首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The purpose of this study was to investigate physicochemical characteristics and in vitro release of zidovudine from monolithic film of Eudragit RL 100 and ethyl cellulose. Films included 2.5% or 5% (w/w) zidovudine of the dry polymer weight were prepared in various ratios of polymers by solvent evaporation method from methanol/acetone solvent mixture. The release studies were carried out by vertical Franz cells (2.2 cm2 area, 20 ml receptor fluid). Ex vivo studies were done on Wistar rat skin within the films F6 (Eudragit RL100) and F7 (Eudragit RL100/Ethylcellulose, 1:1) consisting 5% (w/w) zidovudine in comparison with the same amount of free drug. Either iontophoresis (0.1 and 0.5 mA/cm2 direct currents, Ag/AgCl electrodes) or dimethyl sulfoxide (pretreatment of 1% and 5%, w/w, solutions) were used as enhancers. Films consisting of ethyl cellulose under the ratio of 50% (w/w) gave similar release profiles, and the highest in vitro cumulative released amount was achieved with F6 film which gave the closest results with the free drug. This result could be due to the high swelling capacity and re-crystallization inhibition effect of RL 100 polymer which also influenced the film homogenization. All the films were fitted to Higuchi release kinetics. It was also observed that both 0.5-mA/cm2 current and 5% (w/w) dimethyl sulfoxide applications significantly increased the cumulative permeated amount of zidovudine after 8 h; however, the flux enhancement ratio was higher for 0.5-mA/cm2 current application, especially within F6 film. Thus, it was concluded that Eudragit RL100 film (F6) could be further evaluated for the transdermal application of zidovudine.  相似文献   

2.
Transdermal delivery of peptides and proteins avoids the disadvantages associated with the invasive parenteral route of administration and other alternative routes such as the pulmonary and nasal routes. Since proteins have a large size and are hydrophilic in nature, they cannot permeate passively across the skin due to the stratum corneum which allows the transport of only small lipophilic drug molecules. Enhancement techniques such as chemical enhancers, iontophoresis, microneedles, electroporation, sonophoresis, thermal ablation, laser ablation, radiofrequency ablation and noninvasive jet injectors aid in the delivery of proteins by overcoming the skin barrier in different ways. In this review, these enhancement techniques that can enable the transdermal delivery of proteins are discussed, including a discussion of mechanisms, sterility requirements, and commercial development of products. Combination of enhancement techniques may result in a synergistic effect allowing increased protein delivery and these are also discussed.  相似文献   

3.
皮肤是人体最大的器官,也为药物的递送提供了重要途径。经皮给药是药物以皮肤为媒介,透过皮肤吸收的途径。因此,皮肤角质层是经皮给药的最大限速障碍。纳米经皮给药系统,具有提高透皮效率、缓释性、避免药物肝首过效应、减少副作用等优点,是通过纳米制剂与皮肤组织之间的相互作用实现的。其中,纳米制剂的结构和组分与其发挥皮肤促渗效用密切相关。对纳米制剂与皮肤质构效关系深入透彻的了解,有助于新型透皮纳米制剂的设计,并利用综合手段构建安全、高效、实用的经皮给药系统。  相似文献   

4.
皮肤是身体的最大器官,能够直接与含纳米材料的防晒霜、化妆品等接触,但是人们对纳米材料的皮肤渗透性却了解不多.本文研究了水溶性硫硒化镉(CdSeS)量子点纳米颗粒的皮肤渗透性和在体内的代谢情况.将雄性ICR鼠背部脱毛,在脱毛部位涂抹直径约为5 nm、发光波长为620 nm的量子点0.32 nmol,然后检测皮肤和心、肝、脾、肺、肾中量子点沉积量随时间的变化情况.荧光显微像显示,量子点能够堆积在皮肤的表皮层中和真皮层的毛囊和腺体中,电感耦合等离子体质谱(inductively coupled plasma-mass spectrometry,ICP-MS)结果表明,透皮吸收的量子点能够沉积在器官中,并且肝和肾中沉积的量子点代谢缓慢,涂抹量子点5天之后,肾脏中残存的镉离子浓度仍超过14 ng/g.这些结果表明,量子点能够被小鼠透皮吸收,而且对肝和肾产生严重影响.  相似文献   

5.
J. Wischhusen  F. Padilla 《IRBM》2019,40(1):10-15

Background

Ultrasound-targeted microbubble destruction (UTMD) is a type of ultrasound therapy, in which low frequency moderate power ultrasound is combined with microbubbles to trigger cavitation. Cavitation is the process of oscillation of gas bubbles causing biophysical effects such as pushing and pulling or shock waves that permeabilize biological barriers. In vivo, cavitation results in tissue permeabilization and is used to enable local delivery of nanomedicine. While cavitation can occur in biological liquids when high pressure ultrasound is applied, the use of microbubbles as cavitation nuclei in UTMD largely facilitates the induction of cavitation. UTMD is intensively studied for drug delivery into tumor tissue, but also for the activation of anti-tumor immune responses. The first clinical studies of UTMD-mediated chemotherapy delivery confirmed safety and efficacy of this approach.

Aim

The present review summarizes ultrasound settings, cavitation approaches, biophysical mechanisms of drug delivery, drug carriers, and pre-clinical and clinical applications of UTMD for drug delivery into tumors.  相似文献   

6.
The aim of this work was to evaluate capability of site-specific delivery of a transdermal patch through determination of letrozole in local tissues disposition in female mice. After transdermal administration, the letrozole levels in skin, muscle, and plasma were 10.4–49.3 μg/g, 1.64–6.89 μg/g, and 0.35–1.64 μg/mL, respectively. However, after the mice received letrozole suspension, the drug concentration of plasma and muscle were 0.20–4.80 μg/mL and 0.15–2.38 μg/g. There was even no drug determined in skin through all experiments. Compared with oral administration, the transdermal patch for site-specific delivery of letrozole could produce high drug concentrations in skin and muscle and meanwhile obtain low drug level in plasma. These findings show that letrozole transdermal patch is an appropriate delivery system for application to the breast tumor region for site-specific drug delivery to obtain a high local drug concentration and low circulating drug concentrations avoiding the risk of systemic side effects.  相似文献   

7.
Transdermal delivery of therapeutic amounts of vitamin D3 is proposed to overcome its variable oral bioavailability, especially for people who suffer from fat malabsorption. The main challenge for this delivery route is to overcome the barrier properties of skin, especially for very lipophilic compounds such as vitamin D3. In this study, the effect of different penetration enhancers, such as oleic acid, dodecylamine, ethanol, oleic acid in propylene glycol, isopropyl myristate, octyldodecanol, and oleyl alcohol in propylene glycol were evaluated in vitro for their effectiveness in delivering vitamin D3 through polyamide filter, polydimethylsiloxane membrane, and porcine skin. A diffusion cell was used to study the transdermal permeability of vitamin D3. Ointment formulations of vitamin D3 were prepared containing the most widely used penetration enhancers, oleic acid, and dodecylamine. The ointment containing oleic acid as chemical penetration enhancer did not improve delivery compared to control. On the other hand, the formulation containing dodecylamine as a penetration enhancer did improve the transdermal delivery of vitamin D3. However, statistical significance and an amount high enough for nutritional supplementation purposes were reached only when the skin was pretreated with 50% ethanol. In these conditions, the ointment delivered an amount of 760-ng vitamin D3 per cm2 of skin. The research shows promise that transdermal delivery could be an effective administration route for vitamin D3 when ethanol and dodecylamine are used as penetration enhancers.KEY WORDS: dodecylamine, ethanol, penetration enhancer, transdermal delivery, vitamin D3  相似文献   

8.
The purpose of the present study was to investigate the potential of nanoemulsions as nanodrug carrier systems for the percutaneous delivery of ropinirole. Nanoemulsions comprised Capryol 90 as the oil phase, Tween 20 as the surfactant, Carbitol as the cosurfactant, and water as an external phase. The effects of composition of nanoemulsion, including the ratio of surfactant and cosurfactant (S mix) and their concentration on skin permeation, were evaluated. All the prepared nanoemulsions showed a significant increase in permeation parameters such as steady state flux (J ss) and permeability coefficient (K p) when compared to the control (p < 0.01). Nanoemulsion composition (NEL3) comprising ropinirole (0.5% w/w), Capryol 90 (5% w/w), S mix 2:1 (35% w/w), and water (59.5% w/w) showed the highest flux (51.81 ± 5.03 μg/cm2/h) and was selected for formulation into nanoemulsion gel. The gel was further optimized with respect to oil concentration (Capryol 90), polymer concentration (Carbopol), and drug content by employing the Box–Behnken design, which statistically evaluated the effects of these components on ropinirole permeation. Oil and polymer concentrations were found to have a negative influence on permeation, while the drug content had a positive effect. Nanoemulsion gel showed a 7.5-fold increase in skin permeation rate when compared to the conventional hydrogel. In conclusion, the results of the present investigation suggested a promising role of nanoemulsions in enhancing the transdermal permeation of ropinirole.  相似文献   

9.
The aim of this work was to study the potential of delivering clindamycin phosphate, as an efficient antibiotic drug, into a more absorbed, elastic ultradeformable form, transfersomes (TRSs). These vesicles showed an enhanced penetration through ex vivo permeation characters. TRSs were prepared using thin-film hydration method. Furthermore, they were evaluated for their entrapment efficiency, size, zeta potential, and morphology. Also, the prepared TRSs were converted into suitable gel formulation using carbopol 934 and were evaluated for their gel characteristics like pH, viscosity, spreadability, homogeneity, skin irritation, in vitro release, stability, and ex vivo permeation studies in rats. TRSs were efficiently formulated in a stable bilayer vesicle structure. Furthermore, clindamycin phosphate showed higher entrapment efficiency within the TRSs reaching about 93.3%?±?0.8 and has a uniform particle size. Moreover, the TRSs surface had a high negative charge which indicated the stability of the produced vesicles and resistance of aggregation. Clindamycin phosphate showed a significantly higher in vitro release (p?<?0.05; ANOVA/Tukey) compared with the control carbopol gel. Furthermore, the transfersomal gel showed a significantly higher (p?<?0.05; ANOVA/Tukey) cumulative amount of drug permeation and flux than both the transfersomal suspension and the control carbopol gel. In conclusion, the produced results suggest that TRS-loaded clindamycin are promising carriers for enhanced dermal delivery of clindamycin phosphate.  相似文献   

10.
The objective was to investigate the suitable polymeric films for the development of diltiazem hydrochloride (diltiazem HCl) transdermal drug delivery systems. Hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) were used as hydrophilic and hydrophobic film formers, respectively. Effects of HPMC/EC ratios and plasticizers on mechanical properties of free films were studied. Effects of HPMC/EC ratios on moisture uptake, in vitro release and permeation through pig ear skin of diltiazem HCl films were evaluated. Influence of enhancers including isopropyl myristate (IPM), isopropyl palmitate (IPP), N-methyl-2-pyrrolidone, oleic acid, polyethylene glycol 400, propylene glycol, and Tween80 on permeation was evaluated. It was found that addition of EC into HPMC film produced lower ultimate tensile strength, percent elongation at break and Young’s modulus, however, addition of EC up to 60% resulted in too hard film. Plasticization with dibutyl phthalate (DBP) produced higher strength but lower elongation as compared to triethyl citrate. The moisture uptake and initial release rates (0–1 h) of diltiazem HCl films decreased with increasing the EC ratio. Diltiazem HCl films (10:0, 8:2 and 6:4 HPMC/EC) were studied for permeation because of the higher release rate. The 10:0 and 8:2 HPMC/EC films showed the comparable permeation-time profiles, and had higher flux values and shorter lag time as compared to 6:4 HPMC/EC film. Addition of IPM, IPP or Tween80 could enhance the fluxes for approx. three times while Tween80 also shorten the lag time. In conclusion, the film composed of 8:2 HPMC/EC, 30% DBP and 10% IPM, IPP or Tween80 loaded with 25% diltiazem HCl should be selected for manufacturing transdermal patch by using a suitable adhesive layer and backing membrane. Further in vitro permeation and in vivo performance studies are required.  相似文献   

11.
The study was aimed at investigating localized topical drug delivery to the breast via mammary papilla (nipple). 5-fluorouracil (5-FU) and estradiol (EST) were used as model hydrophilic and hydrophobic compounds respectively. Porcine and human nipple were used for in-vitro penetration studies. The removal of keratin plug enhanced the drug transport through the nipple. The drug penetration was significantly higher through the nipple compared to breast skin. The drug’s lipophilicity had a significant influence on drug penetration through nipple. The ducts in the nipple served as a major transport pathway to the underlying breast tissue. Results showed that porcine nipple could be a potential model for human nipple. The topical application of 5-FU on the rat nipple resulted in high drug concentration in the breast and minimal drug levels in plasma and other organs. Overall, the findings from this study demonstrate the feasibility of localized drug delivery to the breast through nipple.  相似文献   

12.
Microfabrication of dissolvable, swellable, and biodegradable polymeric microneedle arrays (MNs) were extensively investigated based in a nano sensitive fabrication style known as micromilling that is then combined with conventional micromolding technique. The aim of this study was to describe the polymer selection, and optimize formulation compounding parameters for various polymeric MNs. Inverse replication of micromilled master MNs reproduced with polydimethylsiloxane (PDMS), where solid out of plane polymeric MNs were subsequently assembled, and physicochemically characterized. Dissolvable, swellable, and biodegradable MNs were constructed to depth of less than 1 mm with an aspect ratio of 3.6, and 1/2 mm of both inter needle tip and base spacing. Micromolding step also enabled to replicate the MNs very precisely and accurate. Polymeric microneedles (MN) precision was ranging from ±0.18 to ±1.82% for microneedle height, ±0.45 to ±1.42% for base diameter, and ±0.22 to ±0.95% for interbase spacing. Although dissolvable sodium alginate MN showed less physical robustness than biodegradable polylactic-co-glycolic acid MN, their thermogravimetric analysis is of promise for constructing these polymeric types of matrix devices.  相似文献   

13.
The main problem in delivery of drugs across the skin is the barrier function of the skin, which is located in the outermost layer of the skin, the stratum corneum. The stratum corneum consists of corneocytes surrounded by lipid layers, the so-called lipid lamellae. When applying drugs onto the skin, the major penetration pathway is the tortuous intercellular route along the lipid lamellae. In order to increase the number of drugs administered via the transdermal route, novel drug delivery systems have to be designed. Among these systems are iontophoresis, electroporation, microneedles, and vesicular systems.  相似文献   

14.
Dissolving microneedles (MNs) offered a simple, minimally invasive method for meloxicam (MX) delivery to the skin. However, the fabrication of dissolving MNs still faced some challenges, such as significant time consumption, loss of drug activity, and difficulty in regulating MN drug loading. To address these issues, we developed the tip-dissolving (TD) MNs. Several kinds of drugs were encapsulated successfully, and the quantity of MX ranged from 37.23?±?8.40 to 332.53?±?13.37 μg was precisely controlled. The effects of fabrication process on biomacromolecules stability were studied, and it was found that tyrosinase kept 90.4% activity during the fabrication process. The whole process for the fabrication of MNs only takes approximately 1 h. In order to further evaluate the potential of the TD MNs, MX TD MNs were prepared for in vitro release experiments, in vivo release experiments, safety evaluation, pharmacokinetic studies, and pharmacodynamic studies. The results demonstrated that MX TD MNs offered several advantages, including rapid release of the encapsulated drug (91.72% within 30 min), efficient drug delivery to skin (79.18%), no obvious skin irritation, decent relative bioavailability (122.3%), and strong anti-inflammatory and analgesic effects. Based on these results, we envisage that the TD MNs have promising potential for transdermal drug delivery of MX.  相似文献   

15.
The aim of this work was to investigate the effect of backing films on transdermal delivery of donepezil (DP) from patches. Three backing films, CotranTM 9700, CotranTM 9701, and CotranTM 9726 were chosen as backing layers to prepare transdermal patches containing DP. The transdermal penetration and release amount of DP from each patch were evaluated by rabbit abdominal skin in vitro. The partitioning experiments and attentuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were performed to confirm the existence of interaction between backing films and DP. Results showed that the cumulative release amount of DP from patches with different backing films had the same order of cumulative amount penetrated, i.e. CotranTM 9701 < CotranTM 9700 < CotranTM 9726, which demonstrated that the permeation of DP was mainly limited by release behavior. Partitioning experiments and ATR-FTIR study indicated that CotranTM 9700 and CotranTM 9701 had interaction with DP by H bond formation which decreased the release of drug from the patches. By contrast, CotranTM 9726 could provide the highest flux of skin permeation of DP, because such interaction between them was not found. Moreover, the parameters of backing films were found to have relation to skin hydration, thus affecting the penetration behavior of DP from patches. In conclusion, the effect of backing films on the flux of DP permeation could be attributed to both the interaction of backing films and the changes of skin hydration. Backing films could be a key factor in formulation screening of DP patches.KEY WORDS: ATR-FTIR, backing films, donepezil, release, transdermal patches  相似文献   

16.
Skin penetration of the tetrapeptide Ac-Ala-Ala-Pro-Val-NH2 was assessed. This peptide sequence fits the P-P1 subsites of elastase and inhibits human neutrophil elastase competitively. Consequently this peptide may be therapeutically useful in a variety of inflammatory disorders, including psoriasis, in which elevated levels of human neutrophil elastase have been reported. Peptide penetration was assessed across whole human skin, whole skin with the stratum corneum removed by tape stripping and epidermis, which had been removed from the dermis by heat separation. The influence of 75 aqueous ethanol as a potential penetration enhancer of the tetrapeptide across epidermis was also assessed. The tetrapeptide did not penetrate whole human skin or epidermis, even under the influence of 75 aqueous ethanol. However, when the stratum corneum was removed tetrapeptide flux of 73.39 μg cm2 h−1 was achieved. The study demonstrates that the stratum corneum is the main barrier to tetrapeptide skin penetration and must be overcome if therapeutically relevant amounts of tetrapeptide are to be delivered to the skin.  相似文献   

17.
To develop effective and safe penetration enhancers, a series of l-carvyl esters, namely, 5-isopropenyl-2-methylcyclohex-2-en-1-yl heptanoate (C-HEP), 5-isopropenyl-2- methylcyclohex-2-en-1-yl octanoate (C-OCT), 5-isopropenyl-2-methylcyclohex-2-en-1-yl decanoate (C-DEC), 5-isopropenyl-2-methylcyclohex-2-en-1-yl dodecanoate (C-DOD), 5-isopropenyl-2-methylcyclohex-2-en-1-yl tetradecanoate (C-TET), and 5-isopropenyl-2-methylcyclohex-2-en-1-yl palmitate (C-PAL), was synthesized from l-carveol and saturated fatty acids (C7–C16). The volatility of l-carveol and l-carvyl esters was evaluated by a live weight loss experiment. The enhancing effects of l-carvyl esters on 5-fluorouracil (FU) were investigated in the in vitro permeation experiment on rat skin. The stratum corneum (SC) uptakes of the enhancers were tested in vitro by gas chromatography. Only the l-carvyl esters with a moderate SC uptake, namely, C-OCT (C8), C-DEC (C10), and C-DOD (C12), showed a potential to enhance FU skin permeation. An evident parabolic relationship was found between the permeation enhancement of FU and the SC uptake of the l-carvyl esters. The l-carvyl esters with a chain length of C8–C12 seemed to be favorable for FU.  相似文献   

18.
The aim of this study is to develop meloxicam (MX)-loaded cationic transfersomes as skin delivery carriers and to investigate the influence of formulation factors such as cholesterol and cationic surfactants on the physicochemical properties of transfersomes (i.e., particle size, size distribution, droplet surface charge and morphology), entrapment efficiency, stability of formulations and in vitro skin permeation of MX. The transfersomes displayed a spherical structure. Their size, charge, and entrapment efficiency depended on the composition of cholesterol and cationic surfactants in the formulation. Transfersomes provided greater MX skin permeation than conventional liposomes and MX suspensions. The penetration-enhancing mechanism of skin permeation by the vesicles prepared in this study may be due to the vesicle adsorption to and/or fusion with the stratum corneum. Our results suggest that cationic transfersomes may be promising dermal delivery carriers of MX.  相似文献   

19.
Transdermal drug delivery systems have been studied as an attractive alternative to conventional delivery routes. However, the outermost layer of the skin, the stratum corneum, acts as a primary barrier to drug delivery. A synergistic combination of microneedles (MNs) and low-frequency ultrasound (U) was used to enhance the penetration of siRNA and ovalbumin. The specific gene knockdown caused by siRNAs through the RNA interference pathway is more stable when delivered via the transdermal route. Ovalbumin, a representative adjuvant, causes a more efficient immune response in the skin because of the numerous immune cells in the skin. The synergistic transdermal delivery resulted in approximately 7 times and 15 times greater penetration of siRNA and ovalbumin respectively than in their respective negative controls, and histological analysis showed minimal invasion. Thus, as the synergistic transdermal delivery enhanced the penetration of biomacromolecules into the skin, this technique is expected to yield a promising technology for a transdermal drug delivery system.  相似文献   

20.
Recently, decreased activity levels have been observed in pigs treated postoperatively with transdermal delivery of fentanyl (TD-fentanyl) after isoflurane anaesthesia. Whether the change in behaviour is related to opioid-induced sedation or to insufficient pain relief remains to be investigated. This study was therefore undertaken to evaluate the effect of TD-fentanyl 50 μg h-1 on the activity level with and without isoflurane anaesthesia. Eight pigs (25.4 ± 5.2 kg) were submitted to a cross-over study and given two treatments; 1) fentanyl patch applied after 30 minutes of anaesthesia (treatment A/F) and 2) fentanyl patch without anaesthesia (treatment F). The pigs' behaviour was observed from a video recording instantaneously every 10 minutes for 24 h before treatments and up to 72 h after the patch attachment. Venous blood samples were taken 1, 6, 12, 24, 48 and 72 h after the patch application. The behaviour recordings showed that TD-fentanyl did not produce sedation in any pig. No differences were found between the two treatments in activity level, weight gain or serum fentanyl concentration. This concentration measured after 24 h was 0.27 ± 0.11 ng ml-1 and 0.47 ± 0.40 ng ml-1 in the A/F and F group, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号