共查询到20条相似文献,搜索用时 0 毫秒
1.
Hixon ML Obejero-Paz C Muro-Cacho C Wagner MW Millie E Nagy J Hassold TJ Gualberto A 《The Journal of biological chemistry》2000,275(51):40434-40442
Vascular smooth muscle cells (VSMC) at capacitance arteries of hypertensive individuals and animals undergo dramatic polyploidization that contributes toward their hypertrophic phenotype. We report here the identification of a defective mitotic spindle cell cycle checkpoint in VSMC isolated from capacitance arteries of pre-hypertensive rats. These cells demonstrated a high predisposition to polyploidization in culture and failed to maintain cyclin B protein levels in response to colcemid, a mitotic inhibitor. Furthermore, this altered mitotic spindle checkpoint status was associated with the overexpression of Cks1, a Cdc2 adapter protein that promotes cyclin B degradation. Cks1 up-regulation, cyclin B down-regulation, and VSMC polyploidization were evidenced at the smooth muscle of capacitance arteries of genetically hypertensive and Goldblatt-operated rats. In addition, angiotensin II infusion dramatically increased Cks1 protein levels at capacitance arteries of normotensive rats, and angiotensin II treatment of isolated VSMC abrogated their ability to down-regulate Cks1 and maintain cyclin B protein expression in response to colcemid. Finally, transduction of VSMC from normotensive animals with a retrovirus that drives the expression of Cks1 was sufficient to alter their mitotic spindle cell cycle checkpoint status and promote unscheduled cyclin B metabolism, cell cycle re-entry, and polyploidization. These data demonstrate that Cks1 regulates cyclin B metabolism and ploidy in VSMC and may contribute to the understanding of the phenomena of VSMC polyploidization during hypertension. 相似文献
2.
T M Lincoln T L Cornwell S S Rashatwar R M Johnson 《Biochemical Society transactions》1988,16(4):497-499
3.
Yamazaki D Tabara Y Kita S Hanada H Komazaki S Naitou D Mishima A Nishi M Yamamura H Yamamoto S Kakizawa S Miyachi H Yamamoto S Miyata T Kawano Y Kamide K Ogihara T Hata A Umemura S Soma M Takahashi N Imaizumi Y Miki T Iwamoto T Takeshima H 《Cell metabolism》2011,14(2):231-241
TRIC channel subtypes, namely TRIC-A and TRIC-B, are intracellular monovalent cation channels postulated to mediate counter-ion movements facilitating physiological Ca(2+) release from internal stores. Tric-a-knockout mice developed hypertension during the daytime due to enhanced myogenic tone in resistance arteries. There are two Ca(2+) release mechanisms in vascular smooth muscle cells (VSMCs); incidental opening of ryanodine receptors (RyRs) generates local Ca(2+) sparks to induce hyperpolarization, while agonist-induced activation of inositol trisphosphate receptors (IP(3)Rs) evokes global Ca(2+) transients causing contraction. Tric-a gene ablation inhibited RyR-mediated hyperpolarization signaling to stimulate voltage-dependent Ca(2+) influx, and adversely enhanced IP(3)R-mediated Ca(2+) transients by overloading Ca(2+) stores in VSMCs. Moreover, association analysis identified single-nucleotide polymorphisms (SNPs) around the human TRIC-A gene that increase hypertension risk and restrict the efficiency of antihypertensive drugs. Therefore, TRIC-A channels contribute to maintaining blood pressure, while TRIC-A SNPs could provide biomarkers for constitutional diagnosis and personalized medical treatment of essential hypertension. 相似文献
4.
Algara-Suárez P Espinosa-Tanguma R 《Biochemical and biophysical research communications》2004,314(2):597-601
In this study, guinea pig tracheal smooth muscle pre-contracted with histamine was relaxed by the addition of 100microM 8Br-cGMP, a non-hydrolyzable and cell-permeable analog for cGMP. This effect was not sensitive to cGMP-dependent protein kinase (PKG) inhibitors, whereas it was partially blocked by cAMP-dependent protein kinase (PKA) inhibitors. The relaxation observed was also reverted up to 50+/-8.5% by iberiotoxin, a selective inhibitor of large conductance, calcium-activated potassium channels (BK(Ca)). Our results indicate that there exists a crosstalk mechanism between cAMP and cGMP signaling pathways which lead to relaxation of guinea pig tracheal smooth muscle and also that BK(Ca) channels are involved to a certain extent in this phenomenon. 相似文献
5.
The present studies were undertaken to examine if the impaired vascular function observed in diabetes is attributed to the altered levels of G-protein. Diabetes was induced in Sprague Dawley rats by a single intraperitoneal injection of streptozotocin (STZ) (60 mg/kg body wt) and after a period of 5 days, the aorta were used for adenylyl cyclase activity determination and protein quantification. A temporal relationship between the expression of Gi proteins and development of diabetes was also examined on day 1, 2, 3, 4 and 5 of injection of STZ. Blood glucose levels were significantly increased from day 1 in STZ-rats as compared to their counterpart control rats and reached to about 20 mM on 3rd day and 30 mM on 5th day. The expression of Gi-2 and Gi-3 proteins as determined by immunoblotting techniques was decreased by about 70 and 50% respectively in aorta from STZ rats compared to the control rats after 5 days of treatment, whereas 40% decrease in Gi-2 and Gi-3 was observed after 3rd day of STZ injection. On the other hand, the expression of Gs was unaltered in STZ rats. In addition, the stimulatory effect of cholera toxin (CT) on GTP-mediated stimulation of adenylyl cyclase was not different in STZ as compared to the control group. However, the stimulatory effects of isoproterenol, glucagon, NaF and FSK on adenylyl cyclase activity were significantly enhanced in STZ rats as compared to control rats, whereas basal adenylyl cyclase activity was significantly lower in STZ-rats as compared to control rats. In addition, GTPS inhibited FSK-stimulated adenylyl cyclase activity in concentration-dependent manner (receptor-independent functions of Gi) in control rats which was completely attenuated in STZ-rats. In addition, receptor-mediated inhibitions of adenylyl cyclase by angiotensin II, oxotremorine, atrial natriuretic peptide (ANP99–126) and C-ANP4–23 were also attenuated (receptor-dependent functions of Gi) in STZ-rats. These results indicate that aorta from diabetic rats exhibit decreased levels of cAMP and decreased expression of Gi. The decreased expression of Gi may be responsible for the altered responsiveness of adenylyl cyclase to hormonal stimulation and inhibition in STZ-rats. It may thus be suggested that the impaired adenylyl cyclase-Gi protein signaling may be one of the possible mechanisms responsible for the impaired vascular functions in diabetes. 相似文献
6.
Patecki M von Schaewen M Tkachuk S Jerke U Dietz R Dumler I Kusch A 《Biochemical and biophysical research communications》2007,359(3):679-684
The urokinase (uPA)/uPA receptor (uPAR) system plays a role in the response of the vessel wall to injury, presumably by modulating vascular smooth muscle cell (VSMC) functional behaviour. The Jak/Stat signaling pathway has been implicated to mediate the uPA/uPAR-directed cell migration and proliferation in VSMC. We have therefore investigated the underlying molecular mechanisms, which remained not completely understood. In particular, we aimed at identification of the kinase involved in the signaling cascade leading to Stat1 phosphorylation by uPA and its impact on VSMC growth. We performed expression in VSMC of kinase-deficient mutant forms of the Janus kinases Jak1 and Tyk2 and used different cell culture models imitating the response to vascular injury. We provide evidence that Tyk2, but not Jak1, mediates uPA-induced Stat1 phosphorylation and VSMC growth inhibition and suggest a novel function for Tyk2 as an important modulator of the uPA-directed VSMC functional behaviour at the place of injury. 相似文献
7.
In vascular smooth muscle cells, Jak2 tyrosine kinase becomes activated in response to oxidative stress in the form of hydrogen peroxide. Although it has been postulated that hydrogen peroxide-induced Jak2 activation promotes cell survival, this has never been tested. We therefore examined the role that Jak2 plays in vascular smooth muscle cell apoptosis following hydrogen peroxide treatment. Here, we report that Jak2 tyrosine kinase activation by hydrogen peroxide is required for apoptosis of vascular smooth muscle cells. Upon treatment of primary rat aortic smooth muscle cells with hydrogen peroxide, we observed laddering of genomic DNA and nuclear condensation, both hallmarks of apoptotic cells. However, apoptosis was prevented by either the expression of a dominant negative Jak2 protein or by the Jak2 pharmacological inhibitor AG490. Moreover, expression of the proapoptotic Bax protein was induced following hydrogen peroxide treatment. Again, expression of a dominant negative Jak2 protein or treatment of cells with AG490 prevented this Bax induction. Following Bax induction by hydrogen peroxide, mitochondrial membrane integrity was compromised, and caspase-9 became activated. In contrast, in cells expressing a Jak2 dominant negative we observed that mitochondrial membrane integrity was preserved, and no caspase-9 activation occurred. These data demonstrate that the activation of Jak2 tyrosine kinase by hydrogen peroxide is essential for apoptosis of vascular smooth muscle cells. Furthermore, this report identifies Jak2 as a potential therapeutic target in vascular diseases in which vascular smooth muscle cell apoptosis contributes to pathological progression. 相似文献
8.
The contractile function of vascular smooth muscle cells within the media of resistance arterioles is tightly connected to the role of these blood vessels in the maintenance of blood pressure homeostasis. Thus, much effort has been made to understand the intracellular signaling pathways that control vascular smooth muscle cell contractility with the aim that this knowledge will provide important clues for reducing the impact of uncontrolled blood pressure in our society. A key set of surface receptors, the G-protein coupled receptors, has been widely associated with the regulation of vascular smooth muscle cell contractility. Indeed, many of the current treatments for hypertension involve selective inhibition of these receptors. More recently, we have begun to understand the cellular mechanisms whereby G-protein coupled pathways are connected to the contractile machinery of the vascular smooth muscle cells. What has emerged is a view where there are multiple intracellular control points for G-protein signaling that coordinate and focus the extracellular stimuli into meaningful physiologic responses. This work will examine some of the recent advances in our understanding of G-protein signaling and its regulation of contractile function in vascular smooth muscle cells. 相似文献
9.
Role of cGMP in relaxation of vascular and other smooth muscle 总被引:3,自引:0,他引:3
The hypothesis that the relaxant action of many drugs on vascular and other smooth muscle is mediated by increases in intracellular cGMP, the "cGMP hypothesis," is gaining wide acceptance. While much information supporting this idea can be found in the literature, there is also a significant amount of information indicating that an elevation in the tissue content of cGMP is by itself insufficient to cause smooth muscle relaxation. The literature is reviewed with reference to the criteria that need to be fulfilled to consider cGMP as the second messenger mediating relaxation of smooth muscle by a drug; i.e., activation of guanylate cyclase, elevation of tissue content of cGMP, potentiation by phosphodiesterase inhibitors, antagonism by inhibitors of cGMP synthesis, and production of relaxation by cGMP analogues. For each criterion, key observations supporting the hypothesis are considered, followed by examples of important observations not consistent with the hypothesis. It is concluded that in some smooth muscles, for example, rat myometrium and vas deferens, cGMP is not a mediator of drug-induced relaxation. In other smooth muscles, including vascular smooth muscle, cGMP appears to play an important role in the relaxation process; but current evidence suggests that other factors are also important and that the cGMP hypothesis may need to be modified. 相似文献
10.
11.
Ramana KV Chandra D Srivastava S Bhatnagar A Aggarwal BB Srivastava SK 《The Journal of biological chemistry》2002,277(35):32063-32070
12.
Gunaje JJ Bahrami AJ Schwartz SM Daum G Mahoney WM 《American journal of physiology. Cell physiology》2011,301(2):C478-C489
Regulator of G protein signaling (RGS) proteins, and notably members of the RGS-R4 subfamily, control vasocontractility by accelerating the inactivation of Gα-dependent signaling. RGS5 is the most highly and differently expressed RGS-R4 subfamily member in arterial smooth muscle. Expression of RGS5 first appears in pericytes during development of the afferent vascular tree, suggesting that RGS5 is a good candidate for a regulator of arterial contractility and, perhaps, for determining the mass of the smooth muscle coats required to regulate blood flow in the branches of the arterial tree. Consistent with this hypothesis, using cultured vascular smooth muscle cells (VSMCs), we demonstrate RGS5 overexpression inhibits G protein-coupled receptor (GPCR)-mediated hypertrophic responses. The next objective was to determine which physiological agonists directly control RGS5 expression in VSMCs. GPCR agonists failed to directly regulate RGS5 mRNA expression; however, platelet-derived growth factor (PDGF) acutely represses expression. Downregulation of RGS5 results in the induction of migration and the activation of the GPCR-mediated signaling pathways. This stimulation leads to the activation of mitogen-activated protein kinases directly downstream of receptor stimulation, and ultimately VSMC hypertrophy. These results demonstrate that RGS5 expression is a critical mediator of both VSMC contraction and potentially, arterial remodeling. 相似文献
13.
Tikhonova IG Boulègue C Langer I Fourmy D 《Biochemical and biophysical research communications》2006,341(3):715-720
There is an increasing interest towards the mechanism by which regulators of G-protein signaling regulate signals of G-protein-coupled receptors. RGS2 is a regulator of Gq protein signaling (RGS), the N-terminal region of which is known to contain determinants for G protein-coupled receptor recognition, but its structure is still unknown. To understand the molecular basis for this recognition, the three-dimensional model of RGS2, including N-terminal region and RGS box, was modeled. For this, RGS4 box structure and data from circular dichroism study of RGS2 N-terminal region were used. Then, membrane-targeting activity of the RGS2 amphipathic helix contained in the N-terminal region was investigated. Furthermore, in cellulo study provided first evidence that an internal sequence within the N-terminal region of RGS2 is involved in RGS2 regulation of cholecystokinin receptor-2 signal. RGS2 modeled structure can now serve to study molecular recognition of RGS2 by signaling molecules. 相似文献
14.
González MC Arribas SM Molero F Fernández-Alfonso MS 《American journal of physiology. Heart and circulatory physiology》2001,280(6):H2876-H2881
The aim of the present study was to determine whether the adventitia of large arteries modulates vascular function. We developed a method to obtain functional vascular rings devoid of adventitia. Carotid and iliac arteries from 3-mo-old Sprague-Dawley rats were denuded from adventitia after treatment with collagenase followed by gentle peeling. Adventitia removal and integrity of the media was demonstrated by optical and confocal microscopy. Arterial rings with or without adventitia and with or without endothelium were mounted in an organ bath for isometric tension recording. Responses to 75 mM KCl or norepinephrine (0.1 nM-1 microM) were significantly reduced in segments without adventitia. Acetylcholine-induced relaxation (0.1 microM-0.1 mM) was enhanced in arteries without adventitia, whereas sodium nitroprusside-induced responses were not modified. These results demonstrate that the combination of stripping with a previous collagenase treatment allows us to obtain functional rings devoid of adventitia and that this layer plays a role in contractile capacity and in endothelium-modulated responses. 相似文献
15.
Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. 总被引:2,自引:0,他引:2
L A Schildmeyer R Braun G Taffet M Debiasi A E Burns A Bradley R J Schwartz 《FASEB journal》2000,14(14):2213-2220
The smooth muscle (SM) alpha-actin gene activated during the early stages of embryonic cardiovascular development is switched off in late stage heart tissue and replaced by cardiac and skeletal alpha-actins. SM alpha-actin also appears during vascular development, but becomes the single most abundant protein in adult vascular smooth muscle cells. Tissue-specific expression of SM alpha-actin is thought to be required for the principal force-generating capacity of the vascular smooth muscle cell. We wanted to determine whether SM alpha-actin gene expression actually relates to an actin isoform's function. Analysis of SM alpha-actin null mice indicated that SM alpha-actin is not required for the formation of the cardiovascular system. Also, SM alpha-actin null mice appeared to have no difficulty feeding or reproducing. Survival in the absence of SM alpha-actin may result from other actin isoforms partially substituting for this isoform. In fact, skeletal alpha-actin gene, an actin isoform not usually expressed in vascular smooth muscle, was activated in the aortas of these SM alpha-actin null mice. However, even with a modest increase in skeletal alpha-actin activity, highly compromised vascular contractility, tone, and blood flow were detected in SM alpha-actin-defective mice. This study supports the concept that SM alpha-actin has a central role in regulating vascular contractility and blood pressure homeostasis, but is not required for the formation of the cardiovascular system. 相似文献
16.
The effect of lysolecithin (lysophosphatidylcholine) on the relaxation of rabbit aortic strip closely resembled that produced by acetylcholine (ACh) which releases the endothelium-derived relaxing factor (EDRF). Relaxation induced by lysolecithin depended on the presence of endothelium and was inhibited by hemoglobin and methylene blue. It appeared to be mediated by the second messenger, c-GMP. Lysolecithin induced relaxation was slower but more persistent than that resulting from the endothelium-derived relaxing factor (EDRF) produced by acetylcholine (ACh). Like lysolecithin, Triton X-100, a non-ionic detergent, also preferentially relaxed aortic strips with intact endothelium. The results demonstrate the importance of phospholipids derived from cell membranes in vascular smooth muscle relaxation. Endothelium-derived relaxing factors appear as a group of heterogeneous substances. 相似文献
17.
18.
L-arginine causes whereas L-argininosuccinic acid inhibits endothelium-dependent vascular smooth muscle relaxation 总被引:6,自引:0,他引:6
M E Gold K S Wood G M Buga R E Byrns L J Ignarro 《Biochemical and biophysical research communications》1989,161(2):536-543
This study examined the actions of L-arginine, a putative precursor of endothelium-derived nitric oxide, and arginine analogs on endothelium-dependent relaxation of isolated rings of bovine pulmonary artery. L-Arginine did not consistently relax arterial rings unless rings were first rendered refractory to endothelium-dependent relaxation by pretreatment with 1 microM A23187 for 45 min. L-Arginine-elicited relaxation was endothelium-dependent, antagonized by oxyhemoglobin or methylene blue, and unaffected by indomethacin. L-Argininosuccinic acid caused endothelium-dependent contractions and irreversible inhibition of endothelium-dependent but not nitroglycerin-elicited relaxation, which was not overcome by addition of L-arginine. Inhibition of endothelium-dependent relaxation by L-NG-monomethyl arginine, however, was reversible and overcome by L-arginine. Therefore, endothelium-dependent relaxants may cause arginine depletion in endothelial cells and endogenous argininosuccinic acid may modulate the biosynthesis of endothelium-derived nitric oxide from arginine. 相似文献
19.
R. Clinton Webb David F. Bohr 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1980,135(4):357-363
Summary The current study was undertaken to assess species and regional variations in the relaxation of vascular smooth muscle in response to potassium and in the ouabain sensitivity of this relaxation. The effect of species variation was investigated through the use of tail arteries from rats, dogs, cats, monkeys, and pigs; the effect of regional variation was studied in tail, middle cerebral, femoral, and posterior coronary arteries from baboons. Helical strips from all of these vessels were made to contract with norepinephrine or serotonin in a potassium-free solution. The vessels relaxed when potassium was added back to the solution. Strips of tail artery from rats, dogs, and monkeys showed greater relaxation in response to potassium than did strips from pigs and cats. Helical strips from tail, cerebral, and coronary arteries of the baboon relaxed to a greater degree in response to potassium than did strips from the femoral artery. Ouabain produced a concentration-dependent decrease in the magnitude of potassium relaxation in all vessel types. Half-maximal inhibition occurred at approximately 10–8 to 10–7 M in all arterial strips except those obtained from rat tail artery (5×10–5 M). The inhibition of potassium relaxation by ouabain was fully reversed by 30 min exposure to a ouabain-free solution in only the rat tail artery strips. A component of potassium-induced relaxation in tail artery strips from monkeys and baboons was not inhibited by ouabain. The results show that the magnitude of response, potassium and ouabain sensitivity, and recovery from ouabain treatment of potassium relaxation are species related. The regional bed from which the vascular smooth muscle is derived also determines the magnitude and potassium sensitivity of the relaxation. These parameters of potassium-dependent relaxation may reflect corresponding differences in the electrogenic pumping of sodium and potassium among various animal species and various regional vascular beds.Abbreviations ATPase adenosine triphosphatase - PSS physiological salt solution - C contractile magnitude from baseline in milligrams - R relaxation measured as residual force above baseline in milligrams - SEM standard error of the meanThese studies were supported by NHLBI grant HL-18575Dr. Webb was a Post-doctoral Research Fellow of the Michigan Heart Association during this investigation 相似文献
20.
Relationship between nitroglycerin, cyclic GMP and relaxation of vascular smooth muscle. 总被引:5,自引:0,他引:5
Nitroglycerin (NG) caused a dose dependent-relaxation of the bovine mesenteric artery with an ED50-value of 2.7 × 10?8M. The relaxant effect of NG was significantly correlated to an increase in the cGMP content of the artery. There was a significant non-linear component in the data. At moderate cGMP levels relaxation and cGMP changes were correlated. At high levels of cGMP, however, the mechanism responsible for the nitroglycerin-mediated relaxation seemed to be completely activated and a further increase in cGMP did not induce additional relaxation. The cGMP content of the preparation was not significantly changed by nitroglycerin. The cGMP increase induced by nitroglycerin preceded the relaxation. A maximal increase of cGMP was observed after 2 min and the levels subsequently declined. This decline was not accompanied by an increase in the tissue tension. It is suggested from these experiments that cGMP might cause a relaxation of the vascular smooth muscle. Furthermore, if this suggestion is true, there seems to exist a “receptor reserve” for NG with respect to its relaxing action, since an over-capacity for cGMP production is present. 相似文献