首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two members of the KOX gene family, ZNF23 (KOX16) and ZNF32 (KOX30), have been mapped by in situ hybridization to chromosome regions 16q22 and 10q23-q24, respectively. The map location of ZNF23 and ZNF32 placed these zinc finger protein genes near to chromosome loci that, under certain in vitro conditions, are expressed as fragile sites (FRA16B, FRA16C) and (FRA10D, FRA10A, FRA10B and FRA10E). Human zinc finger gene ZNF32 maps to a chromosome region on 10q23-24 in which deletions have been observed associated with malignant lymphoma on 10q22-23 and with carcinoma of the prostate on 10q24. ZNF23 is located on 16q22 in a chromosomal region that has been involved in chromosome alterations characteristic of acute myeloid leukemia. A second Kox zinc finger gene (ZNF19/KOX12) was recently mapped to the same chromosome region on human chromosome 16q22. In the analogous murine position, the murine zinc finger genes Zfp-1 and Zfp-4 are found in the syntenic 16q region of mouse chromosome 8. Thus, ZNF19 and ZNF23 might be members of an evolutionarily conserved zinc finger gene cluster located on human chromosome 16q22.  相似文献   

2.
cDNA clones encoding zinc finger motifs were isolated by screening human placenta and T-cell (Peer) cDNA libraries with zinc finger (ZNF) consensus sequences. Unique cDNA clones were mapped in the human genome by rodent-human somatic cell hybrid analysis and in some cases in situ chromosomal hybridization. ZNF 80 mapped to 3p12-3qter, ZNF 7 was previously mapped to 8q24 and is here shown by in situ hybridization and use of appropriate hybrids to map telomeric to the MYC locus. ZNF 79 mapped to 9q34 centromeric to the ABL gene and between a constitutional chromosomal translocation on the centromeric side and the CML specific ABL translocation on the telomeric side. ZNF77 mapped to 19p while ZNF 78L1 (pT3) mapped to 19q. Chromosome 19 carries many ZNF loci and other genes with zinc finger encoding motifs; the pT3 clone additionally detected a locus designated ZNF 78L2, which mapped to chromosome region 1p, most likely in the region 1p32 where the MYCL and JUN loci map.  相似文献   

3.
Summary Two members of the human zinc finger Krüppel family, ZNF 12 (KOX 3) and ZNF 26 (KOX 20), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization. The presence of individual human zinc finger genes in mouse-human hybrid DNAs was correlated with the presence of specific human chromosomes or regions of chromosomes in the corresponding cell hybrids. Analysis of such mouse-human hybrid DNAs allowed the assignment of the ZNF 12 (KOX 3) gene to chromosome region 7p. The ZNF 26 (KOX 20) gene segregated with chromosome region 12q13-qter. The zinc finger genes ZNF 12 (KOX 3) and ZNF 26 (KOX 20) were localized by in situ chromosomal hybridization to human chromosome regions 7p22-21 and 12q24.33, respectively. These genes and the previously mapped ZNF 24 (KOX 17) and ZNF 29 (KOX 26) genes, are found near fragile sites.  相似文献   

4.
Nine KOX zinc finger genes were localized on four human chromosomes by in situ hybridization of cDNA probes to metaphase chromosomes. KOX1 (ZNF10), KOX11 (ZNF18), and KOX12 (ZNF19) were mapped to chromosome bands 12q24.33, 17p13-p12, and 16q22-q23, respectively. Six other KOX genes were localized on chromosome 19: KOX6 (ZNF14) and KOX13 (ZNF20) to 19p13.3-p13.2, KOX5 (ZNF13) and KOX22 (ZNF27) to 19q13.2-qter, and KOX24 (ZNF28) and KOX28 (ZNF30) to 19q13.4. Pulsed field gel electrophoresis experiments showed that the pairs of KOX genes found on the chromosome bands 12q24.33, 16q22-q23, 19p13.3-p13.2, or 19q13.3-qter lie within 200–300 kb DNA fragments. This suggests the existence of KOX gene clusters on these chromosomal bands.  相似文献   

5.
Two members of the zinc finger Krüppel family, ZNF24 (KOX17) and ZNF29 (KOX26), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization to human chromosomes 18q12 and 17p13-p12, respectively. The mapping of ZNF29 together with the previously reported localization of ZFP3 suggests that a zinc finger gene complex is located on human chromosome 17p. ZNF29 maps centromeric to the human p53 tumor antigen gene (TP53). In the analogous murine position, the two mouse zinc finger genes Zfp2 and Zfp3 have recently been assigned to the distal region of mouse chromosome 11, the murine homolog of human chromosome 17. Both human zinc finger genes ZNF24 and ZNF29 are in chromosomal regions that have been noted to be deleted in neoplasms of the lung and of the central nervous system at chromosome 17p and in colorectal neoplasia at chromosomes 17p and 18q.  相似文献   

6.
P Lichter  P Bray  T Ried  I B Dawid  D C Ward 《Genomics》1992,13(4):999-1007
Ninety-three phage clones identified by hybridization with a C2-H2 zinc finger sequence probe have been grouped into 23 genetic loci. Partial sequencing verified that each locus belonged to the zinc finger family. Oligonucleotide primer pairs were developed from these sequences to serve as STS markers for these loci. One or more clones from each locus was mapped onto human metaphase chromosomes by fluorescence in situ hybridization. Several loci map to identical chromosomal regions, indicating the possible presence of multigene clusters. Zinc finger loci were found to reside predominantly either in telomeric regions or in chromosomal bands known to exhibit chromosome fragility. Chromosome 19 carries a disproportionate fraction (10 of 23) of the mapped zinc finger loci.  相似文献   

7.
8.
Ninety-three phage clones identified by hybridization with a C2---H2 zinc finger sequence probe have been grouped into 23 genetic loci. Partial sequencing verified that each locus belonged to the zinc finger family. Oligonucleotide primer pairs were developed from these sequences to serve as STS markers for these loci. One or more clones from each locus was mapped onto human metaphase chromosomes by fluorescence in situ hybridization. Several loci map to identical chromosomal regions, indicating the possible presence of multigene clusters. Zinc finger loci were found to reside predom nantly either in telomeric regions or in chromosomal bands known to exhibit chromosome fragility. Chromosome 19 carries a disproportionate fraction (10 of 23) of the mapped zinc finger loci.  相似文献   

9.
Gene amplification is one of the basic mechanisms that lead to overexpression of oncogenes. DNA array comparative genomic hybridization (CGH) has great potential for comprehensive analysis of both a relative gene-copy number and altered chromosomal regions in cancers, which enables us to identify new amplified genes and unstable chromosomal loci. We examined the amplification status in 32 esophageal squamous cell carcinomas (ESCCs) and 13 ESCC cell lines on 51 frequently amplified loci in a variety of cancers by both DNA array CGH and Southern blot analyses. The 1p34 locus containing MYCL1, 2p24 (MYCN), 7p12 (EGFR), and 12q14 (MDM2) were amplified in one of the 32 cases (3%), and the 17q12 locus (ERBB2) and 8p11 (FGFR1) in two of the 32 cases (6%), while only the 11q13 locus (Cyclin D1, FGF4, and EMS1) was frequently amplified (28%, 9/32), demonstrating this locus to be a major target in ESCCs. One locus, 8q24 (c-MYC) was found to be amplified only in the cell lines. Eight out of 51 loci (15.7%) were found to be amplified in at least one of the 32 primary ESCCs or the 13 ESCC cell lines, suggesting that chromosomal loci frequently amplified in a type of human cancer may also be amplified in other types of cancers. This paper is the first report of an application of DNA array CGH to ESCCs.  相似文献   

10.
Several genetic variants associated with platelet count and mean platelet volume (MPV) were recently reported in people of European ancestry. In this meta-analysis of 7 genome-wide association studies (GWAS) enrolling African Americans, our aim was to identify novel genetic variants associated with platelet count and MPV. For all cohorts, GWAS analysis was performed using additive models after adjusting for age, sex, and population stratification. For both platelet phenotypes, meta-analyses were conducted using inverse-variance weighted fixed-effect models. Platelet aggregation assays in whole blood were performed in the participants of the GeneSTAR cohort. Genetic variants in ten independent regions were associated with platelet count (N?=?16,388) with p<5×10(-8) of which 5 have not been associated with platelet count in previous GWAS. The novel genetic variants associated with platelet count were in the following regions (the most significant SNP, closest gene, and p-value): 6p22 (rs12526480, LRRC16A, p?=?9.1×10(-9)), 7q11 (rs13236689, CD36, p?=?2.8×10(-9)), 10q21 (rs7896518, JMJD1C, p?=?2.3×10(-12)), 11q13 (rs477895, BAD, p?=?4.9×10(-8)), and 20q13 (rs151361, SLMO2, p?=?9.4×10(-9)). Three of these loci (10q21, 11q13, and 20q13) were replicated in European Americans (N?=?14,909) and one (11q13) in Hispanic Americans (N?=?3,462). For MPV (N?=?4,531), genetic variants in 3 regions were significant at p<5×10(-8), two of which were also associated with platelet count. Previously reported regions that were also significant in this study were 6p21, 6q23, 7q22, 12q24, and 19p13 for platelet count and 7q22, 17q11, and 19p13 for MPV. The most significant SNP in 1 region was also associated with ADP-induced maximal platelet aggregation in whole blood (12q24). Thus through a meta-analysis of GWAS enrolling African Americans, we have identified 5 novel regions associated with platelet count of which 3 were replicated in other ethnic groups. In addition, we also found one region associated with platelet aggregation that may play a potential role in atherothrombosis.  相似文献   

11.
12.
A cluster of Krüppel type zinc finger genes of the KRAB subclass has recently been localized on human chromosome 19p12-p13.1. We now report that ZNF117 (HPF9), a closely related zinc finger gene of this KRAB subfamily, has been assigned to a distinct locus in the human genome: chromosome band 7q11.2.  相似文献   

13.
This review summarizes the chromosomal changes detected by molecular cytogenetic approaches in esophageal squamous cell carcinoma (ESCC), the ninth most common malignancy in the world. Whole genome analyses of ESCC cell lines and tumors indicated that the most frequent genomic gains occurred at 1, 2q, 3q, 5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q and X, with focal amplifications at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3 and 20p11.2. Recurrent losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18, 19p, 20, 22, Xp and Y. Gains at 5p and 7q, and deletions at 4p, 9p, and 11q were significant prognostic factors for patients with ESCC. Gains at 6p and 20p, and losses at 10p and 10q were the most significant imbalances, both in primary carcinoma and in metastases, which suggested that these regions may harbor oncogenes and tumor suppressor genes. Gains at 12p and losses at 3p may be associated with poor relapse-free survival. The clinical applicability of these changes as markers for the diagnosis and prognosis of ESCC, or as molecular targets for personalized therapy should be evaluated.  相似文献   

14.
15.
16.
17.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by both population and phenotypic heterogeneity. Our group previously identified linkage to SLE at 4p16 in European Americans (EA). In the present study we replicate this linkage effect in a new cohort of 76 EA families multiplex for SLE by model-free linkage analysis. Using densely spaced microsatellite markers in the linkage region, we have localized the potential SLE susceptibility gene(s) to be telomeric to the marker D4S2928 by haplotype construction. In addition, marker D4S394 showed marginal evidence of linkage disequilibrium with the putative disease locus by the transmission disequilibrium test and significant evidence of association using a family-based association approach as implemented in the program ASSOC. We also performed both two-point and multipoint model-based analyses to characterize the genetic model of the potential SLE susceptibility gene(s), and the lod scores both maximized under a recessive model with penetrances of 0.8. Finally, we performed a genome-wide scan of the total 153 EA pedigrees and evaluated the possibility of interaction between linkage signals at 4p16 and other regions in the genome. Fourteen regions on 11 chromosomes (1q24, 1q42, 2p11, 2q32, 3p14.2, 4p16, 5p15, 7p21, 8p22, 10q22, 12p11, 12q24, 14q12, 19q13) showed evidence of linkage, among which, signals at 2p11, 12q24 and 19q13 also showed evidence of interaction with that at 4p16. These results provide important additional information about the SLE linkage effect at 4p16 and offer a unique approach to uncovering susceptibility loci involved in complex human diseases.  相似文献   

18.
cDNA clones encoding four new receptors of the G-protein-coupled receptor family were obtained by selective amplification and cloning from thyroid cDNA and termed RDC1, RDC4, RDC7, and RDC8. RDC7 and RDC8 have recently been identified as A1 and A2 adenosine receptors, respectively. These cDNAs were utilized for chromosomal in situ hybridization to establish the genomic location of the corresponding genes in man. The results indicate that human RDC1, RDC4, RDC7, and RDC8 are in regions 2q37, 1p34.3-1p36.3, 22q11.2-22q13.1, and 11q11-11q13, respectively.  相似文献   

19.
Multiple prostate cancer (PCa) risk-related loci have been discovered by genome-wide association studies (GWAS) based on case-control designs. However, GWAS findings may be confounded by population stratification if cases and controls are inadvertently drawn from different genetic backgrounds. In addition, since these loci were identified in cases with predominantly sporadic disease, little is known about their relationships with hereditary prostate cancer (HPC). The association between seventeen reported PCa susceptibility loci was evaluated with a family-based association test using 1,979 hereditary PCa families of European descent collected by members of the International Consortium for Prostate Cancer Genetics, with a total of 5,730 affected men. The risk alleles for 8 of the 17 loci were significantly over-transmitted from parents to affected offspring, including SNPs residing in 8q24 (regions 1, 2 and 3), 10q11, 11q13, 17q12 (region 1), 17q24 and Xp11. In subgroup analyses, three loci, at 8q24 (regions 1 and 2) plus 17q12, were significantly over-transmitted in hereditary PCa families with five or more affected members, while loci at 3p12, 8q24 (region 2), 11q13, 17q12 (region 1), 17q24 and Xp11 were significantly over-transmitted in HPC families with an average age of diagnosis at 65?years or less. Our results indicate that at least a subset of PCa risk-related loci identified by case-control GWAS are also associated with disease risk in HPC families.  相似文献   

20.
17个新的C2H2型锌指基因片段的分离与克隆   总被引:4,自引:0,他引:4  
按照C2H2型锌指基因保守结构域的DNA序列设计一对简并引物,以人基因组DNA为模板进行PCR同源扩增,将由此获得的锌指基因片段为探针,从人胎肾、骨骼肌、骨骼组织的cDNA分子库中筛选到22个C2H2型锌指蛋白cDNA片段,经国际NCBI数据库查询检索,其中17个为新的锌指基因片段。对从胎肾cDNA分子库中分离到的K3-4和K5-12克隆进行了表达谱分析,发现K3-4在肾脏中的表达量明显高于其他几  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号