首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Aim

Mega hydroelectric dams have become one of the main drivers of biodiversity loss in the lowland tropics. In these reservoirs, vertebrate studies have focused on local (α) diversity measures, whereas between‐site (β) diversity remains poorly assessed despite its pivotal importance in understanding how species diversity is structured and maintained. Here, we unravel the patterns and ecological correlates of mammal β‐diversity, including both small (SM) and midsized to large mammal species (LM) across 23 islands and two continuous forest sites within a mega hydroelectric reservoir.

Location

Balbina Hydroelectric Dam, Central Brazilian Amazonia.

Methods

Small mammals were sampled using live and pitfall traps (48,350 trap‐nights), and larger mammals using camera traps (8,160 trap‐nights). β‐diversity was examined for each group using multiplicative diversity decomposition of Hill numbers, which considers the importance of rare, common and dominant species, and tested to what extent those were related to a set of environmental characteristics measured at different spatial scales.

Results

β‐diversity for both mammal groups was higher when considering species presence–absence. When considering species abundance, β‐diversity was significantly higher for SM than for LM assemblages. Habitat variables, such as differences in tree species richness and percentage of old‐growth trees, were strong correlates of β‐diversity for both SMs and LMs. Conversely, β‐diversity was weakly related to patch and landscape characteristics, except for LMs, for which β‐diversity was correlated with differences in island sizes.

Main conclusions

The lower β‐diversity of LMs between smaller islands suggests subtractive homogenization of this group. Although island size plays a major role in structuring mammal α‐diversity in several land‐bridge islands, local vegetation characteristics were additional key factors determining β‐diversity for both mammal groups. Maintaining the integrity of vegetation characteristics and preventing the formation of a large set of small islands within reservoirs should be considered in long‐term management plans in both existing and planned hydropower development in lowland tropical forests.
  相似文献   

3.
Accurately describing biodiversity in tropical regions such as Amazonia is difficult because of insufficient morphological inventories and the lack of studies on the distribution of genetic diversity. Aquatic organisms from Amazonian flooded forests are generally expected to move laterally along the forests during the annual inundation cycle, a behaviour that should promote admixture of populations and reduce within‐drainage speciation. We used an unprecedented fine‐scale sampling effort and multiple DNA markers to quantify region‐wide population differentiation in an Amazonian floodplain forest specialist, the black‐wing hatchet fish Carnegiella marthae ( Myers, 1927 ). Our study revealed three previously unsuspected and ancient cryptic species of black‐wing hatchet fish in the Rio Negro floodplain (RNF), in central Amazonia. Two species produce occasional first‐generation hybrids. The third and rarer species, although found in extreme sympatry with another species, appears to be reproductively isolated, and also differs in external morphology and dentition. Our findings have important implications for guiding conservation management because C. marthae is harvested commercially in the RNF ornamental fishery. They also suggest that the diversity of Amazonian ichthyofauna is vastly underestimated, including that found in landscapes lacking contemporary barriers to account for population divergence and speciation. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 391–403.  相似文献   

4.
Nested structures of species assemblages have been frequently associated with patch size and isolation, leading to the conclusion that colonization–extinction dynamics drives nestedness. The ‘passive sampling’ model states that the regional abundance of species randomly determines their occurrence in patches. The ‘habitat amount hypothesis’ also challenges patch size and isolation effects, arguing that they occur because of a ‘sample area effect’. Here, we (a) ask whether the structure of the mammal assemblages of fluvial islands shows a nested pattern, (b) test whether species’ regional abundance predicts species’ occurrence on islands, and (c) ask whether habitat amount in the landscape and matrix resistance to biological flow predict the islands’ species composition. We quantified nestedness and tested its significance using null models. We used a regression model to analyze whether a species’ relative regional abundance predicts its incidence on islands. We accessed islands’ species composition by an NMDS ordination and used multiple regression to evaluate how species composition responds to habitat amount and matrix resistance. The degree of nestedness did not differ from that expected by the passive sampling hypothesis. Likewise, species’ regional abundance predicted its occurrence on islands. Habitat amount successfully predicted the species composition on islands, whereas matrix resistance did not. We suggest the application of habitat amount hypothesis for predicting species composition in other patchy systems. Although the island biogeography perspective has dominated the literature, we suggest that the passive sampling perspective is more appropriate for explaining the assemblages’ structure in this and other non‐equilibrium patch systems. Abstract in Portuguese is available with online material.  相似文献   

5.
6.
The fish fauna of the Cinaruco River, an intermediate sized floodplain river that forms the southern boundary of the newly established Santos Luzardo National Park in the llanos of Venezuela, was sampled in 1993-1994. Due to highly seasonal rainfall, the nutrient-poor Cinaruco undergoes dramatic changes in water level, creating a variety of seasonally available habitats for fishes. Sand bank habitats are conspicuous features in both main-channel and lentic backwater areas, and support fish assemblages that are different from adjacent rocky shore and shrubby shore habitats. Seine samples from sand bank habitats revealed high alpha diversity, dominated numerically by a few species of small Characiformes. Comparisons among and between lagoon, side-channel, and main-channel sand bank habitats showed little assemblage similarity. Overall, sand bank habitats were used by 8 orders, 21 families, and 105 species of fish, mostly of size classes less than 100 mm. Several species are currently undescribed. Elements which may contribute to high fish diversity include proximity to a diverse Amazonian fauna, seasonally dynamic habitat availability, the influence of keystone predators, and episodes of intermediate disturbance, such as seasonal release from intense biotic interactions.  相似文献   

7.
8.
A mark-recapture programme at the Pabna Irrigation and Rural Development Project (PIRDP) site in NW Bangladesh showed that Catla catla, Channa striata and Wallago attu migrated through the sluice gates, both with and against prevailing currents in different season, while the smaller Anabas testudineus, Glossogobius giuris and Puntius sophore did not. Species assemblages were significantly different inside and outside the flood control, drainage and irrigation (FCDI) schemes, with up to 25 species absent or less abundant inside compared to outside. The majority of these species were large predators or conspicuous members of the highly prized migratory 'whitefish' category, including silurid catfish, Indian major carps, mullets and clupeids. In their absence, species inside FCDI schemes were dominated by much smaller resident 'blackfish' species. Assemblages inside FCDI schemes thus had both a reduced species richness, and a unit value reduced by up to 25%. It was concluded that FCDI schemes such as the PIRDP negatively affect fish species assemblages and stock values, by reducing the accessibility of impounded floodplains to migrant fish. Though some fish are capable of penetrating existing sluice gates, management measures are required to encourage the passage of more species.  相似文献   

9.
Common birds facing global changes: what makes a species at risk?   总被引:3,自引:0,他引:3  
Climate change, habitat degradation, and direct exploitation are thought to threaten biodiversity. But what makes some species more sensitive to global change than others? Approaches to this question have relied on comparing the fate of contrasting groups of species. However, if some ecological parameter affects the fate of species faced with global change, species response should vary smoothly along the parameter gradient. Thus, grouping species into few, often two, discrete classes weakens the approach. Using data from the common breeding bird survey in France – a large set of species with much variability with respect to the variables considered – we show that a quantitative measure of habitat specialization and of latitudinal distribution both predict recent 13 year trends of population abundance among 77 terrestrial species: the more northerly distributed and the more specialized a species is, the sharper its decline. On the other hand, neither hunting status, migrating strategy nor body mass predicted population growth rate variation among common bird species. Overall, these results are qualitatively very similar to the equivalent relationships found among the British butterfly populations. This constitutes additional evidence that biodiversity in Western Europe is under the double negative influence of climate change and land use change.  相似文献   

10.
Climatic conditions vary in spatial frequency globally. Spatially rare climatic conditions provide fewer suitable environments than common ones and should impose constraints on the types of species present locally and regionally. We used data on 467 North American angiosperms to test the effects of the spatial frequency of climatic conditions on ecological niche specialisation and functional diversity. We predicted that rare climates should favour generalist species that are able to inhabit a broader range of climatic conditions. Our results show that climate frequency filters species that differ in niche breadths and rare environments host species combinations with greater functional diversity. The proposed analytical approaches and hypotheses can be adapted to investigate different aspects of ecological assemblies and their biodiversity. We discuss different mechanisms regarding how spatial frequency of environments can affect niche composition and functional diversity. These should be useful while developing theoretical frameworks for generating a deeper understanding of its underpinnings.  相似文献   

11.
Vascular plant species compositional patterns of the low forest, scrub, and herbaceous vegetation on white sand soils and sandstone substrates were studied at six sandstone plateaus in Colombian Amazonia, by means of a field survey according to the Braun‐Blanquet relevé method. Canonical Correspondence Analysis (CCA) was applied to separate effects of habitat and spatial configurations of the plateaus on species patterns. Also, information on dispersal ability and phytogeographic affinity of species was used to test explanations for between plateau differences. Low trees, shrubs and herbs were the main species recorded in 212 relevés. The main gradients in the species patterns were linked to the spatial configuration of the plateaus. Spatially controlled species patterns were mainly related to soil depth and soil organic matter. The association between phytogeographic affinity and the habitat controlled spatial link of species pointed at insufficient sampling at one plateau. Dispersal ability did not explain the habitat controlled spatially distributed occurrences of plant species. This might indicate a low frequency of local extinctions at the sandstone plateaus, especially of the poorly dispersed species, possibly because plant populations survive fire or drought disturbances in local sheltered places. Space and habitat controlled species patterns at one plateau were quite distinct from patterns at the other plateaus. This might be due to unmeasured habitat factors (e.g. unrecorded soil variation or human disturbance history) or the preferential, surveyor biased sampling procedure.  相似文献   

12.
A fundamental goal of ecology is to understand whether ecological communities are structured according to general assembly rules or are essentially dictated by random processes. In the context of fragmentation, understanding assembly patterns and their mechanistic basis also has important implications for conservation. Using distribution data of 20 bat species collected on 11 islands in Gatún Lake, Panama, we tested for non‐randomness in presence–absence matrices with respect to nestedness and negative species co‐occurrence. We examined the causal basis for the observed patterns and conducted separate analyses for the entire assemblage and for various species submatrices reflecting differences in species’ trophic position and mobility. Furthermore, we explored the influence of weighting factors (area, isolation, abundance) on co‐occurrence analyses. Unweighted analyses revealed a significant negative co‐occurrence pattern for the entire assemblage and for phytophagous bats alone. Weighting analyses by isolation retained a pattern of species segregation for the whole assemblage but nullified the non‐random structure for phytophagous bats and suggested negative associations for animalivores and species with low mobility. Area‐ and abundance‐weighted analyses always indicated random structuring. Bat distributions followed a nested subset structure across islands, regardless of whether all species or different submatrices were analysed. Nestedness was in all cases unrelated to island area but weakly correlated with island isolation for incidence matrices of all species, phytophagous bats, and mobile species. Overall, evidence for negative interspecific interactions indicative of competitive effects was weak, corroborating previous studies based on ecomorphological analyses. Our findings indicate that bat assemblages on our study islands are most strongly shaped by isolation effects and species’ differential movement and colonization ability. From a conservation viewpoint this suggests that even in systems with high fragment–matrix contrast, a purely area‐based approach may be inadequate, and structural and functional connectivity among patches are important to consider in reserve planning.  相似文献   

13.

Aim

To evaluate the relative importance of climatic versus soil data when predicting species distributions for Amazonian plants and to gain understanding of potential range shifts under climate change.

Location

Amazon rain forest.

Methods

We produced species distribution models (SDM) at 5‐km spatial resolution for 42 plant species (trees, palms, lianas, monocot herbs and ferns) using species occurrence data from herbarium records and plot‐based inventories. We modelled species distribution with Bayesian logistic regression using either climate data only, soil data only or climate and soil data together to estimate their relative predictive powers. For areas defined as unsuitable to species occurrence, we mapped the difference between the suitability predictions obtained with climate‐only versus soil‐only models to identify regions where climate and soil might restrict species ranges independently or jointly.

Results

For 40 out of the 42 species, the best models included both climate and soil predictors. The models including only soil predictors performed better than the models including only climate predictors, but we still detected a drought‐sensitive response for most of the species. Edaphic conditions were predicted to restrict species occurrence in the centre, the north‐west and in the north‐east of Amazonia, while the climatic conditions were identified as the restricting factor in the eastern Amazonia, at the border of Roraima and Venezuela and in the Andean foothills.

Main conclusions

Our results revealed that soil data are a more important predictor than climate of plant species range in Amazonia. The strong control of species ranges by edaphic features might reduce species’ abilities to track suitable climate conditions under a drought‐increase scenario. Future challenges are to improve the quality of soil data and couple them with process‐based models to better predict species range dynamics under climate change.  相似文献   

14.
Tropical forests are changing in composition and productivity, probably in response to changes in climate and disturbances. The responses to these multiple environmental drivers, and the mechanisms underlying the changes, remain largely unknown. Here, we use a functional trait approach on timescales of 10,000 years to assess how climate and disturbances influence the community-mean adult height, leaf area, seed mass, and wood density for eight lowland and highland forest landscapes. To do so, we combine data of eight fossil pollen records with functional traits and proxies for climate (temperature, precipitation, and El Niño frequency) and disturbances (fire and general disturbances). We found that temperature and disturbances were the most important drivers of changes in functional composition. Increased water availability (high precipitation and low El Niño frequency) generally led to more acquisitive trait composition (large leaves and soft wood). In lowland forests, warmer climates decreased community-mean height probably because of increased water stress, whereas in highland forests warmer climates increased height probably because of upslope migration of taller species. Disturbance increased the abundance of acquisitive, disturbance-adapted taxa with small seeds for quick colonization of disturbed sites, large leaves for light capture, and soft wood to attain fast height growth. Fire had weak effects on lowland forests but led to more stress-adapted taxa that are tall with fast life cycles and small seeds that can quickly colonize burned sites. Site-specific analyses were largely in line with cross-site analyses, except for varying site-level effects of El Niño frequency and fire activity, possibly because regional patterns in El Niño are not a good predictor of local changes, and charcoal abundances do not reflect fire intensity or severity. With future global changes, tropical Amazonian and Andean forests may transition toward shorter, drought- and disturbance-adapted forests in the lowlands but taller forests in the highlands.  相似文献   

15.
Aim To determine the effect and relative importance of geographic and local environmental factors on species richness and turnover of ant assemblages in floodplain forests across the Amazon basin. Location Twenty‐six mature forest sites scattered along the entire extension of the Amazon River in Brazil. The study area encompassed nearly 18° of longitude and 3.5° of latitude. Methods Systematic collections of ants were performed at each site during the low‐water season (i.e. when forests are not inundated) using three complementary sampling methods. We used variance partitioning techniques to assess the relative effects of the spatial (latitude and longitude) and environmental (rainfall, length of the dry season and flood height) variables on ant species richness and composition. Results There was a twofold variation in the number of species per site, which was largely explained by inter‐site variations in rainfall seasonality and flooding intensity. In general, there were more species at sites located in the western part of the basin, where the dry season is less severe, or near the river estuary, where precipitation is also high and flooding is less intense. Ant community composition was also affected by environmental heterogeneity. For instance, some species only occurred at those sites less affected by the river’s seasonal flooding, whereas others were mostly associated with the drier or wetter regions of the basin. In addition, the turnover of species increased significantly as geographic distances increased. Nevertheless, the rate of change was small given that many species had a broad distribution across the study area. Main conclusions Ant distribution patterns along the floodplain forests of the Amazon appear to be controlled to a relatively large extent by the current gradient in flooding intensity and – most importantly – in precipitation. Altered rainfall regimes resulting from global warming and land‐use change thus have the potential to influence these patterns.  相似文献   

16.
We examined temporal changes in spatial patterns of submersed aquatic vegetation (SAV) in response to the restoration of geomorphic habitat in Navigation Pool 8 of the Upper Mississippi River from 1998 to 2016. The frequency of occurrence and species composition of SAV at sampling sites were spatially interpolated for each year to create annual maps. Linear models were fitted to temporal changes in SAV within each map pixel. The frequency of occurrence of SAV (across all species) increased over time in much of the impounded region of the pool, including areas near restored islands. However, impounded areas maintained a relatively consistent species composition over time, with species known to be tolerant of higher flow velocities (>0.10 m/second) and wind fetch distances (>1,000 m) (e.g. Vallisneria americana) being most abundant. In contrast, areas protected by newly constructed islands transitioned from V. americana to species found in other protected backwater habitats and known to be intolerant of high flow velocities and wind fetch distances (e.g. Ceratophyllum demersum). The results suggest that previously reported improvements in water clarity may have improved growing conditions for all SAV species, especially in the lower impounded portion of the pool, while island restoration created more backwater‐like habitats and facilitated changes in species composition. Assessing changes in SAV occurrence alone offers only a partial view of local‐scale river restoration (e.g. island building), while analyses of species composition are likely to be more indicative of the types of changes (i.e. reduced flow velocity and wind fetch) associated with restoring geomorphic habitat.  相似文献   

17.
  • 1 For over three decades the equilibrium theory of island biogeography has galvanized studies in ecological biogeography. Studies of oceanic islands and of natural habitat islands share some similarities to continental studies, particularly in developed regions where habitat fragmentation results from many land uses. Increasingly, remnant habitat is in the form of isolates created by the clearing and destruction of natural areas. Future evolution of a theory to predict patterns of species abundance may well come from the application of island biogeography to habitat fragments or isolates.
  • 2 In this paper we consider four factors other than area and isolation that influence the number and type of mammal species coexisting in one place: habitat diversity, habitat disturbance, species interactions and guild assembly rules. In all examples our data derive from mainland habitat, fragmented to differing degrees, with different levels of isolation.
  • 3 Habitat diversity is seen to be a good predictor of species richness. Increased levels of disturbance produce a relatively greater decrease in species richness on smaller than on larger isolates. Species interactions in the recolonization of highly disturbed sites, such as regenerating mined sites, is analogous to island colonization. Species replacement sequences in secondary successions indicate not just how many, but which species are included. Lastly, the complement of species established on islands, or in insular habitats, may be governed by guild assembly rules. These contributions may assist in taking a renewed theory into the new millennium.
  相似文献   

18.
19.
1.  We tested the species diversity–energy hypothesis using the British bird fauna. This predicts that temperature patterns should match diversity patterns. We also tested the hypothesis that the mechanism operates directly through effects of temperature on thermoregulatory loads; this further predicts that seasonal changes in temperature cause matching changes in patterns of diversity, and that species' body mass is influential.
2.  We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 × 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3.  We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4.  Although the species–energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5.  However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6.  Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral.  相似文献   

20.
Habitat specialist species are supposed to be more susceptible to variations in local environmental characteristics than generalists. To test this hypothesis, we conducted a comparative analysis on abundance and genetic diversity of forest carabids differing in their habitat requirements. Four species were sampled in forests characterized by abiotic, landscape and biotic environmental variables. A statistical framework based on canonical correspondence analysis was used for one habitat generalist and one habitat specialist species to determine the relative contribution of environmental variables in structuring inter- and intrapopulational genetic diversity depicted by microsatellites. Our results showed that sympatric species differed in their sensitivity to environmental variables. The same variables were found to be important in analyses of abundance and genetic data. However, specialization was not related to a greater sensitivity to local environmental characteristics. The strong impact of spatial variables on genetic data suggested that genetic variation among populations would largely reflect the response of individual species to dispersal opportunities more than the effect of habitat quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号