首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以绿荧光蛋白(GFP)为标记,构建了一系列伪狂犬病毒VP22蛋白的C-端缺失突变体与GFP融合表达的真核表达质粒,脂质体介导转染Hela细胞,通过荧光显微镜观察分析各个缺失突变体的亚细胞定位,发现伪狂犬病毒VP22蛋白与核定位有关的结构域在第60个到第90个氨基酸残基之间,第111个到第159个氨基酸残基有可能与形成细胞核内的颗粒有关,与微管蛋白结合有关的结构域可能在第187到第241个氨基酸残基之间。上述研究结果为进一步深入研究伪狂犬病毒VP22蛋白的结构与功能奠定了基础。  相似文献   

2.
Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and l-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed inE. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCI density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBcAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B144C191. Using those fusion proteins, ELISA for screening of antibodies against both HBV and HCV in human sera was also established.  相似文献   

3.
庄娟  尤永进  陈波  饶忠  潘洁 《遗传》2006,28(5):557-562
合成O型口蹄疫病毒VP1蛋白中与细胞免疫(21~40表位肽)及体液免疫(141~160表位肽)相关的基因序列2020VP1,运用基因工程技术构建了含有肠毒素大肠杆菌LTB、STI基因及双拷贝2020VP1的融合表达载体r2020-B-2020-STI,转化宿主菌BL21(DE3)RIL后的表达产物经SDS-PAGE分析,结果显示重组融合蛋白的分子量约为45kDa,表达量较高。ELISA实验结果显示,融合蛋白能与霍乱毒素(choleratoxin)CTB抗体特异结合。动物实验表明,融合蛋白能够诱发兔体产生较强的FMDV中和抗体,免疫豚鼠在低浓度FMDV刺激下能够产生特异性T淋巴细胞增殖反应,说明融合蛋白能诱导机体产生FMDV特异性细胞及体液免疫反应;同时,融合蛋白免疫雌鼠能够抵抗大肠杆菌强毒株攻击,免疫兔体能够产生STI中和抗体,且融合蛋白不具STI毒性,证明融合蛋白具有良好的LTB、STI免疫原性。实验结果表明,此融合蛋白具有开发成为口蹄疫及肠毒素腹泻联合疫苗的应用价值。  相似文献   

4.
We have previously reported that the most common human serum immunoglobulin G antibody reactivities to human papillomavirus type 16 and type 18 (HPV16 and HPV18)-encoded proteins are directed against the minor capsid proteins (HPV16 L2 and HPV18 L2) and to the E7 protein of HPV16 (S. A. Jenison, X.-P. Yu, J. M. Valentine, L. A. Koutsky, A. E. Christiansen, A. M. Beckmann, and D. A. Galloway, J. Infect. Dis. 162:60-69, 1990). In this study, the antibody-reactive segments of the HPV16 E7, HPV16 L2, and HPV18 L2 polypeptides were mapped by using nested sets of deleted recombinant proteins. A single major immunoreactive region was identified in the HPV16 E7 polypeptide between amino acids (aa) 21 and 34 (DLYCYE-QLNDSSEE). In contrast, three distinct immunoreactive regions of the HPV16 L2 polypeptide were present in the segment between aa149 and aa204, and three distinct immunoreactive regions of the HPV18 L2 polypeptide were present in the segment between aa110 and aa211. With the exception of one serum sample, serum immunoglobulin G antibodies which reacted with HPV16 L2 polypeptides or with HPV18 L2 polypeptides were not cross-reactive.  相似文献   

5.
Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and 1-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed in E. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCl density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBeAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B14d  相似文献   

6.
We have characterized the epitopes for ten murine monoclonal antibodies (Mabs) to human low density lipoprotein (LDL) and studied their ability to interfere with the LDL-receptor interaction. The epitopes for the antibodies were defined by using the following approaches: 1) interaction with apoB-48; 2) interaction with apoB-100 thrombolytic fragments; and 3) interaction with beta-galactosidase-apoB fusion proteins spanning different areas of the apoB-100 sequence. The results obtained are consistent with the following map of epitopes: Mab 6E, amino acids (aa) 1-1297, Mabs 5A and 6B, aa 1480-1693, Mabs 2A, 7A, 3B, and 4B, aa 2152-2377, Mabs 8A and 9A, aa 2657-3248 and 3H, aa 4082-4306. Four Mabs (2A, 5A, 7A, and 9A) whose epitopes are located in three different areas of apoB, dramatically reduced (up to 95%) the LDL-receptor interaction on cultured human fibroblasts; Fab fragments were as effective as the whole antibodies. Mab 3H, on the other hand, increased LDL binding up to threefold. These findings are consistent with the hypothesis that several areas of apoB-100 are involved independently or in concert in modulating the apoprotein B conformation required for interaction with the LDL receptor.  相似文献   

7.
C F Arias  T Ballado  M Pleba?ski 《Gene》1986,47(2-3):211-219
The major outer layer protein, VP7, of the simian rotavirus SA11 has been synthesized in Escherichia coli, under the control of the lac promoter, as a fusion polypeptide with beta-galactosidase (beta Gal). The viral protein in the hybrid polypeptide is missing its N-terminal hydrophobic region and 26 amino acids (aa) at its C-terminus; it is flanked at both ends by beta Gal sequences. We have purified the hybrid 145-kDa protein by affinity chromatography using a column specific for beta Gal. Unexpectedly, a second protein of 118-kDa was also specifically bound to the column. N-terminal aa sequence analysis of these two proteins showed that the 145-kDa protein represented the expected fusion product, whereas the 118-kDa protein was apparently the result of initiation of translation at an internal site close to the 3' end of the viral sequence, in the chimeric mRNA. Each of the two polypeptides represented about 2 to 3% of the total protein of the recombinant-plasmid-carrying bacteria. When a bacterial lysate enriched for the hybrid polypeptides was injected into mice, it induced neutralizing antibodies to SA11 rotavirus.  相似文献   

8.
We previously characterized three neutralization-positive epitopes (NP1 [1a and 1b], NP2, and NP3) and three neutralization-negative epitopes on the simian rotavirus SA11 VP4 with 13 monoclonal antibodies (MAbs). Conformational changes occurred as a result of the binding of NP1 MAbs to the SA11 spike VP4, and enhanced binding of all neutralization-negative MAbs was observed when NP1 MAbs bound VP4 in a competitive MAb capture enzyme-linked immunosorbent assay. To further understand the structure and function of VP4, we have continued studies with these MAbs. Electron microscopic and sucrose gradient analyses of SA11-MAb complexes showed that triple-layered viral particles disassembled following treatment with NP1b MAbs 10G6 and 7G6 but not following treatment with NP1a MAb 9F6, NP2 MAb 2G4, and NP3 MAb 23. Virus infectivity was reduced approximately 3 to 5 logs by the NP1b MAbs. These results suggest that NP1b MAb neutralization occurs by a novel mechanism. We selected four neutralization escape mutants of SA11 with these VP4 MAbs and characterized them by using plaque reduction neutralization assays, hemagglutination inhibition assays, and an antigen capture enzyme-linked immunosorbent assay. These analyses support the previous assignment of the NP1a, NP1b, NP2, and NP3 MAbs into separate epitopes and confirmed that the viruses were truly neutralization escape mutants. Nucleotide sequence analyses found 1 amino acid (aa) substitution in VP8* of VP4 at (i) aa 136 for NP1a MAb mutant 9F6R, (ii) aa 180 and 183 for NP1b MAb mutants 7G6R and 10G6R, respectively, and (iii) aa 194 for NP3 MAb mutant 23R. The NP1b MAb mutants showed an unexpected enhanced binding with heterologous nonneutralization MAb to VP7 compared with parental SA11 and the other mutants. Taken together, these results suggest that the NP1b epitope is a critical site for VP4 and VP7 interactions and for virus stability.  相似文献   

9.

Background

Encephalomyocarditis virus (EMCV) can cause myocarditis, respiratory failure, reproductive failure, and sudden death in pre-weaned piglets, which has been isolated in China. EMCV VP1 protein was one of the most important structural proteins and played an important role in the protective immunity. In this study, 10 monoclonal antibodies (McAbs) against EMCV VP1 were screened and identified.

Results

Epitope mapping results indicated that McAbs (6E11, 7A7, 7C9) specifically recognized the linear epitopes V(2)ENAEK(7), McAbs (1D1, 2A2, 5A1, 5A11, 5G1) recognized the epitope F(19)VAQPVY(25), and McAbs 1G8 and 3A9 recognized P(42)IGAFTVK(49). Protein sequence alignment of VP1 with 16 EMCV isolates indicated that the epitope F(19)VAQPVY(25) was conserved in all the reference strains. The epitopes P(42)IGAFTVK(49) and V(2)ENAEK(7) only had 1 or 2 variable amino acid among the reference strains. The 3D model analysis results showed that these epitopes presented as spheres were shown within the context of the complete particle.

Conclusions

In this study, ten McAbs against EMCV VP1 were developed and three B-cells epitopes (2-7aa, 19-25aa and 42-49aa) were defined in VP1. All the results herein will promote the future investigations into the function of VP1 of EMCV and development of diagnostic methods of EMCV.
  相似文献   

10.
Antibodies that neutralize rotavirus infection target outer coat proteins VP4 and VP7 and inhibit viral entry. The structure of a VP7-Fab complex (S. T. Aoki, et al., Science 324:1444-1447, 2009) led us to reclassify epitopes into two binding regions at inter- and intrasubunit boundaries of the calcium-dependent trimer. It further led us to show that antibodies binding at the intersubunit boundary inhibit uncoating of the virion outer layer. We have now tested representative antibodies for each of the defined structural epitope regions and find that antibodies recognizing epitopes in either binding region neutralize by cross-linking VP7 trimers. Antibodies that bind at the intersubunit junction neutralize as monovalent Fabs, while those that bind at the intrasubunit region require divalency. The VP7 structure has also allowed us to design a disulfide cross-linked VP7 mutant which recoats double-layered particles (DLPs) as efficiently as does wild-type VP7 but which yields particles defective in cell entry as determined both by lack of infectivity and by loss of α-sarcin toxicity in the presence of recoated particles. We conclude that dissociation of the VP7 trimer is an essential step in viral penetration into cells.  相似文献   

11.
The topography of rat glycerophosphate acyltransferase (GAT) in the transverse plane of the mitochondrial outer membrane (MOM) was investigated. Computer analysis of the amino acid (aa) sequence derived from rat mitochondrial GAT cDNA (GenBanktrade mark accession nos. and ) predicts the presence of two possible transmembrane domains (aa 473-493 and 574-594) separated by an 80-aa stretch (aa 494-573). To determine the actual orientation of the native protein, we prepared anti-peptide antibodies to three regions: one in between (aa 543-559) and the other two (aa 420-435 and 726-740) flanking the two putative transmembrane regions. Both immunoreaction and immunoprecipitation experiments employing intact and solubilized mitochondria indicate that regions on the N- and C-terminal sides of the transmembrane regions are sequestered on the inner surface of the MOM, while the region between the transmembrane domains is present on the cytosolic face of the MOM. Additionally, two green fluorescent protein (GFP) fusion proteins consisting of full-length GAT fused to GFP at either the C terminus or inserted 115 amino acids from the N terminus were also constructed to determine the orientation of the N and C termini. COS-1 cells expressing these fusion proteins were fractionated to obtain mitochondria. Protease digestion of intact and solubilized COS-1 cell mitochondria revealed that the GFP domains of these fusion proteins are sequestered on the inner side of the MOM. The present findings indicate that GAT is a dual-spanning, transmembrane protein adopting an inverted "U" conformation in the transverse plane of the MOM, where the N and C termini are sequestered on the inner surface of the MOM, while aa 494-573 are exposed on the cytosolic surface of the MOM.  相似文献   

12.
C Wychowski  S van der Werf  M Girard 《Gene》1985,37(1-3):63-71
The poliovirus cDNA fragment coding for capsid polypeptide VP1 was inserted between the EcoRI and BamHI sites of SV40 DNA, generating a chimaeric gene in which the sequence of the 302 amino acids (aa) of poliovirus capsid polypeptide VP1 was placed downstream from that of the 94 N-terminal aa of SV40 capsid polypeptide VP1. The resulting defective, hybrid virus, SV40-delta 1 polio, was propagated in CV1 cells using an early SV40 mutant, am404, as a helper. Cells doubly infected by SV40-delta 1 polio and am404 expressed a 50-kDal fusion protein which was specifically immunoprecipitated by polyclonal and/or monoclonal antibodies raised against poliovirus capsids or against poliovirus polypeptide VP1. Examination of the infected cells by immunofluorescence after staining with anti-poliovirus VP1 immune sera revealed that the fusion protein was mostly located in the intra- and perinuclear space of the cells, in contrast to the exclusively intracytoplasmic location of genuine poliovirus VP1 polypeptide that was observed in poliovirus-infected cells. This suggests that the N-terminal part of the SV40-VP1 polypeptide could contain an important sequence element acting as a migration signal for the transport of proteins from the cytoplasm to the nucleus.  相似文献   

13.
Fragments cDNA (nt 935-1475, 1091-1310, 935-1193) encoding N-terminal part of protein E of West Nile virus (WNV), strain LEIV-Vlg99-27889-human were obtained and cloned. Recombinant polypeptides of glycoprotein E (E1-86, E53-126, E1-180) of the WNV with corresponding amino acid sequence to the cloned fragments of cDNA and modeling the epitopes of domains I and II of surface glycoprotein E were purified by affinity chromatography. Twelve types of monoclonal antibodies (MAbs) created in our laboratory against recombinant polypeptide E1-180 interact with glycoprotein E of the WNV as results of Western blot and ELISA that is demonstrating an similarity of chemical structure of short recombinant polypeptides and corresponding amino acid sequence regions of WNV protein E. Analysis of interactions of MAbs with short recombinant polypeptides and protein E of tick-borne encephalitis virus let us reveal no less than six epitopes within domains I and II of glycoprotein E of the WNV. No less than seven types of MAbs to 86-126 aa region of the domain II were found where located peptide providing fusion of virus--cell membranes (98-110 aa). The epitope for anti-receptor MAbs 10H10 within 53-86 aa region of domain II of protein E of the WNV was mapped and it shows that the fusion peptide and co-receptor of protein E for cellular laminin-binding protein (LBP) are spatial nearness. X-ray model of protein E let us suppose that bc-loop (73-89 aa) of domain II interacts with LBP and together with cd-loop (fusion peptide) determines an initial stages of penetration virions into cell.  相似文献   

14.
The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus.  相似文献   

15.
构建了丙型肝炎病毒核心蛋白的全长及N端和N端与谷胱甘肽巯基转移酶(GST)的融合表达克隆,比较了在不同大肠杆菌中的表达。表达蛋白为水溶性,经ELISA和蛋白质印迹分析,GSTC191的表达和稳定性都较差,GSTC69和GSTC40具有良好的稳定性,用GST亲和柱一步纯化,纯度可达90%,免疫小鼠可产生高滴度的抗体。应用表达的GSTC69和GSTC40抗原,检测人血清中的HCV核心蛋白抗体,初步结果  相似文献   

16.
Bovine serum albumin (BSA) is the major beef allergen. Since IgE and T cell recognitions are central to the specific immune response to allergens, the identification and immunologic characterization of B and T cell epitopes of BSA represent important steps in the development of treatments for beef allergy. Prior to our experiments, we hypothesized that BSA-specific antibodies and T cells react primarily with sequential epitopes in which the amino acid sequences differ greatly between bovine and human albumin. To clarify this hypothesis, 16 peptides corresponding to such regions were synthesized as candidate epitopes. Among them, at least two regions, aa336-345 and aa451-459, were found to be B cell (IgE-binding) epitopes. In inhibition ELISA experiments, EYAV (aa338-341) and LILNR (aa453-457) bound to patient IgE antibodies and were found to be the cores of the IgE-binding epitopes. Three regions, DDSPDLPKLKPDPNTLC (aa107-123), PHACYTSVFDKLKHLVDEP (aa364-382), and LSLILNRLC (aa451-459), were found to induce T cell proliferation in more than half of the patients tested. Of interest was that these three regions were also recognized by B cells. Information concerning human B and T cells epitopes can contribute greatly to the elucidation of the etiology of beef allergy.  相似文献   

17.
Eubenangee virus has previously been identified as the cause of Tammar sudden death syndrome (TSDS). Eubenangee virus (EUBV), Tilligery virus (TILV), Pata virus (PATAV) and Ngoupe virus (NGOV) are currently all classified within the Eubenangee virus species of the genus Orbivirus, family Reoviridae. Full genome sequencing confirmed that EUBV and TILV (both of which are from Australia) show high levels of aa sequence identity (>92%) in the conserved polymerase VP1(Pol), sub-core VP3(T2) and outer core VP7(T13) proteins, and are therefore appropriately classified within the same virus species. However, they show much lower amino acid (aa) identity levels in their larger outer-capsid protein VP2 (<53%), consistent with membership of two different serotypes - EUBV-1 and EUBV-2 (respectively). In contrast PATAV showed significantly lower levels of aa sequence identity with either EUBV or TILV (with <71% in VP1(Pol) and VP3(T2), and <57% aa identity in VP7(T13)) consistent with membership of a distinct virus species. A proposal has therefore been sent to the Reoviridae Study Group of ICTV to recognise 'Pata virus' as a new Orbivirus species, with the PATAV isolate as serotype 1 (PATAV-1). Amongst the other orbiviruses, PATAV shows closest relationships to Epizootic Haemorrhagic Disease virus (EHDV), with 80.7%, 72.4% and 66.9% aa identity in VP3(T2), VP1(Pol), and VP7(T13) respectively. Although Ngoupe virus was not available for these studies, like PATAV it was isolated in Central Africa, and therefore seems likely to also belong to the new species, possibly as a distinct 'type'. The data presented will facilitate diagnostic assay design and the identification of additional isolates of these viruses.  相似文献   

18.
轮状病毒VP7基因在大肠杆菌中的表达及其免疫原性   总被引:9,自引:0,他引:9  
轮状病毒是世界范围内引起婴幼儿病毒性腹泻的主要病原体。VP7是轮状病毒的主要外壳蛋白和中和抗原,是发展基因工程疫苗的首选。把包含全部3个主要抗原性区域的轮状病毒SA11 VP7基因片段以谷胱甘肽S转移酶融合蛋白的形式在大肠杆菌中进行表达,表达产物占菌体总蛋白的30%左右。经一步Glutathione Sepharose4B亲和纯化,重组蛋白纯度超过90%。Western blot实验表明,重组蛋白可被抗SA11的多抗特异地识别。动物实验表明,重组抗原可在小鼠和家兔体内诱导VP7特异的抗体和一定水平的SA11中和抗体。  相似文献   

19.
Autoepitopes on the ribonucleoprotein La(SS-B) were identified by using recombinant La(SS-B) polypeptides and sera from 166 patients with the antinuclear autoantibody anti-La(SS-B). The La(SS-B) polypeptides were encoded by polymerase chain reaction-derived overlapping or nonoverlapping fragments of the La(SS-B) gene, which encodes a protein of 408 amino acids (aa). Of the 166 sera tested, 99% reacted with a fusion protein comprising the first 107 N-terminal aa (LaA); 91% reacted with a fusion protein comprising aa 111 to 242 (LaC), and 91% reacted with a fusion protein comprising aa 346 to 408 (LaL2/3) at the C terminus of La(SS-B). The order of immunodominance as assessed by the number of sera reacting with each epitope and the strength of the reactivity was LaA (aa 1 to 107) greater than LaC (aa) 111 to 242) much greater than LaL2/3 (aa 346 to 408). Cross-reactivity was observed between antibodies eluted from LaC (aa 111 to 242) and LaL2/3 (aa 346 to 408), but there was no significant primary sequence homology between the two regions. The LaC region contained at least two epitopes, one encompassing a putative RNA-binding motif (aa 112 to 187) which was recognized by 83% of patient sera. Serial serum samples from three patients showed that the antibody response to La(SS-B) was initially directed to the N terminus (LaA, aa 1 to 107), but over a period of time all three major epitopes, including that encompassing the putative RNA-binding motif, were recognized. This result suggests that the primary immune response to La(SS-B) is restricted to an immunodominant epitope. As the specificity of the autoantibody response broadens, it includes the RNA-binding motif, which may have important implications for the expression of disease.  相似文献   

20.
Alphavirus-based expression vectors commonly use a duplicated 26S promoter to drive expression of a foreign gene. Here we describe an expression strategy in which the foreign sequences are linked to the gene encoding the 2A protease of foot-and-mouth disease virus and then inserted in frame between the capsid and E3 genes of Sindbis virus. During replication, the 2A fusion protein is synthesized as a component of the viral structural polyprotein that is then released by intramolecular cleavages mediated by the capsid and 2A proteases. Recombinant Sindbis viruses that expressed fusion proteins composed of 2A linked to the green fluorescent protein (GFP) and to the VP7 protein of bluetongue virus were constructed. Viruses engineered to express GFP and VP7 from a duplicate 26S promoter were also constructed. All four viruses expressed the transgene and grew to similar titers in cultured cells. However, the GFP/2A- and VP7/2A-expressing viruses displayed greater expression stability and were less attenuated in newborn mice than the cognate double-subgenomic promoter-based viruses. By combining the two expression strategies, we constructed bivalent viruses that incorporated and expressed both transgenes. The bivalent viruses grew to lower titers in cultured cells and were essentially avirulent in newborn mice. Groups of mice were vaccinated with each VP7- and VP7/2A-expressing virus, and antibody responses to native VP7 were measured in an indirect enzyme-linked immunosorbent assay. Despite their genetic and phenotypic differences, all viruses induced similarly high titers of VP7-specific antibodies. These results demonstrate that 2A fusion protein-expressing alphaviruses may be particularly well suited for applications that require enduring expression of a single protein or coexpression of two alternative proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号