cells studied by electron microscope also verified the close association of RABV with Rab5 and Rab7 in neurons. From the data it was concluded that primary entry of RABV strongly correlates with the kinetics of Rab-proteins present on early and late vesicles, which provides helpful clues to explain the early events of RABV in nerve cells.
  相似文献   

15.
Lipids are essential for mammalian cells to maintain many physiological functions. Emerging evidence has shown that cancer cells can develop specific alterations in lipid biosynthesis and metabolism to facilitate their survival and various malignant behaviors. To date, the precise role of cellular lipids and lipid metabolism in viral oncogenesis is still largely unclear with only a handful of literature covering this topic to implicate lipid metabolism in oncogenic virus associated pathogenesis. In this review, we focus on the role of lipid biosynthesis and metabolism in the pathogenesis of the Kaposi’s sarcoma-associated herpesvirus, a common causative factor for cancers arising in the immunocompromised settings.
  相似文献   

16.
17.
Recent outbreaks of Zika virus (ZIKV) infections in Oceania's islands and the Americas were characterized by high numbers of cases and the spread of the virus to new areas. To better understand the origin of ZIKV, its epidemic history was reviewed. Although the available records and information are limited, two major genetic lineages of ZIKV were identified in previous studies. However, in this study, three lineages were identified based on a phylogenetic analysis of all virus sequences from GenBank, including those of the envelope protein (E) and non-structural protein 5 (NS5) coding regions. The spatial and temporal distributions of the three identified ZIKV lineages and the recombination events and mechanisms underlying their divergence and evolution were further elaborated. The potential migration pathway of ZIKV was also characterized. Our findings revealed the central roles of two African countries, Senegal and Cote d'Ivoire, in ZIKV evolution and genotypic divergence. Furthermore, our results suggested that the outbreaks in Asia and the Pacific islands originated from Africa. The results provide insights into the geographic origins of ZIKV outbreaks and the spread of the virus, and also contribute to a better understanding of ZIKV evolution, which is important for the prevention and control of ZIKV infections.
  相似文献   

18.
Epstein-Barr virus (EBV) is an oncogenic virus that ubiquitously establishes life-long persistence in humans. To ensure its survival and maintain its B cell transformation function, EBV has developed powerful strategies to evade host immune responses. Emerging evidence has shown that microRNAs (miRNAs) are powerful regulators of the maintenance of cellular homeostasis. In this review, we summarize current progress on how EBV utilizes miRNAs for immune evasion. EBV encodes miRNAs targeting both viral and host genes involved in the immune response. The miRNAs are found in two gene clusters, and recent studies have demonstrated that lack of these clusters increases the CD4+ and CD8+ T cell response of infected cells. These reports strongly indicate that EBV miRNAs are critical for immune evasion. In addition, EBV is able to dysregulate the expression of a variety of host miRNAs, which influence multiple immune-related molecules and signaling pathways. The transport via exosomes of EBV-regulated miRNAs and viral proteins contributes to the construction and modification of the inflammatory tumor microenvironment. During EBV immune evasion, viral proteins, immune cells, chemokines, pro-inflammatory cytokines, and pro-apoptosis molecules are involved. Our increasing knowledge of the role of miRNAs in immune evasion will improve the understanding of EBV persistence and help to develop new treatments for EBV-associated cancers and other diseases.
  相似文献   

19.
Mammarenaviruses, including lethal pathogens such as Lassa virus and Junín virus, can cause severe hemorrhagic fever in humans. Entry is a key step for virus infection, which starts with binding of the envelope glycoprotein(GP) to receptors on target cells and subsequent fusion of the virus with target cell membranes. The GP precursor is synthesized as a polypeptide, and maturation occurs by two cleavage events, yielding a tripartite GP complex(GPC) formed by a stable signal peptide(SSP), GP1 and GP2. The unique retained SSP interacts with GP2 and plays essential roles in virion maturation and infectivity. GP1 is responsible for binding to the cell receptor, and GP2 is a class I fusion protein. The native structure of the tripartite GPC is unknown.GPC is critical for the receptor binding, membrane fusion and neutralization antibody recognition.Elucidating the molecular mechanisms underlining the structure–function relationship of the three subunits is the key for understanding their function and can facilitate novel avenues for combating virus infections. This review summarizes the basic aspects and recent research of the structure–function relationship of the three subunits. We discuss the structural basis of the receptor-binding domain in GP1, the interaction between SSP and GP2 and its role in virion maturation and membrane fusion, as well as the mechanism by which glycosylation stabilizes the GPC structure and facilitates immune evasion. Understanding the molecular mechanisms involved in these aspects will contribute to the development of novel vaccines and treatment strategies against mammarenaviruses infection.  相似文献   

20.
Rasmussen's encephalitis(RE) is a rare pediatric neurological disorder, the etiology of which remains unclear. It has been speculated that the immunopathogenesis of RE involves damage to neurons, which eventually leads to the occurrence of RE. Viral infection may be a critical factor in triggering RE immunopathogenesis. In this study, we analyzed the expression of Epstein-Barr virus(EBV) antigens as well as of Toll-like receptor 3(TLR3), TLR9, and downstream adapter TIRdomain-containing adapter-inducing interferon-β(TRIF) in the brain tissues of 26 patients with RE and 16 control individuals using immunohistochemistry(IHC). In the RE group, EBV antigens were detected in 53% of individuals at various expression levels. In contrast, there was no detectable EBV antigen expression in control brain tissues. Moreover, we found marked increases in the expression of TLR3, TLR9, and TRIF in the brain tissues of RE patients compared with levels in the control group. Furthermore, among RE cases, EBV expression and high TLR3 expression were associated with more severe brain atrophy. Our results suggest that the elevated expression of EBV and TLRs may be involved in RE occurrence through the activation of downstream molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号