首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipase D (PLD) is a PtdCho-hydrolyzing enzyme that plays central signaling functions in eukaryotic cells. We previously demonstrated that action of a set of four nonclassical and membrane-associated Sec14p-like phosphatidylinositol transfer proteins (PITPs) is required for optimal activation of yeast PLD in vegetative cells. Herein, we focus on mechanisms of Sfh2p and Sfh5p function in this regulatory circuit. We describe several independent lines of in vivo evidence to indicate these SFH PITPs regulate PLD by stimulating PtdIns-4,5-P2 synthesis and that this stimulated PtdIns-4,5-P2 synthesis couples to action of the Stt4p PtdIns 4-kinase. Furthermore, we provide genetic evidence to suggest that specific subunits of the yeast exocyst complex (i.e. a component of the plasma membrane vesicle docking machinery) and the Sec9p plasma membrane t-SNARE are regulated by PtdIns(4,5)P2 and that Sfh5p helps regulate this interface in vivo. The collective in vivo and biochemical data suggest SFH-mediated stimulation of Stt4p activity is indirect, most likely via a substrate delivery mechanism.  相似文献   

2.
Sec14p of the yeast Saccharomyces cerevisiae is involved in protein secretion and regulation of lipid synthesis and turnover in vivo, but acts as a phosphatidylinositol-phosphatidylcholine transfer protein in vitro. In this work, the five homologues of Sec14p, Sfh1p-Sfh5p, were subjected to biochemical and cell biological analysis to get a better view of their physiological role. We show that overexpression of SFH2 and SFH4 suppressed the sec14 growth defect in a more and SFH1 in a less efficient way, whereas overexpression of SFH3 and SFH5 did not complement sec14. Using C-terminal yEGFP fusions, Sfh2p, Sfh4p and Sfh5p are mainly localized to the cytosol and microsomes similar to Sec14p. Sfh1p was detected in the nucleus and Sfh3p in lipid particles and in microsomes. In contrast to Sec14p, which inhibits phospholipase D1 (Pld1p), overproduction of Sfh2p and Sfh4p resulted in the activation of Pld1p-mediated phosphatidylcholine turnover. Interestingly, Sec14p and the two homologues Sfh2p and Sfh4p downregulate phospholipase B1 (Plb1p)-mediated turnover of phosphatidylcholine in vivo. In summary, Sfh2p and Sfh4p are the Sec14p homologues with the most pronounced functional similarity to Sec14p, whereas the other Sfh proteins appear to be functionally less related to Sec14p.  相似文献   

3.
Lipid transport between membranes of eukaryotic organisms represents an essential aspect of organelle biogenesis. This transport must be strictly selective and directional to assure specific lipid composition of individual membranes. Despite the intensive research effort in the last few years, our understanding of how lipids are sorted and moved within cells is still rather limited. Evidence indicates that at least some of the mechanisms generating and maintaining non-random distribution of lipids in cells are linked to the action of phosphatidylinositol transfer proteins (PITPs). The major PITP in yeast Saccharomyces cerevisiae, Sec14p, is essential in promoting Golgi secretory function by modulating of its membrane lipid composition. This review focuses on a group of five yeast proteins that share significant sequence homology with Sec14p. Based on this sequence identity, they were termed Sfh (Sec fourteen homologue) proteins. It is a diverse group of proteins with distinct subcellular localizations and varied physiological functions related to lipid metabolism, phosphoinositide mediated signaling and membrane trafficking.  相似文献   

4.
Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi secretory function. It is widely accepted, though unproven, that phosphatidylinositol transfer between membranes represents the physiological activity of phosphatidylinositol transfer proteins (PITPs). We report that Sec14pK66,239A is inactivated for phosphatidylinositol, but not phosphatidylcholine (PC), transfer activity. As expected, Sec14pK66,239A fails to meet established criteria for a PITP in vitro and fails to stimulate phosphoinositide production in vivo. However, its expression efficiently rescues the lethality and Golgi secretory defects associated with sec14-1ts and sec14 null mutations. This complementation requires neither phospholipase D activation nor the involvement of a novel class of minor yeast PITPs. These findings indicate that PI binding/transfer is remarkably dispensable for Sec14p function in vivo.  相似文献   

5.
Phosphatidylinositol transfer proteins (PITPs) can bind specifically and transfer a single phosphatidylinositol (PI) molecule between phospholipid membranes in an ATP-independent manner in vitro. PITPs exist in all the eukaryotic systems from yeast to human. PITP plays an essential role in intracellular vesicle flow and inositol lipid signaling. The crystal structure of yeast PITP Sec14p reveals a large hydrophobic pocket to accommodate the acyl chains of phospholipid molecules. At the opening of the pocket, a hydrogen bond network may render Sec14p the binding specificity to PI molecules. The structure suggests that the PI-binding ability may play an important role in the in vivo function of PITPs.  相似文献   

6.
Sec14-like phosphatidylinositol transfer proteins (PITPs) play important biological functions in integrating multiple aspects of intracellular lipid metabolism with phosphatidylinositol-4-phosphate signaling. As such, these proteins offer new opportunities for highly selective chemical interference with specific phosphoinositide pathways in cells. The first and best characterized small molecule inhibitors of the yeast PITP, Sec14, are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs), and a hallmark feature of NPPMs is their exquisite targeting specificities for Sec14 relative to other closely related Sec14-like PITPs. Our present understanding of Sec14::NPPM binding interactions is based on computational docking and rational loss-of-function approaches. While those approaches have been informative, we still lack an adequate understanding of the basis for the high selectivity of NPPMs among closely related Sec14-like PITPs. Herein, we describe a Sec14 motif, which we term the VV signature, that contributes significantly to the NPPM sensitivity/resistance of Sec14-like phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer proteins. The data not only reveal previously unappreciated determinants that govern Sec14-like PITP sensitivities to NPPMs, but enable predictions of which Sec14-like PtdIns/PtdCho transfer proteins are likely to be NPPM resistant or sensitive based on primary sequence considerations. Finally, the data provide independent evidence in support of previous studies highlighting the importance of Sec14 residue Ser173 in the mechanism by which NPPMs engage and inhibit Sec14-like PITPs.  相似文献   

7.
Deciphering the function of the essential yeast Sec14p protein has revealed a regulatory interface between cargo secretion from Golgi and lipid homeostasis. Abrogation of the CDP-choline (CDP-Cho) pathway for phosphatidylcholine (PC) synthesis allows for life in the absence of the otherwise essential Sec14p. Nte1p, the product of open reading frame YML059c, is an integral membrane phospholipase against CDP-Cho-derived PC producing intracellular glycerophosphocholine (GPCho) and free fatty acids. We monitored Nte1p activity through in vivo PC turnover measurements and observed that intracellular GPCho accumulation is decreased in a sec14(ts) strain shifted to 37 degrees C in 10 mm choline (Cho)-containing medium compared with a Sec14p-proficient strain. Overexpression of two Sec14p homologs Sfh2p and Sfh4p in sec14(ts) cells restored secretion and growth at the restrictive temperature but did not restore GPCho accumulation. Instead, newly synthesized PC was degraded by phospholipase D (Spo14p). Similar analysis performed in a sec14Delta background confirmed these observations. These results imply that the ability of Sfh2p and Sfh4p to restore secretion and growth is not through a shared function with Sec14p in the regulation of PC turnover via Nte1p. Furthermore, our analyses revealed a profound alteration of PC metabolism triggered by the absence of Sec14p: Nte1p unresponsiveness, Spo14p activation, and deregulation of Pct1p. Sfh2p- and Sfh4p-overexpressing cells coped with the absence of Sec14p by controlling the rate of phosphocholine formation, limiting the amount of Cho available for this reaction, and actively excreting Cho from the cell. Increased Sfh4p also significantly reduced the uptake of exogenous Cho. Beyond the new PC metabolic control features we ascribe to Sfh2p and Sfh4p we also describe a second role for Sec14p in mediating PC homeostasis. Sec14p acts as a positive regulator of Nte1p-mediated PC deacylation with the functional consequence of increased Nte1p activity increasing the permissive temperature for the growth of sec14(ts) cells.  相似文献   

8.
Previously, we reported that the yeast cytoplasmic thiol peroxidase type II isoform (cTPx II), a member of the TSA/AhpC family, showed a very low peroxidase activity when compared with other cytoplasmic yeast isoforms, and that cTPx II mutant (cTPx II Delta) showed a severe growth retardation compared with that of the wild-type cells. To reveal the physiological function of cTPx II in yeast cell growth, we searched for proteins which react with cTPx II. In this study, we identified a novel interaction between cTPx II and CSR1p using the yeast two-hybrid system. CSR1p (SFH2p) has been known to be one member of Sec14 homologous (SFH2) proteins. SFH2p exhibits phosphatidylinositol transfer protein activity. Interestingly, we found that cTPx II selectively bound to SFH2p among the five types of SFH proteins and Sec14p. The interaction required the dimerization of cTPx II. In addition, SFH2p also specifically bound to cTPx II among the yeast thiol peroxidase isoforms. The selective interaction of the dimer form of cTPx II (the oxidized form) with SFH2p was also confirmed by glutathione S-transferase pull-down and immunoprecipitation assays. The growth retardation, clearly reflected by the length of the lag phase, of cTPx II Delta was rescued by deleting SFH2p in the cTPx II Delta strain. The SFH2 Delta strain did not show any growth retardation. In addition, the double mutant showed a higher susceptibility to oxidative stress. This finding provides the first in vivo demonstration of the specific interaction of cTPx II with SFH2p in an oxidative stress-sensitive manner and a novel physiological function of the complex of cTPx II and SFH2p.  相似文献   

9.
10.
Phosphatidylinositol transfer proteins (PITPs) have been shown to play important roles in regulating a number of signal transduction pathways that couple to vesicle trafficking reactions, phosphoinositide-driven receptor-mediated signaling cascades, and development. While yeast and metazoan PITPs have been analyzed in some detail, plant PITPs remain entirely uncharacterized. We report the identification and characterization of two soybean proteins, Ssh1p and Ssh2p, whose structural genes were recovered on the basis of their abilities to rescue the viability of PITP-deficient Saccharomyces cerevisiae strains. We demonstrate that, while both Ssh1p and Ssh2p share approximately 25% primary sequence identity with yeast PITP, these proteins exhibit biochemical properties that diverge from those of the known PITPs. Ssh1p and Ssh2p represent high-affinity phosphoinositide binding proteins that are distinguished from each other both on the basis of their phospholipid binding specificities and by their substantially non-overlapping patterns of expression in the soybean plant. Finally, we show that Ssh1p is phosphorylated in response to various environmental stress conditions, including hyperosmotic stress. We suggest that Ssh1p may function as one component of a stress response pathway that serves to protect the adult plant from osmotic insult.  相似文献   

11.
Fluorescence resonance energy transfer (FRET) assays and membrane binding determinations were performed using three phosphatidylinositol transfer proteins, including the yeast Sec14 and two mammalian proteins PITPα and PITPβ. These proteins were able to specifically bind the fluorescent phosphatidylcholine analogue NBD-PC ((2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine)) and to transfer it to small unilamellar vesicles (SUVs). Rate constants for transfer to vesicles comprising 100% PC were slower for all proteins than when increasing percentages of phosphatidylinositol were incorporated into the same SUVs. The rates of ligand transfer by Sec14 were insensitive to the inclusion of equimolar amounts of another anionic phospholipid phosphatidylserine (PS), but the rates of ligand transfer by both mammalian PITPs were strikingly enhanced by the inclusion of phosphatidic acid (PA) in the receptor SUV. Binding of Sec14 to immobilized bilayers was substantial, while that of PITPα and PITPβ was 3–7 times weaker than Sec14 depending on phospholipid composition. When small proportions of the phosphoinositide PI(4)P were included in receptor SUVs (either with PI or not), Sec14 showed substantially increased rates of NBD-PC pick-up, whereas the PITPs were unaffected. The data are supportive of a role for PITPβ as functional PI transfer protein in vivo, but that Sec14 likely has a more elaborate function.  相似文献   

12.
Yeast phosphatidylinositol transfer protein (Sec14p) coordinates lipid metabolism with protein-trafficking events. This essential Sec14p requirement for Golgi function is bypassed by mutations in any one of seven genes that control phosphatidylcholine or phosphoinositide metabolism. In addition to these "bypass Sec14p" mutations, Sec14p-independent Golgi function requires phospholipase D activity. The identities of lipids that mediate Sec14p-dependent Golgi function, and the identity of the proteins that respond to Sec14p-mediated regulation of lipid metabolism, remain elusive. We now report genetic evidence to suggest that two ADP ribosylation factor-GTPase-activating proteins (ARFGAPs), Gcs1p and Age2p, may represent these lipid-responsive elements, and that Gcs1p/Age2p act downstream of Sec14p and phospholipase D in both Sec14p-dependent and Sec14p-independent pathways for yeast Golgi function. In support, biochemical data indicate that Gcs1p and Age2p ARFGAP activities are both modulated by lipids implicated in regulation of Sec14p pathway function. These results suggest ARFGAPs are stimulatory factors required for regulation of Golgi function by the Sec14p pathway, and that Sec14p-mediated regulation of lipid metabolism interfaces with the activity of proteins involved in control of the ARF cycle.  相似文献   

13.
Sec14-superfamily proteins integrate the lipid metabolome with phosphoinositide synthesis and signaling via primed presentation of phosphatidylinositol (PtdIns) to PtdIns kinases. Sec14 action as a PtdIns-presentation scaffold requires heterotypic exchange of phosphatidylcholine (PtdCho) for PtdIns, or vice versa, in a poorly understood progression of regulated conformational transitions. We identify mutations that confer Sec14-like activities to a functionally inert pseudo-Sec14 (Sfh1), which seemingly conserves all of the structural requirements for Sec14 function. Unexpectedly, the "activation" phenotype results from alteration of residues conserved between Sfh1 and Sec14. Using biochemical and biophysical, structural, and computational approaches, we find the activation mechanism reconfigures atomic interactions between amino acid side chains and internal water in an unusual hydrophilic microenvironment within the hydrophobic Sfh1 ligand-binding cavity. These altered dynamics reconstitute a functional "gating module" that propagates conformational energy from within the hydrophobic pocket to the helical unit that gates pocket access. The net effect is enhanced rates of phospholipid-cycling into and out of the Sfh1* hydrophobic pocket. Taken together, the directed evolution approach reveals an unexpectedly flexible functional engineering of a Sec14-like PtdIns transfer protein-an engineering invisible to standard bioinformatic, crystallographic, and rational mutagenesis approaches.  相似文献   

14.
Monomeric transport of lipids is carried out by a class of proteins that can shield a lipid from the aqueous environment by binding the lipid in a hydrophobic cavity. One such group of proteins is the phosphatidylinositol transfer proteins (PITP) that can bind phosphatidylinositol and phosphatidylcholine and transfer them from one membrane compartment to another. PITPs are found in both unicellular and multicellular organisms but not bacteria. In mice and humans, the PITP domain responsible for lipid transfer is found in five proteins, which can be classified into two classes based on sequence. Class I PITPs comprises two family members, alpha and beta, small 35 kDa proteins with a single PITP domain which are ubiquitously expressed. Class IIA PITPs (RdgBalphaI and II) are larger proteins possessing additional domains that target the protein to membranes and are only able to bind lipids but not mediate transfer. Finally, Class IIB PITP (RdgBbeta) is similar to Class I in size (38 kDa) and is also ubiquitously expressed. Class III PITPs, exemplified by the Sec14p family, are found in yeast and plants but are unrelated in sequence and structure to Class I and Class II PITPs. In this review we discuss whether PITP proteins are passive transporters or are regulated proteins that are able to couple their transport and binding properties to specific biological functions including inositol lipid signalling and membrane turnover.  相似文献   

15.
Yeast phosphatidylinositol (PI)/phosphatidylcholine (PC) transfer protein, Sec14p, is essential for protein transport from the Golgi apparatus and for the cell viability. It is instrumental in maintaining the lipid composition of the Golgi membranes to be compatible with vesicle biogenesis and the secretory process by coordination of PC and PI metabolism. To address the question to which extent PC transfer ability of Sec14p is required for its essential in vivo function we generated a Sec14p mutant unable to transfer PC between membranes in the in vitro assay. Yeast cells with this modified Sec14p(D115G) as a sole Sec14p were viable with improved secretory activity compared to sec14 deficient strain. Thus, in vitro PC transfer ability of Sec14p is not required for its essential function(s) in living cells, however, yeast cells having PC transfer deficient Sec14p(D115G) as a sole Sec14p display regulatory abnormalities, including increased phospholipase D mediated PC turnover.  相似文献   

16.
Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.  相似文献   

17.
The major yeast phosphatidylinositol/phosphatidylcholine transfer protein Sec14p is the founding member of a large eukaryotic protein superfamily. Functional analyses indicate Sec14p integrates phospholipid metabolism with the membrane trafficking activity of yeast Golgi membranes. In this regard, the ability of Sec14p to rapidly exchange bound phospholipid with phospholipid monomers that reside in stable membrane bilayers is considered to be important for Sec14p function in cells. How Sec14p-like proteins bind phospholipids remains unclear. Herein, we describe the application of EPR spectroscopy to probe the local dynamics and the electrostatic microenvironment of phosphatidylcholine (PtdCho) bound by Sec14p in a soluble protein-PtdCho complex. We demonstrate that PtdCho movement within the Sec14p binding pocket is both anisotropic and highly restricted and that the C5 region of the sn-2 acyl chain of bound PtdCho is highly shielded from solvent, whereas the distal region of that same acyl chain is more accessible. Finally, high field EPR reports on a heterogeneous polarity profile experienced by a phospholipid bound to Sec14p. Taken together, the data suggest a headgroup-out orientation of Sec14p-bound PtdCho. The data further suggest that the Sec14p phospholipid binding pocket provides a polarity gradient that we propose is a primary thermodynamic factor that powers the ability of Sec14p to abstract a phospholipid from a membrane bilayer.  相似文献   

18.
Phosphoinositides represent only a small percentage of the total cellular lipid pool. Yet, these molecules play crucial roles in diverse intracellular processes such as signal transduction at membrane-cytosol interface, regulation of membrane trafficking, cytoskeleton organization, nuclear events, and the permeability and transport functions of the membrane. A central principle in such lipid-mediated signaling is the appropriate coordination of these events. Such an intricate coordination demands fine spatial and temporal control of lipid metabolism and organization, and consistent mechanisms for specifically coupling these parameters to dedicated physiological processes. In that regard, recent studies have identified Sec14-like phosphatidylcholine transfer protein (PITPs) as "coincidence detectors," which spatially and temporally link the diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. The integral role of PITPs in eukaryotic signal transduction design is amply demonstrated by the mammalian diseases associated with the derangements in the function of these proteins, to stress response and developmental regulation in plants, to fungal dimorphism and pathogenicity, to membrane trafficking in yeast, and higher eukaryotes. This review updates the recent advances made in the understanding of how these proteins, specifically PITPs of the Sec14-protein superfamily, operate at the molecular level and further describes how this knowledge has advanced our perception on the diverse biological functions of PITPs.  相似文献   

19.
A central principle of signal transduction is the appropriate control of the process so that relevant signals can be detected with fine spatial and temporal resolution. In the case of lipid-mediated signaling, organization and metabolism of specific lipid mediators is an important aspect of such control. Herein, we review the emerging evidence regarding the roles of Sec14-like phosphatidylinositol transfer proteins (PITPs) in the action of intracellular signaling networks; particularly as these relate to membrane trafficking. Finally, we explore developing ideas regarding how Sec14-like PITPs execute biological function. As Sec14-like proteins define a protein superfamily with diverse lipid (or lipophile) binding capabilities, it is likely these under-investigated proteins will be ultimately demonstrated as a ubiquitously important set of biological regulators whose functions influence a large territory in the signaling landscape of eukaryotic cells.  相似文献   

20.
Phosphatidylinositol/phosphatidylcholine transfer proteins in yeast   总被引:4,自引:0,他引:4  
Phosphatidylinositol transfer proteins (PITPs) are now becoming widely recognized as intriguing proteins that participate in the coordination and coupling of phospholipid metabolism with vesicle trafficking, and in the regulation of important signaling cascades. Yet, only in one case is there a large body of evidence that speaks to the precise identities of PITP-dependent cellular reactions, and to the mechanisms by which PITPs execute function in eukaryotic cells. At present, yeast provide the most powerful system for analysis of the physiology of PITP function in vivo, and the mechanism by which this function is carried out. Here, we review the recent progress and remaining questions in the area of PITP function in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号